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Abstract

We introduce a numerical algorithm for solving dynamic economic models that 
merges stochastic simulation and projection approaches: we use simulation to ap-
proximate the ergodic measure of the solution, we cover the support of the con-
structed ergodic measure with a �xed grid, and we use projection techniques to 
accurately solve the model on that grid. The construction of the grid is the key 
novel piece of our analysis: we replace a large cloud of simulated points with a 
small set of "representative" points. We present three alternative techniques for 
constructing representative points: a clustering method, an epsilon-distinguishable 
set method, and a locally-adaptive variant of the epsilon-distinguishable set method. 
As an illustration, we solve one- and multi-agent neoclassical growth models and a 
large-scale new Keynesian model with a zero lower bound on nominal interest rates. 
The proposed solution algorithm is tractable in problems with high dimensionality 
(hundreds of state variables) on a desktop computer.
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1 Introduction

We introduce a numerical algorithm for solving dynamic economic models that merges
stochastic simulation and projection approaches: we use simulation to approximate the
ergodic measure of the solution, we cover the support of the constructed ergodic mea-
sure with a �xed grid, and we use projection techniques to accurately solve the model
on that grid. The construction of the grid is the key novel piece of our analysis: we
replace a large cloud of simulated points with a small set of "representative" points.
We present three alternative techniques for constructing representative points: a cluster-
ing method, an epsilon-distinguishable set method, and a locally-adaptive variant of the
epsilon-distinguishable set method. As an illustration, we solve one- and multi-agent neo-
classical growth models and a large-scale new Keynesian model with a zero lower bound
on nominal interest rates. The proposed solution algorithm is tractable in problems with
high dimensionality (hundreds of state variables) on a desktop computer.
One broad class of numerical methods for solving dynamic economic models builds

on stochastic simulation. First, this class includes iterative methods for solving rational
expectations models; see, e.g., Marcet (1988), Smith (1993), Maliar and Maliar (2005)
and Judd et al. (2011a). Second, it includes learning-based analysis; see, e.g., Marcet and
Sargent (1989), Bertsekas and Tsitsiklis (1996), Pakes and McGuire (2001) and Powell
(2011). Finally, it includes methods that use simulation to reduce information sets of
decision makers; see, e.g., Krusell and Smith (1998), and Benkard et al. (2008). The key
advantage of stochastic simulation methods is that the geometry of the set on which the
solution is computed is adaptive. Namely, these methods solve dynamic economic models
on a set of points produced by stochastic simulation, avoiding thus the cost of �nding
solutions in areas of the state space that are e¤ectively never visited in equilibrium; see
Judd et al. (2011a) for a discussion. However, a set of simulated points itself is not an
e¢ cient choice either as a grid for approximating a solution (it contains many closely-
located and hence, redundant points) or as a set of nodes for approximating expectation
functions (the accuracy of Monte Carlo integration is low).
Another broad class of numerical methods for solving dynamic economic models relies

on projection techniques; see, e.g., Wright and Williams (1984), Judd (1992), Christiano
and Fisher (2000), Krueger and Kubler (2004), Aruoba et al. (2006), Anderson et al.
(2010), Malin et al. (2011), Pichler (2011) and Judd et al. (2013). Projection methods use
e¢ cient discretizations of the state space and e¤ective deterministic integration methods,
and they deliver very accurate solutions. However, a conventional projection method is
limited to a �xed geometry such as a multidimensional hypercube. In order to capture all
points that are visited in equilibrium, a hypercube must typically include large areas of the
state space that have a low probability of happening in equilibrium. Moreover, the fraction
of the irrelevant areas of a hypercube domain grows rapidly with the dimensionality of
the problem.
The solution method introduced in this paper combines best features of stochastic sim-

ulation and projection methods, namely, it combines the adaptive geometry of stochastic
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simulation methods with e¢ cient discretization techniques of projection methods. As an
example, in Figure 1a, we show a set of points that is obtained by simulating two state
variables x1t and x

2
t of a typical dynamic economic model; this set of points identi�es a

high-probability area of the state space. In Figures 1b, 1c and 1d, we distinguish three
di¤erent subsets of the simulated points �we call them "grids".

The grid shown in Figure 1b is constructed using methods from clustering analysis: we
partition the simulated data into clusters, and we compute the centers of the clusters.
The resulting cluster grid mimics the density function by placing more points in regions
where the cloud of simulated points is more dense and fewer points where it is less dense.
The grid shown in Figure 1c is produced by an "-distinguishable set (EDS) technique: we
select a subset of points that are situated at the distance at least " from one another,
where " > 0 is a parameter. The EDS grid is roughly uniform. Finally, in Figure 1d, we
show an example of a locally-adaptive EDS grid: instead of using a constant ", we allow
it to vary across the domain, i.e., for each point (x1t ; x

2
t ), we have a di¤erent ", i.e., it is a

function " = " (x1t ; x
2
t ) (in this speci�c example, we decrease the value of " as we approach

a hyperbola x1t = [x
2
t ]
2). This kind of grid construction enables us to control the density

of grid points (and hence, the quality of approximation) over the solution domain.
An important question is: Which of these techniques delivers the best grid of points

to be used within a projection method? Crude simulation shown in Figure 1a is not an
e¢ cient choice: having many closely-located grid points does not increase accuracy but
cost. Cluster grids tend to produce a good �t in a high-probability area of the state space,
but may result in larger errors in low-probability areas of the state space. EDS grids with
a constant " tend to deliver more uniform accuracy. Finally, locally-adaptive EDS grids
allow us to automate the control of accuracy over the solution domain using the following
two-step procedure: (i) compute a solution using an EDS grid with a constant " and
evaluate the quality of approximation; (ii) de�ne " to be a decreasing function of the size
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of approximation errors, construct an EDS grid with a space-dependent " and recompute
the solution; iterate on steps (i) and (ii) if necessary. Thus, in those areas in which errors
are large, we use a smaller "; this increases the density of grid points and hence, augments
the accuracy.
An important role in our analysis plays the choice of an interpolation method, i.e.

the way in which we approximate functions o¤ the EDS grid. We consider two kinds
of interpolant. One is a global polynomial function that approximates a given decision
function on the whole solution domain. The other is a combination of local polynomial
bases each of which approximates a decision function only in an a small neighborhood
of a given EDS grid point; a global approximation is then obtained by tying up local
approximations together. There are many ways to construct local approximations and
to tie them up into a global approximation. Our baseline technique is as follows: For
each grid point x in the EDS grid, we construct a hypercube centered at that speci�c
point, we populate this hypercube with low-discrepancy points (namely, Sobol points),
and we solve the model using those points as a grid; see Niederreiter (1992) for a review
of low-discrepancy methods. Here, we compute a solution to the model as many times as
the number of points in the EDS grid (since we construct a Sobol grid around each EDS
grid point). Finally, to simulate a solution, we use a nearest-neighbor approach.
We next incorporate the EDS and cluster-grid techniques into a numerical method for

solving dynamic economic models. Our solution method requires some initial guess about
the true solution to the model at the initialization stage, such as a log-linearized solution.
In particular, we need an initial guess to produce simulated points which we can use for
constructing a grid. We therefore proceed iteratively: guess a solution, simulate the model,
construct a grid, solve the model on that grid using a projection method, and perform
few iterations on these steps until the grid converges. We complement the e¢ cient grid
construction with other computational techniques suitable for high-dimensional problems,
namely, low-cost monomial integration rules and a �xed-point iteration method for �nding
parameters of equilibrium rules.1 Taken together, these techniques make our solution
algorithm tractable in problems with high dimensionality �hundreds of state variables!
We �rst apply the EDS method to the standard neoclassical growth models with one

and multiple agents (countries). The EDS method delivers accuracy levels comparable
to the best accuracy attained in the related literature. In particular, we are able to
compute global quadratic solutions for equilibrium problems with up to 80 state variables
on a desktop computer using a serial MATLAB software (the running time ranges from
30 seconds to 24 hours). The maximum unit-free approximation error on a stochastic
simulation is always smaller than 0:01%.
Our second and a more novel application is a new Keynesian model which includes

a Taylor rule with a zero lower bound (ZLB) on nominal interest rates. This model has
eight state variables and is characterized by a kink in equilibrium rules due to the ZLB.

1In the present paper, we focus on equilibrium problems in which solutions are characterized by Euler
equations, however, in a working paper version of the paper, Judd et al. (2012), we also show applications
of the EDS technique to dynamic programming.
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We focus on equilibrium in which target in�ation coincides with actual in�ation in the
steady state. We parameterize the model using the estimates of Smets and Wouters (2003,
2007), and Del Negro et al. (2007). The EDS method is tractable for global polynomial
approximations of degrees 2 and 3 (at least): the running time is less than 25 minutes in
all the cases considered. For comparison, we also assess the performance of perturbation
solutions of orders 1 and 2. We �nd that if the volatility of shocks is low and if we allow
for negative nominal interest rates, both the EDS and perturbation methods deliver su¢ -
ciently accurate solutions. However, if either the ZLB is imposed or the volatility of shocks
increases, the perturbation method is signi�cantly less accurate than the EDS method. In
particular, under some empirically relevant parameterizations, the perturbation methods
of orders 1 and 2 produce errors that are as large as 25% and 38% on a stochastic simula-
tion, while the corresponding errors for the EDS method are less than 5%. The di¤erence
between the EDS and perturbation solutions is economically signi�cant. Namely, when
the ZLB is active, the perturbation method considerably understates the duration of the
ZLB episodes and the magnitude of the crises. We also solve the new Keynesian model
with an active ZLB using a locally-adaptive EDS method, and we �nd that consecutive
re�nements of the EDS grid can considerably increase the quality of approximation.
The mainstream of the literature on new Keynesian models relies on local perturbation

solution methods.2 However, recent developments in numerical analysis triggered a quickly
growing body of literature that computes non-linear solutions to medium- and large-scale
new Keynesian models; see Judd et al. (2011b), Braun et al. (2012), Coibion et al. (2012),
Fernández-Villaverde et al. (2012), Gust et al. (2012), Schmitt-Grohé and Uribe (2012),
Aruoba and Schorfheide (2013), Gavion et al. (2013), Mertens and Ravn (2013), Richter
and Throckmorton (2013). As is argued in Judd et al. (2011b), Fernández-Villaverde
et al. (2012) and Braun et al. (2012), perturbation methods, which were traditionally
used in this literature, do not provide accurate approximation in the context of new
Keynesian models with the ZLB. Moreover, recent papers of Schmitt-Grohé and Uribe
(2012), Mertens and Ravn (2013) and Aruoba and Schorfheide (2013) argue that new
Keynesian economies may have multiple equilibria in the presence of ZLB. In particular,
the last paper accurately computes a de�ation and sunspot equilibria with a full set of
stochastic shocks using a modi�ed variant of a cluster-grid algorithm (CGA) introduced in
Judd et al. (2010, 2011b). Namely, to increase the accuracy of solutions in the ZLB area,
�rst, they add grid points near the ZLB area using the actual data on the U.S. economy;
and second, they apply two piecewise bases to separately approximate the solution in the
areas with active and non-active ZLB.
Our locally-adaptive EDS methers are related to several other methods in the litera-

ture. First, the EDS technique with local bases has similarity to �nite element approxima-

2Most papers use linear approximations, however, there are also papers that compute quadratic ap-
proximations (e.g., Kollmann, 2002, and Schmitt-Grohé and Uribe, 2007) and cubic approximations (e.g.,
Rudebusch and Swanson, 2008). Earlier applications of nonlinear solution methods either focus on low-
dimensional problems or employ simplifying assumptions; see Adam and Billi (2006), Anderson et al.
(2010), and Adjemian and Juillard (2011).
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tion methods that construct a global approximation using a combination of disjoint local
approximations; see Hughes (1987) for a mathematic review of �nite element methods,
and see McGrattan (1996) for their applications to economics. Second, a locally-adaptive
EDS technique with space-dependent " resembles locally-adaptive sparse-grid techniques
which re�nes an approximation by introducing new grid points and bases functions in
those areas in which the quality of approximation is low; see Ma and Zabaras (2009) for
a review of such methods, and see Brumm and Scheidegger (2013) for their applications
to economic problems. Finally, a locally-adaptive EDS technique is also related to the
analysis of Aruoba and Schorfheide (2013) who show the bene�ts of adaptive grid points
and bases functions in the context of a new Keynesian model with the ZLB.
The CGA and EDS projection methods can be used to accurately solve small-scale

models that were previously studied using other global solution methods.3 However, a
comparative advantage of these algorithms is their ability to solve large-scale problems
that other methods �nd intractable or expensive. The speed of the CGA and EDS al-
gorithms also makes them potentially useful in estimation methods that solve economic
models at many parameters vectors; see Fernández-Villaverde and Rubio-Ramírez (2007),
and Winschel and Krätzig (2010). Finally, cluster grids and EDS grids can be used in
other applications that require us to produce a discrete approximation to the ergodic dis-
tribution of a stochastic process with a continuous density function, in line with Tauchen
and Hussey (1991).
The rest of the paper is as follows: In Section 2, we describe the construction of

the simulation-based grids using EDS, locally-adaptive EDS and clustering techniques.
In Section 3, we integrate the EDS grid into a projection method for solving dynamic
economic models. In Section 4, we apply the EDS algorithm to solve one- and multi-
agent neoclassical growth models. In Section 5, we compute a solution to a new Keynesian
model with the ZLB. In Section 6, we conclude.

2 Discrete approximations to the ergodic set

In this section, we introduce techniques that produce a discrete approximation to the
ergodic set of a stochastic process with a continuous density function. Later, we will use
the resulting discrete approximation as a grid for �nding a solution in the context of a
projection-style numerical method for solving dynamic economic models.

3For reviews of methods for solving dynamic economic models, see Taylor and Uhlig (1990), Gaspar
and Judd (1997), Judd (1998), Marimon and Scott (1999), Santos (1999), Christiano and Fisher (2000),
Adda and Cooper (2003), Aruoba et al. (2006), Den Haan (2010), Kollmann et al. (2011), and Maliar
and Maliar (2013).
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2.1 A class of stochastic processes

We focus on a class of discrete-time stochastic processes that can be represented in the
form

xt+1 = ' (xt; �t+1) ; t = 0; 1; :::; (1)

where � 2 E � Rp is a vector of p independent and identically distributed shocks, and
x 2 X � Rd is a vector of d (exogenous and endogenous) state variables. The distribution
of shocks is given by a probability measure Q de�ned on a measurable space (E;E), and
x is endowed with its relative Borel �-algebra denoted by X.
Many dynamic economic models have equilibrium laws of motion for state variables

that can be represented by a stochastic system in the form (1). For example, the standard
neoclassical growth model, described in Section 4, has the laws of motion for capital and
productivity that are given by kt+1 = K (kt; at) and at+1 = a�t exp (�t+1), respectively,
where �t+1 � N (0; �2), � > 0 and � 2 (�1; 1); by setting xt � (kt; at), we arrive at (1).
To characterize the dynamics of (1), we use the following de�nitions.
Def 1. A transition probability is a function P : X�X ! [0; 1] that has two properties:

(i) for each measurable set A 2 X, P (�;A) is X-measurable function; and (ii) for each
point x 2 X, P (x; �) is a probability measure on (X;X).
Def 2. An (adjoint) Markov operator is a mappingM� : X ! X such that �t+1 (A) =

(M��t) (A) �
R
P (x;A)�t (dx).

Def 3. An invariant probability measure � is a �xed point of the Markov operator M�

satisfying � =M��.
Def 4. A set A is called invariant if P (x;A) = 1 for all x 2 A. An invariant set

A� is called ergodic if it has no proper invariant subset A � A�.
Def 5. An invariant measure � is called ergodic if either � (A) = 0 or � (A) = 1 for

every invariant set A.
These de�nitions are standard to the literature on dynamic economic models; see

Stokey, Lucas and Prescott (1989), and Stachursky (2009). P (x;A) is the probability
that stochastic system (1) whose today�s state is xt = x will move tomorrow to a state
xt+1 2 A. The Markov operatorM� maps today�s probability into tomorrow�s probability,
namely, if �t (A) is the probability that the system (1) is in A at t, then (M��t) (A) is the
probability that the system will remain in the same set at t+1. Applying the operatorM�

iteratively, we can describe the evolution of the probability starting from a given �0 2 X.
An invariant probability measure � is a steady state solution of the stochastic system
(1). An invariant set A is the one that keeps the system (1) forever in A, and an ergodic
set A� is an invariant set of the smallest possible size. Finally, an invariant probability
measure is ergodic if all the probability is concentrated in just one of the invariant sets.
The dynamics of (1) produced by economic models can be very complex. In particular,

the Markov process (1) may have no invariant measure or may have multiple invariant
measures. These cases represent challenges to numerical methods that approximate so-
lutions to dynamic economic models. However, there is another challenge that numerical
methods face � the curse of dimensionality. The most regular problem with a unique,
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smooth and well-behaved solution can become intractable when the dimensionality of the
state space gets large. The challenge of high dimensionality is the focus of our analysis.
We employ the simplest possible set of assumptions that allows us to describe and to test
computational techniques that are tractable in high-dimensional applications.
Assumption 1. There exists a unique ergodic set A� and the associated ergodic mea-

sure �.
Assumption 2. The ergodic measure � admits a representation in the form of a

density function g : X ! R+ such that
R
A g (x) dx = � (A) for every A � X.

2.2 An EDS technique for approximating the ergodic set

We propose a two-step procedure for forming a discrete approximation to the ergodic set.
First, we identify an area of the state space that contains nearly all the probability mass.
Second, we cover this area with a �nite set of points that are roughly evenly spaced.

2.2.1 An essentially ergodic set

We de�ne a high-probability area of the state space using the level set of the density
function.
Def 6. A set A� � A� is called a �-level ergodic set if � > 0 and

A� � fx 2 X : g (x) � �g :

The mass of A� under the density g (x) is equal to p (�) �
R
g(x)�� g (x) dx. If p (�) � 1,

then A� contains all X except for points where the density is lowest, in which case A� is
called an essentially ergodic set.
By construction, the correspondence A� : R+ � Rd maps � to a compact set. The

correspondence A� is upper semi-continuous but may be not lower semi-continuous (e.g.,
if x is drawn from a uniform distribution [0; 1]). Furthermore, if g is multimodal, then for
some values of �, A� may be disconnected (composed of disjoint areas). Finally, for � >
max
x
fg (x)g, the set A� is empty.
Our approximation to the essentially ergodic set builds on stochastic simulation. For-

mally, let P be a set of n independent random draws x1; :::; xn � Rd generated with the
distribution function � : Rd ! R+. For a given subset J � Rd, we de�ne C (P ; J) as a
characteristic function that counts the number of points from P in J . Let J be a family
generated by the intersection of all subintervals of Rd of the form �di=1 [�1; vi), where
vi > 0.
Assumption 3. The empirical distribution function b� (J) � C(P ;J)

n
converges to the

true distribution function � (J) for every J 2 J when n!1.
If random draws are independent, the asymptotic rate of convergence of b� to � is given

by the so-called law of iterated logarithm of Kiefer�s (1961), namely, it is (log log n)1=2 (2n)�1=2.
For serially correlated processes like (1), the convergence rate depends on speci�c assump-
tions; see Zhao and Woodroofe (2008) for the results on general stationary processes.
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We use the following algorithm to select a subset of simulated points that belongs to
an essentially ergodic set A�.

(Algorithm A�): Selection of points within an essentially ergodic set.
Step 1. Simulate (1) for T periods.
Step 2. Select each �th point to get a set P of n points x1; :::; xn 2 X � Rd.
Step 3. Estimate the density function bg (xi) � g (xi) for all xi 2 P .
Step 4. Remove all points for which the density is below �.

In Step 2, we include in the set P only each �th observation to make random draws
(approximately) independent. As far as Step 3 is concerned, there are various methods in
statistics that can be used to estimate the density function from a given set of data; see
Scott and Sain (2005) for a review. We use one of such methods, namely, a multivariate
kernel algorithm with a normal kernel which estimates the density function in a point x
as bg (x) = 1

n (2�)d=2 h
d

nX
i=1

exp

�
�D (x; xi)

2h
2

�
; (2)

where h is the bandwidth parameter, and D (x; xi) is the distance between x and xi. The
complexity of Algorithm A� is O (n2) because it requires to compute pairwise distances
between all the sample points. Finally, in Step 3, we do not choose the density cuto¤ � but
a fraction of the sample to be removed, �, which is related to � by p (�) =

R
g(x)�� g (x) dx =

1��. For example, � = 0:05 means that we remove 5% of the sample which has the lowest
density.

2.2.2 An "-distinguishable set (EDS)

Our next objective is to construct a uniformly-spaced set of points that covers the essen-
tially ergodic set (to have a uniformly-spaced grid for a projection method). We proceed
by selecting an "-distinguishable subset of simulated points in which all points are situated
at least on the distance " from one another. Simulated points are not uniformly-spaced
but the EDS subset will be roughly uniform, as we will show in Appendix A3.
Def 7. Let (X;D) be a bounded metric space. A set P " consisting of points x"1; :::; x

"
M 2

X � Rd is called "-distinguishable if D
�
x"i ; x

"
j

�
> " for all 1 � i; j � M : i 6= j, where

" > 0 is a parameter.
EDSs are used in mathematical literature that studies the entropy; see Temlyakov

(2011) for a review. This literature focuses on a problem of constructing an EDS that
covers a given subset of Rd (such as a multidimensional hypercube). We study a di¤erent
problem, namely, we construct an EDS for a given discrete set of points. To this purpose,
we introduce the following algorithm.
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(Algorithm P "): Construction of an EDS.
Let P be a set of n points x1; :::; xn 2 X � Rd.
Let P " begin as an empty set, P " = f?g.
Step 1. Select xi 2 P . Compute D (xi; xj) to all xj in P .
Step 2. Eliminate from P all xj for which D (xi; xj) < ".
Step 3. Add xi to P " and eliminate it from P .
Iterate on Steps 1-3 until all points are eliminated from P .

The complexity of Algorithm P " is of order O (nM), where M is the number of points
into the set P ". Indeed, consider the worst-case scenario such that " is smaller than all
inter-point distances for the �rst M points. Then, the algorithm will go through n �M
iterations without eliminating any point, and it will eliminate n �M points at the end.
Under this scenario, the complexity is (n� 1) + (n� 2) ::: + (n�M) =

PM
i=1 (n� i) =

nM� M(M+1)
2

� nM . When no points are eliminated from P , i.e.,M = n, the complexity
is quadratic, O (n2). However, the number of pointsM in an EDS is bounded from above
if X is bounded; see Proposition 2 in Appendix A2. This means that asymptotically,
when n!1, the complexity of Algorithm P " is linear, O (n).

2.2.3 Distance between points

Both estimating the density function and constructing an EDS requires us to measure the
distance between simulated points. Generally, variables in economic models have di¤erent
measurement units and are correlated. This a¤ects the distances between the simulated
points and hence, a¤ects the resulting EDS. Therefore, prior to using Algorithm A� and
Algorithm P ", we normalize and orthogonalize the simulated data.
To be speci�c, let X 2 Rn�d be a set of simulated data normalized to zero mean

and unit variance. Let xi �
�
x1i ; :::; x

d
i

�
be an observation i = 1 (there are n obser-

vations), and let x` �
�
x`1; :::; x

`
n

�>
be a variable ` (there are d variables), i.e., X =�

x1; :::; xd
�
= (x1; :::; xn)

>. We �rst compute the singular value decomposition of X, i.e.,
X = UQV >, where U 2 Rn�d and V 2 Rd�d are orthogonal matrices, and Q 2 Rd�d
is a diagonal matrix. We then perform a linear transformation of X using PC� XV .
The variables PC =

�
PC1; :::;PCd

�
2 Rn�d are called principal components (PCs) of X,

and are orthogonal (uncorrelated), i.e.,
�
PC`

0
�>
PC` = 0 for any `0 6= `. As a measure

of distance between two observations xi and xj, we use the Euclidean distance between

their PCs, namely, D (xi; xj) =
hPd

`=1

�
PC`i � PC`j

�2i1=2
, where all principal components

PC1; :::;PCd are normalized to unit variance.

2.2.4 An illustration of the EDS technique

In this section, we will illustrate the EDS technique described above by way of example.
We consider the standard neoclassical stochastic growth model with a closed-form solu-
tion (see Section 4 for a description of this model). We simulate time series for capital
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and productivity level of length 1; 000; 000 periods, and we select a sample of 10; 000
observations by taking each 100th point (to make the draws independent); see Figure 2a.

We orthogonalize the data using the principal component (PC) transformation, and we
normalize the PCs to unit variance; see Figure 2b. We estimate the density function
using the multivariate kernel algorithm with the standard bandwidth of h = n�1=(d+4),
and we remove from the sample 5% of simulated points in which the density is lowest;
see Figure 2c. We construct an EDS; see Figure 2d. We plot such a set in the PC and
original coordinates in Figure 2e and Figure 2f, respectively. As we see, the EDS technique
delivers a set of points that covers the same area as does the set of simulated points but
that is spaced roughly uniformly.4

4Our two-step procedure produces an approximation not only to the ergodic set but to the whole
ergodic distribution (because in the �rst step, we estimate the density function in all simulated points
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2.2.5 Dispersion and discrepancy of EDS grids

In our examples, the EDS grids constructed on simulated series appear to be uniform.
However, an important question is whether our construction guarantees the uniformity of
grid points in general. We address this question in Appendices A1 and A3, speci�cally,
we provide formal results about the degrees of dispersion and discrepancy of EDS grids
from a uniform distribution.
Our analysis is related to recent mathematical literature on covering-number problems

(see, Temlyakov, 2011) and random sequential packing problems (see, Baryshnikov et al.,
2008). A well-known example from this literature is a car-parking model of Rényi (1958).
Cars of a length " park at random locations along the roadside of a length one subject
to a non-overlap with the previously parked cars. It is known that when cars arrive at
uniform random positions, they are also distributed uniformly in the limit "! 0.5.
Our analysis di¤ers from Rényi�s (1958) analysis in that cars can arrive at random

positions with an arbitrary density function (normally, we do not know density functions
of stochastic processes arising in an economic model that we try to solve). In terms of
Rényi�s (1958) problem, our results are as follows: We show that EDS grids are low-
dispersion sequences for any density function, namely, any two points (cars) in the EDS
grid are situated on the distance between " and 2" from each other, and this distance
converges to 0 as "! 0 (see Proposition 1 in Appendix A1). However, we �nd that this
fact alone is not su¢ cient to guarantee the asymptotic uniformity (low discrepancy) of
the EDS grids (see Proposition 3 in Appendix A3). To see the intuition, consider Rényi�s
(1958) setup such that on the interval [0; ��], evil drivers park their cars on the distance
2" to leave as little parking space to other drivers as possible, and on the interval [��; 1],
a police o¢ cer directs the cars to park on the distance " in a socially optimal way. Under
this construction, there are twice as many points in the second subinterval as in the �rst
one for any " (and this non-uniformity is not reduced when "! 0). Finally, we establish
that even though EDS grids do not possess the property of low-discrepancy sequences in
general, their discrepancy from the uniform distribution is bounded from above for any
density function; see Proposition 3 in Appendix A3.

2.2.6 Number of points in EDS grids

Under our baseline Algorithm P ", the cardinality of an EDS grid (i.e., the number of points
in it)depends on the value of " > 0: the smaller is ", the more points are included in the
EDS grid. We derive bounds on the number of points in the EDS grids in Proposition
2 of Appendix A2, however, the exact relation is hard to characterize analytically, in

including those that form an "-distinguishable set). The density weights show what fraction of the sample
each "representative" point represents, and can be used to construct weighted-average approximations.
If our purpose is to construct a set of evenly-spaced points, we do not need to use the density weights
and should treat all points equally.

5Rényi (1958) shows that they occupy about 75% of the roadside at jamming, namely, lim
"!0

E [M ] " �
0:748.
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particular, because the cardinality of the EDS grid depends on the order in which points
are processed.
In applications, it may be necessary to control the number of grid points, for example,

in a projection method, we need to construct a grid with a given number of grid points
M . To construct the relation between " and M = M ("), we can use a simple numerical
bisection method.

(Algorithm M): Construction of an EDS with a target number of points M .

For iteration i = 1, �x "(1)min and "
(1)
max such that M

�
"
(1)
max

�
�M �M

�
"
(1)
min

�
.

Step 1. On iteration i, take " = "
(i)
min+"

(i)
max

2 , construct an EDS and compute M (").

Step 2. If M (") > M , then set "(i+1)min = "; and otherwise, set "(i+1)max = ".
Iterate on Steps 1 and 2 until M (") converges.

To �nd initial values of "max and "min, we use the bounds established in Appendix A2 (see

Proposition 2), namely, we set "(1)max = 0:5rmaxM
�1=d

and "(1)min = rmin
�
M

1=d � 1
��1

, where
rmax and rmin are, respectively, the largest and smallest PCs of the simulated points. Since
the essentially ergodic set is not necessarily a hypersphere (as is assumed in Proposition
2), we take rmax and rmin to be the radii of the limiting hyperspheres that contain none
and all PCs of the simulated points, respectively.

2.3 Reducing the cost of constructing an EDS on the essentially
ergodic set

The two-step procedure described in Section 2.2 has a complexity of O (n2). This is
because the estimation of the density function in Step 3 of Algorithm A� has a complexity
of order O (n2), and the construction of an EDS set in Step 1 of Algorithm P " has a
complexity of order O (nM). (The latter is signi�cantly lower than the former ifM � n).
The complexity of orderO (n2) does not imply a substantial cost for the size of applications
we study in the present paper, however, it might be expensive for larger applications.
We now describe an alternative implementation of the two-step procedure that has

a lower complexity, namely, O (nM). The idea is to invert the steps in the two-step
procedure described in Section 2.2, namely, we �rst construct an EDS with M points
using all simulated points, and we then remove from the EDS a subset of points with
the lowest density. Since we need to estimate the density function only in M simulated
points, the complexity is reduced to O (nM).

(Algorithm P " � cheap): Construction of an EDS.
Step 1. Simulate (1) for T periods.
Step 2. Select each �th point to get a set P of n points x1; :::; xn 2 X � Rd.
Step 3. Select an EDS P " of M points, x"1; :::; x

"
M using Algorithm P ".

Step 4. Estimate the density function bg (x"i ) � g (x"i ) for all x"i 2 P " using (2).
Step 5. Remove a fraction of points � of P " which has the lowest density.
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To control the fraction of the sample removed, we use the estimated density function bg.
Note that when eliminating a point x"j 2 P ", we remove

bg(x"j)PM
i=1 bg(x"i) of the original sample.

We therefore can proceed with eliminations of points from the EDS one by one until their
cumulative mass reaches the target value of �.
To illustrate the application of the above procedure, we again use the example of the

neoclassical stochastic growth model with a closed-form solution studied in Section 2.2.4;
see Figures 3a-3f.

We �rst compute the normalized PCs of the original sample; see Figure 3b (this step in
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the same as in Figure 2b). We compute an EDS P " on the normalized PCs; see Figure
3c. We then estimate the density function in all points of P " using the kernel density
algorithm. We next remove from P " a set of points that has the lowest density function
and that represents 5% of the sample. The removed points are represented with crosses
in Figure 3d. The resulting EDS is shown in Figure 3e. Finally, we plot the EDS grid in
the original coordinates in Figure 3f.

2.4 Cluster-grid technique

We have described one speci�c EDS procedure for forming a discrete approximation to
the essentially ergodic set of tthe stochastic process (1). There are other procedures that
can be used for this purpose. In particular, we can use methods from cluster analysis
to select a set of representative points from a given set of simulated points; see Everitt
et al. (2011) for a review of clustering techniques. Namely, we partition the simulated
data into clusters (groups of closely-located points), and we replace each cluster with one
representative point. In this paper, we study two clustering methods that can be used
in the context of our analysis, an agglomerative hierarchical and K-means ones. The
steps of an agglomerative hierarchical method are shown below, and a K-means method
is described in Appendix B2.6

(Algorithm P c): Agglomerative hierarchical clustering algorithm.
Initialization. Choose M , the number of clusters to be created.
In a zero-order partition P(0), each simulated point represents a cluster.
Step 1. Compute all pairwise distances between the clusters in a partition P(i).
Step 2. Merge a pair of clusters with the smallest distance to obtain a partition P(i+1).
Iterate on Steps 1 and 2. Stop when the number of clusters in the partition is M .
Represent each cluster with a simulated point which is closest to the cluster�s center.

As a measure of distance between two clusters, we use Ward�s measure of distance; see
Appendix B1. In Figures 4a-4c, we show an example in which we partition a set of
simulated points into 4 clusters and construct 4 representative points. A representative
point is the closest point to the cluster center (computed as the average of all observations
in the given cluster).

6The clustering methods were used to produce all the numerical results in the earlier versions of the
paper, Judd et al. (2010, 2011b). In our examples, projection methods operating on cluster grids and
those operating on EDSs deliver comparable accuracy of solutions.
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The advantage of the clustering methods is that we can control the number of grid points
directly (while the number of points in an EDS is controlled via "). The drawbacks are
that their complexity is higher, namely, it is of order O (n3) and O

�
ndM+1 log n

�
for the

agglomerative hierarchical and K-means algorithms, respectively. Also, the properties of
grids produced by clustering methods are hard to characterize analytically.
As is in the case of the EDS technique, two versions of the cluster grid technique can be

constructed: we can �rst remove the low-density points and then construct representative
points using clustering methods (this is parallel to the basic two-step EDS procedure of
Section 2.2), or we can �rst construct clusters and then eliminate representative points
in which the density function is the lowest (this is parallel to the cheap version of the
two-step procedure described in Section 2.3). Prior to applying the clustering methods,
we preprocess the data by constructing the normalized PCs, as we do when constructing
an EDS grid in Section 2.2.3.

2.5 Locally-adaptive EDS grids

The locally-adaptive EDS grid technique makes it possible to control the quality of ap-
proximation over the state space. Namely, we place more grid points in those areas in
which the accuracy is low.
In simple cases, we may know a priory that an approximation is less accurate in some

area X1 � Rd than in other areas. Consequently, we can use a small "1 in the area X1,
and we can use a large "2 everywhere else. This produces more dense grid points in X1

than in the rest of the domain; an example of this construction is shown in Figure 1d.
However, in the typical case, it is not a priory known where the solution is accurate, and
we proceed as follows:
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(Algorithm P " � locally adaptive): Construction of a locally adaptive EDS.
Step 1. De�ne "1; :::; "n for a given set x1; :::; xn 2 X � Rd (initially, "i = " for all i).
Step 2. Construct an EDS P " by using "i for each xi 2 X and approximate bf � f .
Step 3. Evaluate approximation errors R (xi) =




 bf (xi)� f (xi)


 for all xi 2 X.
Step 4. De�ne E (R (xi)) to be a decreasing function of approximation errors.
Step 5. Compute "i = E (R (xi)) for all xi 2 X and go to Step 2.

Under the above algorithm, the larger is the approximation error in a given data point
xi, the smaller is the corresponding value of "i = E (R (xi)) and hence, the higher is the
density of grid points. In certain sense, this construction is similar to locally-adaptive
techniques in the sparse-grid literature in that it re�nes an approximation by introducing
new grid points and bases functions in those areas in which the quality of approximation
is low; see Ma and Zabaras (2009) for a review of this literature; and see Brumm and
Scheidegger (2013) for examples of economic applications. The locally-adaptive EDS grid
technique is especially useful in applications with kinks and strong non-linearities. In
Section 5, we will study an example of such an application �a new Keynesian model with
a ZLB on the nominal interest rate.

2.6 Approximating a function o¤ the EDS grid

There is a variety of numerical techniques in mathematical literature that can be used
to approximate functions o¤ the grid. They typically require us to assume a �exible
functional form bf (x; b) characterized by a parameters vector b, and to �nd a parameters
vector b that minimizes the approximation errors, � (x"i ; b) � bf (x"i ; b) � f (x"i ), on the
constructed EDS grid x"1; :::; x

"
m 2 P " according to some norm k�k. If the constructedbf (�; b) coincides with f in all grid points, then we say that bf (�; b) interpolates f o¤ the

EDS grid (this requires that the number of grid points in the EDS grid is the same as
the number of the parameters in b). Otherwise, we say that bf (�; b) approximates f on
the EDS grid (this is similar to a regression analysis in econometrics when the number of
data points is larger than the number of the regression coe¢ cients).

Global polynomial basis functions. A convenient choice for an approximating func-
tion is a high-degree ordinary polynomial function. Such a function is easy to construct,
and it can be �tted to the data using simple and reliable linear approximation methods;
see Judd et al. (2011a). Orthogonal polynomial families are another useful choice even
though the property of orthogonality is not satis�ed for the simulation-based grid points;
see Judd et al. (2011a) for a discussion. However, global polynomial approximations
may be not su¢ ciently �exible to accurately approximate decision functions with strong
non-linearities and kinks.

Piecewise local basis functions. Piecewise local bases are more �exible than global
ones because each local polynomial basis function approximates a decision function just
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in an a small neighborhood of a given EDS grid point. A global approximation is obtained
by combing local approximations together. There are many ways to construct local ap-
proximations and to tie them up into a global approximation. Our baseline technique is as
follows: For each grid point x"ii in the EDS grid, we construct a hypercube centered at that
speci�c point, cover the hypercube with a uniformly distributed set of points, and solve
the model on this set of points. As a set of points that covers the hypercube uniformly, we
use low-discrepancy sequences, namely, a Sobol sequence; an example of such a sequence
is shown in Figure 5b; see Niederreiter (1992) for a review of low-discrepancy methods.
Thus, we re-compute a solution to the model as many times as the number of points
in the EDS grid. Under piecewise local polynomial approximations, we use low-degree
polynomial bases, which helps us to keep the cost reasonably low. Finally, to simulate
the solution, we rely on a nearest neighbor approach. Our construction of local bases has
similarity to �nite-element methods; see Hughes (1987) for a mathematic review of such
methods; and see McGrattan (1996) for their applications to economics.

Piecewise local basis functions with locally-adaptive EDS grids. Piecewise local
basis functions can be naturally combined with the locally-adaptive EDS grid technique.
This combination enables us to re�ne the solution only in those areas in which the accu-
racy is not su¢ cient and to hold �xed the solution in the remaining points. That is, when
we add new points to the EDS grid, we need to compute the solutions in the neighborhood
of these new grid points but we need not re-compute it in the existing grid points. This
useful feature is speci�c to approximations with local bases functions; for global approxi-
mations, we need to re-compute the solution entirely when changing either grid points or
an approximating function.

3 Incorporating the EDS grid into projection meth-
ods

In this section, we incorporate the EDS grid into projection methods for solving dynamic
economic models, namely, we use the EDS grid as a set of points on which the solution is
approximated.

3.1 Comparison of the EDS grid with other grids used in the
context of numerical solution methods

Let us �rst compare the EDS grid to other grids used in the literature for solving dynamic
economic models. We must make a distinction between a geometry of the set on which the
solution is computed and a speci�c discretization of this set. A commonly-used geometry
in the context of projection solution methods is a �xed multidimensional hypercube. Fig-
ures 5a-5d plot 4 di¤erent discretizations of the hypercube: a tensor-product Chebyshev
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grid, a low-discrepancy Sobol grid, a sparse Smolyak grid and a monomial grid, respec-
tively (in particular, these type of grids were used in Judd (1992), Rust (1998), Krueger
and Kubler (2004), and Pichler (2011), respectively).7

In turn, stochastic simulation methods use the adaptive geometry; see Marcet (1988),
Smith (1993), Maliar and Maliar (2005), Judd et al. (2011a) for examples of methods that
compute solutions on simulated series.8 Focusing on the right geometry can be critical
for the cost, as the following example shows.

7Also, Tauchen and Hussey (1991) propose a related discretization technique that delivers an approx-
imation to a continuous density function of a given stochastic process. Their key idea is to approximate
a Markov process with a �nite-state Markov chain. This discretization technique requires to specify the
distribution function of the Markov process explicitly and is primarily useful for forming discrete approx-
imations of density functions of exogenous variables. In contrast, the EDS discretization technique builds
on stochastic simulation and does not require to know the distribution function. It can be applied to
both exogenous and endogenous variables.

8For a detailed description of Marcet�s (1988) method, see Den Haan and Marcet (1990), and Marcet
and Lorenzoni (1999).
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Example. Consider a vector of uncorrelated random variables x 2 Rd drawn from a
multivariate Normal distribution x � N (0; Id), where Id is an identity matrix. An essen-
tially ergodic set A� has the shape of a hypersphere. Let us surround such a hypersphere
with a hypercube of a minimum size. For dimensions 2, 3, 4, 5, 10, 30 and 100, the ratio
of the volume of a hypersphere to the volume of the hypercube is equal to 0:79, 0:52,
0:31, 0:16, 3 � 10�3, 2 � 10�14 and 2 � 10�70, respectively. These numbers suggest that an
enormous savings in cost are possible by focusing on an essentially ergodic set instead of
the standard multidimensional hypercube.

However, a stochastic simulation is not an e¢ cient discretization of a high-probability set:
a grid of simulated points is unevenly spaced, has many closely-located, redundant points
and contains some points in low-density regions.
The EDS grid is designed to combine the best features of the existing grids. It combines

the adaptive geometry (similar to the one used by stochastic simulation methods) with
an e¢ cient discretization (similar to that produced by low-discrepancy methods on a
hypercube). In Figure 5e, we show an example of a cloud of simulated points of irregular
shape, and in Figure 5f, we plot the EDS grid delivered by the two-step procedure of
Section 2.2. As we can see, the EDS grid appears to cover the high-probability set
uniformly.
There are cases in which the EDS grid may be not a good choice. First, focusing on

a high-probability set may not have advantages relatively to a hypercube; for example,
if a vector x 2 Rd is drawn from a multivariate uniform distribution, x � [0; 1]d, then
an essentially ergodic set coincides with the hypercube [0; 1]d, and no saving in cost is
possible. Second, in some applications, one may need to have a su¢ ciently accurate
solution outside the high-probability set, for example, when analyzing a transition path
of a developing economy with low initial endowment. In those cases, one may augment
the grid on a high-probability set to include some "important" points situated outside
this set. An example of this approach is shown by Aruoba and Schorfheide (2013) in
the context of a new Keynesian model. They construct a grid by combining selected
draws from the ergodic distribution of the model with a set of values for state variables
�ltered from the actual data. In this way, they augment the grid to include points from
the 2008-2009 Great recession which do not naturally belong to a high-probability set of
the studied model. Finally, our worst case analysis in Appendix A3 shows that there are
scenarios in which EDSs constructed on simulated data are highly non-uniform. However,
these scenarios require extreme assumptions about the density of simulated points, e.g.,
a set of highly uneven Dirac point masses. We did not observe the worst-case outcomes
in our experiments. If we know that we are in those cases, we may opt for grids on a
multidimensional hypercube.
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3.2 General description of the EDS algorithm

In this section, we develop a projection method that uses the EDS grid. We focus on
equilibrium problems, however, the EDS method can be also used to solve dynamic pro-
gramming problems; see Judd et al. (2012) for examples.

3.2.1 An equilibrium problem

We study an equilibrium problem in which a solution is characterized by the set of equi-
librium conditions for t = 0; 1; : : : ;1,

Et [G (st; zt; yt; st+1; zt+1; yt+1)] = 0; (3)

zt+1 = Z (zt; �t+1) ; (4)

where (s0; z0) is given; Et denotes the expectations operator conditional on information
available at t; st 2 Rds is a vector of endogenous state variables at t; zt 2 Rdz is a vector
of exogenous (random) state variables at t; yt 2 Rdy is a vector of non-state variables �
prices, consumption, labor supply, etc. �also called non-predetermined variables; G is a
continuously di¤erentiable vector function; �t+1 2 Rp is a vector of shocks. A solution is
given by a set of equilibrium functions st+1 = S (st; zt) ; and yt = Y (st; zt) that satisfy
(3), (4) in the relevant area of the state space. In terms of notations of Section 2.1, we
have ' = (S; Y ), xt = (st; zt) and d = ds + dz. The solution (S; Y ) is assumed to satisfy
the assumptions of Section 2.1.

3.2.2 A projection algorithm based on the EDS grid

Our construction of the EDS grid in Section 2.2 is based on the assumption that the
stochastic process (1) for the state variables is known. However, the law of motion for
endogenous state variables is unknown before the model is solved: it is precisely our goal
to approximate this law of motion numerically. We therefore proceed iteratively: guess
a solution, simulate the model, construct an EDS grid, solve the model on that grid
using a projection method, and iterate on these steps until the grid converges. Below, we
elaborate a description of this procedure for the equilibrium problem (3), (4).
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(EDS algorithm): A projection algorithm for equilibrium problems.
Step 0. Initialization.
a. Choose (s0; z0) and simulation length, T .
b. Draw f�t+1gt=0;:::;T�1. Compute and �x fzt+1gt=0;:::;T�1 using (4).
c. Choose approximating functions S � bS (�; bs) and Y � bY (�; by).
d. Make an initial guess on bs and by.
e. Choose integration nodes, �j , and weights, !j , j = 1; :::; J .

Step 1. Construction of an EDS grid.
a. Use bS (�; bs) to simulate fst+1gt=0;:::;T�1.
b. Construct an EDS grid, � � fsm; zmgm=1;:::;M .

Step 2. Computation of a solution on EDS grid using a projection method.
a. For m = 1; :::;M , construct residuals

�R (sm; zm) =
JX
j=1

!j �G
�
sm; zm; ym; s

0
m; z

0
m;j ; y

0
m;j

�
,

where ym � bY (sm; zm; by), s0m � bS (sm; zm; bs), z0m;j � Z (zm; �j);
�y0m;j � bY �s0m; z0m;j ; by� :
b. Find bs and by that minimize residuals according to some norm.

Iterate on Steps 1, 2 until convergence of the EDS grid.

3.2.3 Discussion of the computational choices

We construct the EDS grid as described in Section 2.2. We guess the equilibrium rulebS, simulate the solution for T periods, construct a sample of n points by selecting each
�th observation, estimate the density function, remove a fraction � of the sample with
the lowest density, and construct an EDS grid with a target number of points M using
a bisection method. Below, we discuss some of the choices related to the construction of
the EDS grids.

Initial guess on bs. To insure that the EDS grid covers the right area of the state space,
we need a su¢ ciently accurate initial guess about the equilibrium rules. Furthermore, the
equilibrium rules used must lead to non-explosive simulated series. For many problems in
economics, linear solutions can be used as an initial guess; they are su¢ ciently accurate,
numerically stable and readily available from automated perturbation software (we use
Dynare solutions; see Adjemian et al., 2011). Finding a su¢ ciently good initial guess can
be a non-trivial issue in some applications, and techniques from learning literature can be
useful in this context; see Bertsekas and Tsitsiklis (1996) for a discussion.

Choices of n and T . Our construction of an EDS relies on the assumption that simu-
lated points are su¢ ciently dense on the essentially ergodic set. Technically, in Appendix
A1, we require that each ball B (x; ") inside A� contains at least one simulated point. The
probability Pr (0) of having no points in a ball B (x; ") inside A� after n draws satis�es
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Pr (0) � (1� p")n where p" �
R
B(x;")

�dx � �d"d� and �d is the volume of a d-dimensional
unit ball. (Note that on the boundary of A� where g = �, we have Pr (0) = (1� p")n).
Thus, given " and �, we must choose n and T = n�, so that Pr (0) is su¢ ciently small.
We use T = 100; 000 and � = 10, so that our sample has n = 10; 000 points, and we
choose � to remove 1% of points with the lowest density.

Choices of " and M . We need to have at least as many grid points in the EDS as the
parameters bs and by in bS and bY (to identify these parameters). Conventional projection
methods rely on collocation, when the number of grid points is the same as the number
of parameters to identify. Collocation is a useful technique in the context of orthogonal
polynomial constructions but is not convenient in our case (because our bisection method
does not guarantee that the number of grid points is exactly equal to the target number
M). Hence, we target a slightly larger number of points than parameters, which also
helps us to increase both accuracy and numerical stability.

Reconstructing the EDS grid iteratively. Under Assumptions 1 and 2, the con-
vergence of the equilibrium rules implies the convergence of the time-series solution;
see Peralta-Alva and Santos (2005). Therefore, we are left to check that the EDS
grid constructed on the simulated series also converges. Let �0 � fx0igi=1;:::;M 0 and
�00 �

�
x00j
	
j=1;:::;M 00 be the EDS grids constructed on two di¤erent sets of simulated points.

Our criteria of convergence is sup
x00j 2�00

inf
x0i2�0

D
�
x0i; x

00
j

�
< 2". That is, each grid point of �00 has

a grid point of �0 at the distance smaller than 2" (this is the maximum distance between
the grid points on the essentially ergodic set; see Proposition 3 in Appendix A3).

How often do we need to reconstruct the EDS grid? Constructing EDS grids may
be costly, especially, in problems with high dimensionality because we need to produce
a long simulation, to estimate the density function and to construct EDS grids several
times until a bisection procedure locates a grid with the target number of grid points.
The cost of constructing EDS grids can be especially high in those applications in which
researchers must solve their models repeatedly using di¤erent parameters vectors, for
example, in estimation or calibration studies.
Hence, an important question is: "How often do we need to reconstruct the EDS

grid in a given application?" We found that typically, the properties of solutions are not
sensitive to small changes in the EDS grid. For example, the EDS grid constructed on
a log-linear solution would normally lead to as accurate non-linear solutions as the one
constructed using highly accurate non-linear solutions. Furthermore, we found that small
changes in the model�s parameters do not require us to re-compute the grid. In the
presence of kinks, such as the ZLB in new Keynesian model, the solution is more sensitive
to a speci�c construction of the EDS grid, however, using more accurate solutions for
constructing the grid does not necessarily lead to smaller approximation errors. Thus,
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our experiments suggest that in many applications, we can construct an EDS grid just
once using a relatively rough initial guess, and we can keep this grid when iterating on
decision functions until convergence (without a visible accuracy loss).

Integration. Unlike simulation- and learning-based methods, we rely on deterministic
integration methods such as the Gauss-Hermite quadrature and monomial integration
methods. Deterministic methods dominate in accuracy the Monte Carlo method by orders
of magnitude in the context of the studied class of models; see Judd et al. (2011a) for
comparison results.9 The cost of Gaussian product rules is prohibitive in high-dimensional
problems but monomial formulas are tractable even in models with hundreds of state
variables; see Judd et al. (2011b) for the description of these formulas.

Solving systems of non-linear equations: the convergence issue. In Step 2 of the
EDS algorithm, we must �nd the parameters vector b � (bs; by) in the decision functionsbS (�; bs) and bY (�; by) that satisfy the model�s equations. Here, we have a system of n =
M �H non-linear equations, where H is the number of equations in the vector function
G with n0 unknown parameters in b. By construction, n0 � n. If n0 = n, i.e., we have the
same number of unknowns (grid points) as equations, we may have a unique solution that
satis�es all equations exactly (this case is referred to as collocation). However, if n0 < n,
we construct a solution that satis�es the model�s equations by minimizing a weighed sum
of residuals in the model�s equations (this case is similar to regression in econometrics).
There is a variety of numerical methods in the literature that can be used to solve

a system of non-linear equations in Step 2 of the EDS algorithm, see, e.g., Judd (1998,
pp 93-128)) for a review of such methods. In the paper, we restrict attention to a sim-
ple derivative-free �xed-point iteration method; see Wright and Willams (1984), Marcet
(1988), Den Haan (1990), Gaspar and Judd (1997) for early applications of �xed-point
iteration to economic problems. In terms of our problem, �xed-point iteration can be
written as follows:

(FPI): Fixed-point iteration with damping.
Initialization. Write a system of equations in the form bb = 	(b).
Fix initial guess b(0), a norm k�k and a convergence criterion $.
Step 1. On iteration i, compute bb = 	 �b(i)�.
Step 2. If




bb� b(i)


 < $, then stop.
Otherwise, set b(i+1) = �bb+ (1� �) b(i), where � 2 (0; 1] and go to Step 1.
That is, for iteration i, we guess some b(i), compute new bb and use it to update our guess

9For example, assume that a Monte Carlo method is used to approximate an expectation of y �
N (0; �y) with n random draws. The distribution of y = 1

n

Pn
i=1 yi is y � N

�
0;

�yp
n

�
. If �y = 1% and

n = 10; 000, we have approximation errors of order �yp
n
= 10�4. To bring the error to the level of 10�8,

which we attain using quadrature methods, we need to have n = 1012. That is, such a slow,
p
n-rate of

convergence makes it very expensive to obtain highly accurate solutions using stochastic simulation.

24



for iteration i+1, where � is the damping parameter that controls the speed of updating.
The advantage of �xed-point iteration is that it can iterate in this simple manner on
objects of any dimensionality, for example, on a vector of the polynomial coe¢ cients.
The cost of this procedure does not grow rapidly with dimensionality of the problem,
unlike does the cost of Newton-style methods. As other non-linear solvers, �xed-point
iteration may fail to converge. The following example, borrowed from Judd (1998, p 159),
illustrates the possibility of non-convergence.
Example. Let us �nd a solution to x3 � x� 1 = 0 using a �xed point iteration. We

can rewrite it as x = (x+1)1=3 and construct a sequence x(i+1) = (x(i)+1)1=3 starting from
x(0) = 1. This yields a sequence x(1) = 1:26, x(2) = 1:31, x(3) = 1:32,... which converges
to a solution. However, we can also rewrite this equation as x = x3 � 1 and construct a
sequence x(i+1) =

�
x(i)
�3 � 1 starting from x(0) = 1 which diverges to �1.

This example shows that whether �xed-point iteration succeeds or not in �nding a
solution may depend on a speci�c way in which it is implemented. Judd (1998, pp 557-
558) also shows that �xed-point iteration may fail to converge in growth models like the
ones studied in the present paper under some parameterizations. Damping helps us to
increase the likelihood of convergence; see Judd (1998, pp 78-84). Newton-style methods
may have better convergence properties but they may also fail if an initial guess is not
su¢ ciently accurate. In sum, CGA and EDS solution methods are e¤ective numerical
methods for solving high-dimensional applications, but they share limitations that are
common for all projection methods, namely, they may fail to converge. In our examples,
the studied EDS and CGA solution methods were highly accurate and reliable, however,
the reader must be aware of the existence of the above potential problems and must be
ready to detect and to address such problems if they arise in applications.

3.2.4 Evaluating the accuracy of solutions

Provided that the EDS algorithm succeeds in producing a candidate solution, we subject
such a solution to a tight accuracy check. We speci�cally generate a set of points within
the domain on which we want the solution to be accurate, and we compute residuals in
all equilibrium conditions.

(Evaluation of accuracy): Residuals in equilibrium conditions.
a. Choose a set of points fs� ; z�g�=1;:::;T test for evaluating the accuracy.
b. For � = 1; :::; T test, compute the size of the residuals:

R (s� ; z� ) �
J testX
j=1

!testj �
h
G
�
s� ; z� ; y� ; s

0
� ; z

0
�;j ; y

0
�;j

�i
;

where y� = bY (s� ; z� ; by), s0� = bS (s� ; z� ; bs),
z0�;j = Z

�
z� ; �

test
j

�
, y0�;j = bY �y� ; z0�;j ; by�,

�testj and !testj are the integration nodes and weights.
c. Find a mean and/or maximum of the residuals R (s� ; z� ).
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If the quality of a candidate solution is economically inacceptable, we modify the choices
made in the EDS algorithm (i.e., simulation length, number of grid points, approximating
functions, integration method) and recompute the solution. In the paper, we evaluate
the accuracy on a set of simulated points. This new set of points which is di¤erent from
that used in the solution procedure: it is constructed under a di¤erent sequence of shocks
(i.e., we test accuracy out of sample). Other possible accuracy checks include evaluating
the residuals in the model�s equations on a given set of points in the state space (Judd,
1992), and testing the orthogonality of residuals in the optimality conditions (Den Haan
and Marcet, 1994); see Santos (2000) for a discussion.

4 Neoclassical stochastic growth model

In this section, we use the EDS approach to solve the standard neoclassical stochastic
growth model. We discuss some relevant computational choices and assess the perfor-
mance of the algorithm in one- and multi-agent setups.

4.1 The set up

The representative agent solves

max
fkt+1;ctgt=0;:::;1

E0

1X
t=0

�tu (ct) (5)

s.t. ct + kt+1 = (1� �) kt + atAf (kt) ; (6)

ln at+1 = � ln at + �t+1; �t+1 � N
�
0; �2

�
; (7)

where (k0; a0) is given; Et is the expectation operator conditional on information at time
t; ct, kt and at are consumption, capital and productivity level, respectively; � 2 (0; 1);
� 2 (0; 1]; A > 0; � 2 (�1; 1); � � 0; u and f are the utility and production functions,
respectively, both of which are strictly increasing, continuously di¤erentiable and concave.
Under our assumptions, this model has a unique solution; see, e.g., Stokey and Lucas
with Prescott (1989, p 392). For numerical experiments, we use u (c) = c1�
�1

1�
 with

 2

�
1
5
; 1; 5

	
and f (k) = k� with � = 0:36, and we set � = 0:99, � = 0:025, � = 0:95

and � = 0:01. A version of the model under u (c) = ln (c), � = 1 and f (k) = k� admits a
closed-form solution kt+1 = ��atAk�t .

4.2 An EDS algorithm iterating on the Euler equation

We describe an example of the EDS method that iterates on the Euler equation. For the
model (5)�(7), the Euler equation is

1 = �E

�
u0 (c0)

u0 (c)
(1� � + a0Af 0 (k0))

�
; (8)
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where primes on the variables denote next-period values, and u0 and f 0 denote the
derivatives of u and f , respectively. We must solve for equilibrium rules c = C (k; a)
and k0 = K (k; a) that satisfy (6)�(8). To implement �xed-point iteration, we repre-
sent (8) in the form k0 = 	(k0) by multiplying both sides with k0 which yields bk0 =
�k0E

h
u0(c0)
u0(c) (1� � + a

0Af 0 (k0))
i
. In our iterative procedure, we substitute (k0)(i) obtained

in iteration i in the right side of this equation, compute bk0 in the left side and use the
solution to improve our guess (k0)(i+1) for iteration i + 1; see Appendix C for a detailed
description of the EDS solution method.
In Table 1, we provide the results for the Euler equation EDS algorithm under the

target number of grid points M = 25 points.

Table 1: Accuracy and speed of the Euler equation EDS algorithm in the one-agent
model.a

Polynomial 
 = 1=5 
 = 1 
 = 5
degree M (") = 21 M (") = 27 M (") = 25

L1 L1 CPU L1 L1 CPU L1 L1 CPU
1st -4.74 -3.81 25.5 -4.29 -3.31 24.7 -3.29 -2.35 23.6
2nd -6.35 -5.26 1.8 -5.94 -4.87 0.8 -4.77 -3.60 0.4
3rd -7.93 -6.50 1.9 -7.26 -6.04 0.9 -5.97 -4.47 0.4
4th -9.37 -7.60 2.0 -8.65 -7.32 0.9 -7.05 -5.26 0.4
5th -9.82 -8.60 14.25 -9.47 -8.24 5.5 -7.89 -6.46 2.8

a Notes: L1 and L1 are, repectively, the average and maximum of absolute residuals across optimality
condition and test points (in log10 units) on a stochastic simulation of 10,000 observations; CPU is the
time necessary for computing a solution (in seconds); 
 is the coe¢ cient of risk aversion; M(") is the
realized number of points in the EDS grid (the target number of grid points is M=25).

The accuracy of solutions delivered by the EDS algorithm is comparable to the highest
accuracy attained in the related literature. The residuals in the optimality conditions
decrease with each polynomial degree by one or more orders of magnitude. For the
�fth-degree polynomials, the largest unit-free residual corresponding to our least accurate
solution is still less than 10�6 (see the experiment with a high degree of risk aversion

 = 5). Computing high-degree polynomial solutions is relatively fast (a few seconds).
Most of the cost of the EDS algorithm comes from the construction of the EDS grid (here,
the EDS grid is constructed just once under the polynomial solution of degree 1, and the
time for the grid construction is included in the total time for computing that solution).
The cost increases gradually with the degree of approximating polynomial because we have
a larger number of terms in the approximating functions. This results in a "U"-shaped
pattern for the CPU time in the table.
We perform sensitivity experiments in which we vary the target number of grid points

and �nd that the results are robust to the modi�cations considered. We also vary the
number of nodes in the Gauss-Hermite quadrature rule, and we �nd that even the 2-node
rule leads to essentially the same accuracy levels as the 10-node rule (except the fourth



and �fth-degree polynomials under which the accuracy is somewhat lower). This result is
in line with the �nding of Judd (1992) that in the context of the standard optimal growth
model, even few quadrature nodes lead to very accurate solutions.

Autocorrection of the EDS grid. If an initial guess about the solution is poor, the
simulated series will not cover the ergodic set. Will the EDS grid be able to autocorrect
itself in the context of the EDS algorithm? A general answer to this question is unknown.
However, we observe autocorrection of the EDS grid in numerical experiments. In one of
such experiments, we scale up the time-series solution for capital by a factor of 10, and
use the resulting series for constructing the �rst EDS grid (thus, the capital values in this
grid are spread around 10 instead of 1). We solve the model on this grid and use the
solution to construct the second EDS grid. We repeat this procedure two more times.
Figure 6 shows that the EDS grid converges rapidly.

We tried out various initial guesses away from the essentially ergodic set, and we
observed autocorrection of the EDS grid in all the experiments performed. Furthermore,
the EDS grid approach had an autocorrection property in our challenging applications
such as a multi-agent neoclassical growth model and a new Keynesian model with a zero
lower bound on nominal interest rates.

EDS grid versus Smolyak grid. Krueger and Kubler (2004) and Malin et al. (2011)
develop a projection method that relies on a Smolyak sparse grid. To isolate the role of
the grid construction in the algorithm�s performance, we implement the Smolyak method
in the same way as the EDS method, namely, we use an ordinary polynomial family
for approximating decision functions, and we use �xed-point iteration for �nding the
polynomial coe¢ cients. This implementation of the Smolyak method is in line with the
one studied in Judd et al. (2013) and di¤ers from the one in Krueger and Kubler (2004)
and Malin et al. (2011) that builds on Smolyak polynomial function and time iteration
(in particular, time iteration is more expensive than �xed-point iteration, and Smolyak
polynomials have 4 times more basis functions and thus, are more �exible than ordinary
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Table 2: Accuracy and speed in the one-agent model: Smolyak grid versus EDS grid.a

Polynomial Smolyak grid Accuracy on a hypercube
degree Simulation Rectangular CPU Simulation Rectangular CPU

L1 L1 L1 L1 L1 L1 L1 L1
1st -3.31 -2.94 -3.25 -2.54 0,39 -4.23 -3.31 -3.26 -2.38 9.89
2nd -4.74 -4.17 -4.32 -3.80 0.20 -5.89 -4.87 -4.41 -3.25 0.19
3rd -5.27 -5.13 -5.39 -4.78 0.22 -7.19 -6.16 -5.44 -4.11 0.17

a Notes: L1 and L1 are, repectively, the average and maximum of absolute residuals across opti-
mality condition and test points (in log10 units) on a stochastic simulation of 10,000 observations
and on a �xed grid of 100�100 points covering the rectangular with the intervals [0:8; 1:2] andh
exp

�
� 0:8
1��

�
; exp

�
0:8
1��

�i
for capital and productivity, respectively; CPU is the time necessary for

computing a solution (in seconds).

polynomials). Thus, under our implementation, the EDS and Smolyak methods di¤er
only in the choice of grid points.
As in Malin et al. (2011), we use intervals [0:8; 1:2] and

h
exp

�
� 0:8
1��

�
; exp

�
0:8
1��

�i
for

capital and productivity level, respectively. The Smolyak grid has 13 points (see Figure
5c), so we use an EDS grid with the same number of points. With 13 grid points, we can
identify the coe¢ cients in ordinary polynomials up to degree 3. In this experiment, we
evaluate the accuracy of solutions not only on a stochastic simulation but also on a set of
100� 100 points which are uniformly spaced on the same domain as the one used by the
Smolyak method for �nding a solution. The accuracy results are shown in Table 2. The
running time is similar for the Smolyak and EDS methods except that the EDS method
needs additional time for constructing the grid.
In the test on a stochastic simulation, the EDS grid leads to considerably more ac-

curate solutions than the Smolyak grid. This is because under the EDS grid, we �t a
polynomial directly in the essentially ergodic set, while under the Smolyak grid, we �t a
polynomial in a larger rectangular domain and face a trade-o¤ between the �t inside and
outside the ergodic set. However, in the test on the rectangular domain, the Smolyak grid
produces signi�cantly smaller maximum residuals than the EDS grid. This is because
the EDS algorithm is designed to be accurate in the essentially ergodic set and its accu-
racy decreases more rapidly away from the essentially ergodic set than the accuracy of
methods operating on larger hypercube domains. We repeated this experiment by vary-
ing the intervals for capital and productivity in the Smolyak grid, and we have the same
regularities. These regularities are also observed in high-dimensional applications.10

10Kollmann et al. (2011b) compare the accuracy of solutions produced by several solution methods,
including the cluster grid algorithm (CGA) introduced in the earlier version of the present paper and
the Smolyak algorithm of Krueger and Kubler (2004) (see Maliar et al., 2011, and Malin et al., 2011, for
implementation details of the respective methods in the context of those models). Their comparison is
performed using a collection of 30 real-business cycle models with up to 10 heterogeneous agents. Their
�ndings are the same as ours: on a stochastic simulation and near the steady state, the CGA solutions
are more accurate than the Smolyak solutions whereas the situation reverses for large deviations from



4.3 EDS algorithm in problems with high dimensionality

We now explore the tractability of the EDS algorithm in problems with high dimension-
ality. We extend the one-agent model (5)�(7) to include multiple agents. This is a simple
way to expand and to control the size of the problem.

The set up. There are N agents, interpreted as countries, which di¤er in initial capital
endowment and productivity levels. The countries�productivity levels are a¤ected by both
country-speci�c and worldwide shocks. We study the social planner�s problem. A social
planner maximizes a weighted sum of expected lifetime utilities of N agents (countries),

max
fcht ;kht+1gh=1;:::;Nt=0;:::;1

E0

NX
h=1

�h

" 1X
t=0

�tuh
�
cht
�#

(9)

subject to the aggregate resource constraint,

NX
h=1

cht +
NX
h=1

kht+1 =
NX
h=1

kht (1� �) +
NX
h=1

ahtAf
h
�
kht
�
; (10)

where
�
kh0 ; a

h
0

	h=1;:::;N
is given; Et is the operator of conditional expectation; cht , k

h
t , a

h
t

and �h are, respectively, consumption, capital, productivity level and welfare weight of a
country h 2 f1; :::; Ng; � 2 (0; 1) is the discount factor; � 2 (0; 1] is the depreciation rate;
A is the normalizing constant in the production function. The utility and production
functions, uh and fh, respectively, are increasing, concave and continuously di¤erentiable.
The process for the productivity level of country h is given by

ln aht+1 = � ln a
h
t + �

h
t+1, (11)

where � is the autocorrelation coe¢ cient; �ht+1 � &ht+1+& t+1 where &ht+1 �N(0; �2) is speci�c
to each country and & t+1 � N (0; �2) is identical for all countries.
We restrict our attention to the case in which the countries are characterized by

identical preferences, uh = u, and identical production technologies, fh = f , for all h.
The former implies that the planner assigns identical weights, �h = 1, and consequently,
identical consumption cht = ct to all agents. If an interior solution exists, it satis�es N
Euler equations,

u0 (ct) = �Et
�
u0 (ct+1)

�
1� � + aht+1Af 0

�
kht+1

��	
; (12)

where u0 and f 0 denote the derivatives of u and f , respectively. Thus, the planner�s
solution is determined by the process for productivity (11), the resource constraint (10),
and the set of Euler equations (12). We use the same values of the parameters for the
multicountry model as in the one-agent model; in particular, we assume 
 = 1.

the steady state.
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Solution procedure. Our objective is to approximate the planner�s solution in the
form of N capital equilibrium rules, each of which depends on 2N state variables (N

capital stocks and N productivity levels), i.e., kht+1 = K
h
��
kht ; a

h
t

	h=1;:::;N�
, h = 1; :::; N .

Since the countries are identical in their fundamentals (preferences and technology), the
planner chooses the same level of consumption for all countries. We could have used this
symmetry to simplify the solution procedure, however, we do not do so. Instead, we com-
pute a decision rule of each country separately, treating them as completely heterogeneous.
In this manner, we can assess the cost of �nding solutions in general multidimensional
setups in which countries have heterogeneous preferences and technology. For each coun-
try, we essentially implement the same computational procedure as the one used in the
representative-agent case; see Appendix D for details of the computational procedure.
The choice of an integration method used plays an important role in the accuracy and

speed of our solution algorithm. The Monte Carlo method produces large sampling errors
which dominate the overall accuracy of solutions. Quadrature product rules are accurate
but their cost is prohibitive if the number of shocks is large. However, non-product
monomial integration methods both produce very accurate solutions and are tractable in
problems with high dimensionality. Moreover, in the studied class of models, an extremely
simple and cheap integration method �a one-node quadrature rule �happens to produce
accurate solutions; see Judd et al. (2011a) for a detailed description of this and other
integration methods; and see Judd et al. (2011a, 2012) and Maliar et al. (2011) for
accuracy comparisons of di¤erent integration methods in large-scale applications.

Determinants of cost in problems with high dimensionality. The cost of �nding
numerical solutions increases with the dimensionality of the problem for various reasons.
There are more equations to solve and more decision functions to approximate. The
number of terms in an approximating polynomial function goes up, and we need to increase
the number of grid points to identify the polynomial coe¢ cients. The number of nodes
in integration formulas also increases. Finally, operating with large data sets can lead to
a memory congestion. If a solution method relies on product rules in constructing a grid,
integration nodes, optimization, its cost increases exponentially (curse of dimensionality).
However, our design of the EDS method does not rely on product rules and its cost grows
with dimensionality of the problem at a relatively moderate rate.

Accuracy and cost of solutions. We solve the model with N ranging from 2 to 200.
The results about the accuracy and cost of solutions are provided in Table 3.
The accuracy of solutions here is similar to that we had for the one-agent model. For

the polynomial approximations of degrees 1 and 2, the residuals are typically smaller than
0:1% and 0:01%, respectively. These regularities are robust to variations in the model�s
parameters such as the volatility and persistence of shocks and the degrees of risk aversion;
for sensitivity results, see Table 8 in an earlier version of the present paper, Judd et al.
(2010).



Table 3: Accuracy and speed of the EDS algorithm in the multi-agent model.a

N = 2; N = 20 N = 40 N = 200
Polyn. M =300, 2N nodes M =1000, 2N nodes M =4000, 1�node M =1000, 1�node
degree L1 L1 CPU L1 L1 CPU L1 L1 CPU L1 L1 CPU
1st -4.70 -3.17 0.7 -4.76 -3.05 21 -4.79 -3.09 89 -4.66 -2.90 105
2nd -6.01 -4.06 1.9 -5.88 -4.14 282 -5.48 -4.13 1463

a Notes: L1 and L1 are, respectively, the average and maximum of absolute residuals across optimality
condition and test points (in log10 units) on a stochastic simulation of 10,000 observations; CPU is the
time necessary for computing a solution (in minutes); M is the target umber of points in the EDS grid,
respectively; "2N" and "1�node" are the monomial rule with two nodes and one-node Gauss-Hermite
integration rule, respectively.

The running time ranges from 36 seconds to 24 hours depending on the number of
countries, polynomial degree and the integration technique used; see Judd et al. (2012)
for sensitivity experiments. In particular, the EDS algorithm is able to compute quadratic
solutions to the models with up to 40 countries and linear solutions to the models with
up to 200 countries when using inexpensive one-node quadrature integration rule. Thus,
the EDS algorithm is tractable in much larger problems than those studied in related
literature. A proper coordination between the choices of approximating function and
integration technique is critical in problems with high dimensionality. An example of
such a coordination is a combination of a �exible second-degree polynomial with a cheap
one-node Gauss-Hermite quadrature rule (in the given application, this cheap combination
produces a very accurate approximation).

5 New Keynesian model with the ZLB

In this section, we use the EDS algorithm to solve a stylized new Keynesian model with
Calvo-type price frictions and a Taylor (1993) rule.11 Our setup builds on the models
considered in Christiano et al. (2005), Smets and Wouters (2003, 2007), Del Negro et
al. (2007). This literature estimates new Keynesian models using the data on actual
economies, while we use their parameters estimates and compute solutions numerically.
We solve two versions of the model, one in which we allow for negative nominal interest
rates and the other in which we impose a zero lower bound (ZLB) on nominal interest
rates.12 The studied model has eight state variables and is large-scale in the sense that it
is expensive or even intractable under conventional global solution methods that rely on

11In an earlier version of the present paper, Judd et al. (2011b) use a cluster grid algorithm (CGA) to
solve a new Keynesian model which is identical to the one studied here using an EDS algorithm except
of parameterization.
12For the neoclassical growth model studied in Section 4, it would be also interesting to explore the

case with occasionally binding borrowing constraints. Christiano and Fisher (2000) show how projection
methods could be used to solve such a model.
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product rules.
The literature that �nds numerical solutions to new Keynesian models typically re-

lies on local perturbation solution methods or applies expensive global solution methods
to low-dimensional problems. As for perturbation methods, most papers compute lin-
ear approximations, however, there are papers that compute quadratic approximations
(e.g., Kollmann, 2002, and Schmitt-Grohé and Uribe, 2007) and cubic approximations
(e.g., Rudebusch and Swanson, 2008). The earlier literature that used global solution
methods includes Adam and Billi (2006), Anderson et al. (2010), and Adjemian and
Juillard (2011). The above studies have either few state variables or employ simplifying
assumptions.13 However, recent literature, equipped with novel solution methods, started
an exploration of medium- and large-scale new Keynesian models. In particular, Judd et
al. (2011b), Fernández-Villaverde et al. (2012) and Braun et al. (2012) show that con-
ventional perturbation methods do not provide accurate approximations in the context
of new Keynesian models with the ZLB. Moreover, recent papers by Schmitt-Grohé and
Uribe (2012), Mertens and Ravn (2013) and Aruoba and Schorfheide (2013) �nd that new
Keynesian models may have multiple equilibria in the presence of ZLB, and in particular,
the last paper accurately computes such multiple equilibria with a full set of stochastic
shocks. In the present paper, we focus on the conventional equilibrium in which target
in�ation coincides with actual in�ation in the steady state.

5.1 The set up

The economy is populated by households, �nal-good �rms, intermediate-good �rms, mon-
etary authority and government; see Galí (2008, Chapter 3) for a detailed description of
the baseline new Keynesian model.

Households. The representative household solves

max
fCt;Lt;Btgt=0;:::;1

E0

1X
t=0

�t exp
�
�u;t
� �C1�
t � 1

1� 
 � exp
�
�L;t
� L1+#t � 1
1 + #

�
(13)

s.t. PtCt +
Bt

exp
�
�B;t
�
Rt
+ Tt = Bt�1 +WtLt +�t; (14)

where
�
B0; �u;0; �L;0; �B;0

�
is given; Ct, Lt, and Bt are consumption, labor and nominal

bond holdings, respectively; Pt, Wt and Rt are the commodity price, nominal wage and
(gross) nominal interest rate, respectively; �u;t and �L;t are exogenous preference shocks
to the overall momentary utility and disutility of labor, respectively; �B;t is an exogenous
premium in the return to bonds; Tt is lump-sum taxes; �t is the pro�t of intermediate-
good �rms; � 2 (0; 1) is the discount factor; 
 > 0 and # > 0 are the utility-function

13In particular, Adam and Billi (2006) linearize all the �rst-order conditions except for the non-
negativity constraint for nominal interest rates, and Adjemian and Juillard (2011) assume perfect foresight
to implement an extended path method of Fair and Taylor (1984).
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parameters. The processes for shocks are

�u;t+1 = �u�u;t + �u;t+1; �u;t+1 � N
�
0; �2u

�
; (15)

�L;t+1 = �L�L;t + �L;t+1; �L;t+1 � N
�
0; �2L

�
; (16)

�B;t+1 = �B�B;t + �B;t+1; �B;t+1 � N
�
0; �2B

�
; (17)

where �u; �L; �B 2 (�1; 1), and �u; �L; �B � 0.

Final-good �rms. Perfectly competitive �nal-good �rms produce �nal goods using
intermediate goods. A �nal-good �rm buys Yt (i) of an intermediate good i 2 [0; 1] at
price Pt (i) and sells Yt of the �nal good at price Pt in a perfectly competitive market.
The pro�t-maximization problem is

max
Yt(i)

PtYt �
Z 1

0

Pt (i)Yt (i) di (18)

s.t. Yt =
�Z 1

0

Yt (i)
"�1
" di

� "
"�1

; (19)

where (19) is a Dixit-Stiglitz aggregator function with " � 1.

Intermediate-good �rms. Monopolistic intermediate-good �rms produce intermedi-
ate goods using labor and are subject to sticky prices. The �rm i produces the intermediate
good i. To choose labor in each period t, the �rm i minimizes the nominal total cost, TC
(net of government subsidy v),

min
Lt(i)

TC (Yt (i)) = (1� v)WtLt (i) (20)

s.t. Yt (i) = exp
�
�a;t
�
Lt (i) ; (21)

�a;t+1 = �a�a;t + �a;t+1; �a;t+1 � N
�
0; �2a

�
; (22)

where Lt (i) is the labor input; exp
�
�a;t
�
is the productivity level; �a 2 (�1; 1), and

�a � 0. The �rms are subject to Calvo-type price setting: a fraction 1 � � of the �rms
sets prices optimally, Pt (i) = ePt, for i 2 [0; 1], and the fraction � is not allowed to change
the price and maintains the same price as in the previous period, Pt (i) = Pt�1 (i), for
i 2 [0; 1]. A reoptimizing �rm i 2 [0; 1] maximizes the current value of pro�t over the
time when ePt remains e¤ective,

maxePt
1X
j=0

�j�jEt

n
�t+j

h ePtYt+j (i)� Pt+jmct+jYt+j (i)io (23)

s.t. Yt (i) = Yt

�
Pt (i)

Pt

��"
; (24)

where (24) is the demand for an intermediate good i (follows from the �rst-order condition
of (18), (19)); �t+j is the Lagrange multiplier on the household�s budget constraint (14);
mct+j is the real marginal cost of output at time t+j (which is identical across the �rms).
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Government. Government �nances a stochastic stream of public consumption by levy-
ing lump-sum taxes and by issuing nominal debt. The government budget constraint
is

Tt +
Bt

exp
�
�B;t
�
Rt
= Pt

GYt

exp
�
�G;t
� +Bt�1 + vWtLt; (25)

where G is the steady-state share of government spending in output; vWtLt is the subsidy
to the intermediate-good �rms; �G;t is a government-spending shock,

�G;t+1 = �G�G;t + �G;t+1; �G;t+1 � N
�
0; �2G

�
; (26)

where �G 2 (�1; 1) and �G � 0.

Monetary authority. The monetary authority follows a Taylor rule. When the ZLB
is imposed on the net interest rate, this rule is Rt = max f1;�tg with �t being de�ned as

�t � R�
�
Rt�1
R�

�� "�
�t
��

��� � Yt
YN;t

��y#1��
exp

�
�R;t
�
; (27)

where Rt and R� are the gross nominal interest rate at t and its long-run value, respec-
tively; �� is the target in�ation; YN;t is the natural level of output; and �R;t is a monetary
shock,

�R;t+1 = �R�R;t + �R;t+1; �R;t+1 � N
�
0; �2R

�
; (28)

where �R 2 (�1; 1) and �R � 0. . When the ZLB is not imposed, the Taylor rule is
Rt = �t.

Natural level of output. The natural level of output YN;t is the level of output in
an otherwise identical economy but without distortions. It is a solution to the following
planner�s problem

max
fCt;Ltgt=0;:::;1

E0

1X
t=0

�t exp
�
�u;t
� �C1�
t � 1

1� 
 � exp
�
�L;t
� L1+#t � 1
1 + #

�
(29)

s.t. Ct = exp
�
�a;t
�
Lt �Gt; (30)

where Gt � GYt
exp(�G;t)

is given, and �u;t+1, �L;t+1, �a;t+1, and �G;t follow the processes (15),

(16), (22), and (26), respectively. The FOCs of the problem (29), (30) imply that YN;t
depends only on exogenous shocks,

YN;t =

"
exp

�
�a;t
�1+#�

exp
�
�G;t
���


exp
�
�L;t
�#

1
#+


: (31)
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5.2 Summary of equilibrium conditions

We summarize the equilibrium conditions below (the derivation of the �rst-order condi-
tions is provided in Appendix E):

St =
exp

�
�u;t + �L;t

�
exp

�
�a;t
� L#t Yt + ��Et

�
�"t+1St+1

	
; (32)

Ft = exp
�
�u;t
�
C�
t Yt + ��Et

�
�"�1t+1Ft+1

	
; (33)

C�
t =
� exp

�
�B;t
�
Rt

exp
�
�u;t
� Et

"
C�
t+1 exp

�
�u;t+1

�
�t+1

#
; (34)

St
Ft

=

�
1� ��"�1t

1� �

� 1
1�"

; (35)

�t =

"
(1� �)

�
1� ��"�1t

1� �

� "
"�1

+ �
�"t
�t�1

#�1
; (36)

Yt = exp
�
�a;t
�
Lt�t; (37)

Ct =

 
1� G

exp
�
�G;t
�!Yt; (38)

Rt = max f1; �tg ; (39)

where �t is given by (27); the variables St and Ft are introduced for a compact represen-
tation of the pro�t-maximization condition of the intermediate-good �rm and are de�ned
recursively; �t+1 � Pt+1

Pt
is the gross in�ation rate between t and t + 1; �t is a measure

of price dispersion across �rms (also referred to as e¢ ciency distortion). The conditions
(32)�(38) correspond, respectively, to (E17), (E18), (E23), (E33) and (E3) in Appendix
E.
An interior equilibrium is described by 8 equilibrium conditions (32)�(39), and 6

processes for exogenous shocks, (15)�(17), (22), (28) and (26). The system of equations
must be solved with respect to 8 unknowns fCt; Yt; Lt; �t;�t; Rt; St; Ftg. There are 2 en-
dogenous and 6 exogenous state variables, , f�t�1; Rt�1g, and

�
�u;t; �L;t; �B;t; �a;t; �R;t; �G;t

	
,

respectively.

5.3 Numerical analysis

Methodology. We use the estimates of Smets and Wouters (2003, 2007) and Del Ne-
gro et al. (2007) to assign values to the parameters. We approximate the equilibrium rules
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St = S (xt), Ft = F (xt) andC
�

t =MU(xt) with xt =

�
�t�1; Rt�1; �u;t; �L;t; �B;t; �a;t; �R;t; �G;t

	
using the Euler equations (32), (33) and (34), respectively. We solve for the other variables
analytically using the remaining equilibrium conditions. We compute the polynomial so-
lutions of degrees 2 and 3, referred to as EDS2 and EDS3, respectively. For comparison,
we also compute �rst- and second-order perturbation solutions, referred to as PER1 and
PER2, respectively (we use Dynare 4.2.1 software). When solving the model with the
ZLB by the EDS algorithm, we impose the ZLB both in the solution procedure and in
subsequent simulations (accuracy checks). Perturbation methods do not allow us to im-
pose the ZLB in the solution procedure. The conventional approach in the literature is to
disregard the ZLB when computing perturbation solutions and to impose the ZLB in sim-
ulations when running accuracy checks (that is, whenever Rt happens to be smaller than 1
in simulation, we set it to 1). A detailed description of the methodology of our numerical
analysis is provided in Appendix E. We illustrate the EDS grid for the model with the
ZLB in Figure 7 where we plot the time-series solution and the grids in two-dimensional
spaces, namely, (Rt;�t) and

�
Rt; exp

�
�a;t
��
. We see that many points happen to be on

the bound Rt = 1 and that the essentially ergodic set in the two �gures is shaped roughly
as a circle.

Accuracy and cost of solutions. Two parameters that play a special role in our
analysis are the volatility of labor shocks �L and the target in�ation rate ��. Concerning
�L, Del Negro et al. (2007) �nds that shocks to labor must be as large as 40% to match the
data, namely, they estimate the interval �L 2 [0:1821, 0:6408] with the average of �L =
0:4054. Concerning ��, Del Negro et al. (2007) estimate the interval �� 2 [1:0461; 1:0738]
with the average of �� = 1:0598, while Smets and Wouters (2003) use the value �� = 1.
The in�ation rate a¤ects the incidence of the ZLB: a negative net nominal interest rate
is more likely to occur in a low- than in a high-in�ation economy.14 In Table 4, we show
how the parameters �L and �� a¤ect the quality of numerical solutions.

14Chung, Laforte, Reifschneider, and Williams (2011) provide estimates of the incidence of the ZLB in
the US economy. Christiano, Eichenbaum and Rebelo (2009) study the economic signi�cance of the ZLB
in the context of a similar model. Also, Mertens and Ravn (2011) analyze the incidence of the ZLB in a
model with sunspot equilibria.
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Table 4: Accuracy and speed of the EDS algorithm in the multi-agent model.a

N = 2 N = 20 N = 40 N = 200
Monom. 2N nodes Monom. 2N nodes GH 1�node GH 1�node

Polyn. M =300 M =1000 M =4000 M =1000
degree L1 L1 CPU L1 L1 CPU L1 L1 CPU L1 L1 CPU
1st -4.70 -3.17 0.7 -4.76 -3.05 21 -4.79 -3.09 89 -4.66 -2.90 105
2nd -6.01 -4.06 1.9 -5.88 -4.14 282 -5.48 -4.13 1463

a Notes: L1 and L1 are, respectively, the average and maximum of absolute residuals across optimality
condition and test points (in log10 units) on a stochastic simulation of 10,000 observations; CPU is the
time necessary for computing a solution (in minutes); M is the target umber of points in the EDS grid,
respectively; "Monom. 2N" and "GH 1�node" are the monomial rule with two nodes and one-node
integration rule, respectively.



In the �rst experiment, we neglected the ZLB: the goal of this experiment is to show
that net interest rates will be occasionally negative if ZLB is not imposed. We assume
�L = 0:1821 (which is the lower bound of the interval estimated by Smets and Wouters,
2003), set �� = 1 and allow for a negative net interest rate. Both the perturbation and
EDS methods deliver reasonably accurate solutions. The maximum size of residuals in
the equilibrium conditions is about 6% and 2% for PER1 and PER2, respectively (10�1:21

and 10�1:64 in the table), and it is less than 1% and 0:2% for EDS2 and EDS2, respectively
(10�2:02 and 10�2:73 in the table). We also report the minimum and maximum values of
Rt on a stochastic simulation, as well as a percentage number of periods in which Rt < 1.
Here, Rt falls to 0:9916, and the frequency of Rt < 1 is about 2%.
We design the next two experiments to separate the e¤ect of the volatility of labor

shocks �L and the in�ation rate �� = 1 on the quality of numerical solutions. In the
second experiment, we consider a higher volatility of labor �L = 0:4054, and we set
�� = 1:0598, which is su¢ cient to preclude net nominal interest rates from being negative.
The performance of the perturbation methods becomes signi�cantly worse. The residuals
in the equilibrium conditions for the PER1 solution are as large as 25% (10�0:59), and
they are even larger for the PER2 solution, namely, 38% (10�0:42). Thus, increasing
the order of perturbation does not help us increase the quality of approximation. The
accuracy of the EDS solutions also decreases but less dramatically: the corresponding
residuals for the EDS2 and EDS3 methods are less than 5% (10�1:31) and 1.2% (10�1:91),
respectively. For the EDS method, high-degree polynomials do help us increase the quality
of approximation.
In the third experiment, we concentrate on the e¤ect of the ZLB on equilibrium by

setting �� = 1 and by imposing the restriction Rt � 1 under the low-volatility �L =
0:1821 of labor shocks assumed in the �rst experiment.15 Again, we observe that the
accuracy of the perturbation solutions decreases more than the accuracy of the global
EDS solutions. In particular, the maximum residual for the PER2 solution is about 5%,
while the corresponding residuals for the EDS2 and EDS3 solutions are less than 2.7%
(10�1:58) and 1.6% (10�1:81), respectively.
To appreciate howmuch the equilibrium quantities di¤er across the methods, we report

the maximum percentage di¤erences between the variables produced by EDS3 and the
other methods. The regularities are similar to those we observed for the residuals. First,
the di¤erence between the series produced by PER1 and EDS3 can be as large as 17%.
Second, the di¤erence between the series produced by PER2 and EDS3 depends on the
model: it is about 1% when the ZLB is not imposed in the model with �L = 0:1821
but can reach 10% when the ZLB is imposed. Finally, the di¤erence between the series
produced by EDS2 and EDS3 is smaller in all cases (5:04% at most for the model with
the imposed ZLB). Generally, the supplementary variables St and Ft di¤er more across

15In a model with an active ZLB, we �nd the convergence to be slow and fragile. This fact is possibly
related to the �nding of Benhabib et al. (2001) that a deterministic version of the model has multiple
trajectories converging to a liquidity trap, in addition to a locally-unique equilibrium that converges to
a target in�ation level.
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methods than economically relevant variables such as Yt, Lt and Ct.

Economic importance of the ZLB. Figures 8a and 8b plot fragments of a stochastic
simulation when the ZLB is not imposed and imposed, respectively, for the model parame-
terized by �L = 0:1821 and �� = 1. When the ZLB is not imposed, both the perturbation
and EDS methods predict 5 periods of negative (net) interest rates (see periods 4, 6-9 in
Figure 8a). When the ZLB is imposed, the EDS methods, EDS2 and EDS3, predict a
zero interest rate in those 5 periods, while the perturbation methods, PER1 and PER2,
predict a zero interest rate just in 3 periods (see periods 4, 6 and 7 in Figure 8b).

The way we deal with the ZLB in the perturbation solution misleads the agents about
the true state of the economy. To be speci�c, when we chop o¤ the interest rate at zero
in the simulation procedure, agents perceive the drop in the interest rate as being small
and respond by an immediate recovery. In contrast, under the EDS algorithm, agents
accurately perceive the drop in the interest rate as being large and respond by 5 periods
of a zero net interest rate (which correspond to 5 periods of negative net interest rates
predicted in the case when the ZLB is not imposed). The output di¤erences between
PER2 and EDS3 are relatively small when the ZLB is not imposed but they become
quantitatively important when the ZLB is imposed and can be as large as 2%.

Piecewise local basis functions and locally adaptive EDS grids Experiments 1
and 3 in Table 4 showed that imposing the ZLB on the nominal interest rate reduces
the accuracy of solutions produced by the EDS method. Increasing the degree of an
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approximating polynomial function does not increase much the accuracy. In particular,
the maximum residuals of the second- and third-order solutions are 10�2:02 and 10�2:73 in
the model with an inactive ZLB, while these residuals are respectively 10�1:58 and 10�1:81

in the model with an active ZLB. The residuals are large in the model with an active ZLB
for two reasons: �rst, a global polynomial function is not su¢ ciently �exible to accurately
approximate the kink in the ZLB area and second, an evenly-spaced EDS grid does not
produce su¢ ciently many grid points in the ZLB area. Below, we perform two additional
experiments in which we analyze how the degree of �exibility of an approximating function
and the speci�c placement of grid points a¤ect the accuracy of solutions under the EDS
method.
In the �rst experiment, we replace a global polynomial approximating function with

piecewise local bases as described in Section 2.6. Namely, we �rst construct an EDS
grid with M grid points, x"1; :::; x

"
M , using a constant value of "; we then construct an

8-dimensional hypercube with the side of 10�3" that surrounds each grid point x"i , and
we populate it with a 100 low-discrepancy, Sobol, points; we then solve the model on
each of the M hypercubes constructed. To simulate the model, we compute a distance
from the current state xi to all grid points, and we adopt a solution from the closest grid
point - the nearest neighbor approach. In all experiments, we use second-degree ordinary
polynomials as local bases. In the �rst row of Table 5 (see the experiment "LB"), we show
the results depending on the number of local approximations used. As is seen from the

Table 5: Accuracy and speed of the EDS algorithm with local bases and locally adaptive
grid in the new Keynesian model.a

M =2 M =10 M =100 M =500
L1 L1 CPU L1 L1 CPU L1 L1 CPU L1 L1 CPU

LB -3.80 -1.66 4.2 -4.15 -1.83 6.4 -4.54 -2.29 29.3 -4.85 -2.35 131
LB-LA -4.04 -1.75 4.7 -4.14 -1.93 6.6 -4.53 -2.21 34.7 -4.90 -2.25 139

a Notes: L1 and L1 are, respectively, the average and maximum of absolute residuals across optimality
condition and test points (in log10 units) on a stochastic simulation of 10,000 observations; CPU is the
time necessary for computing a solution (in minutes); M is the target number of points in the EDS grid,
respectively; "LB" and "LB-LA" denote the EDS method with local bases and the EDS method with
both local bases and locally-adaptive grid, respectively.

table, the accuracy of solutions increases with the number of local approximations used
although the improvements become smaller as the number of approximations increases.
In particular, we are able to reduce the maximum residuals to the order of 10�2:35 when
constructing 500 local approximations. The running time for this experiment is about 2
hours.
In our second experiment, we study a variant of the EDS method in which we combine

locally-adaptive grid points with local bases. There are many ways to construct an inverse
relation between the size of the residuals and the value of "; the speci�c construction of this



relation may considerably a¤ect the accuracy results. In our example, we use the following
procedure: In each simulated point xi, we compute "i = jlnR (xi)j ", where R (xi) is the
maximum residual across all model�s equations, and " is a normalizing parameter. For
example, if for some points x0 and x00, the residuals are lnR (x0) = �2 and lnR (x00) = �6,
then the corresponding value of " di¤ers by a factor of 3, i.e., "0 = 2" and "0 = 6". We
compute the normalizing parameter " using our bisection procedure to obtain the target
number of grid points, M .
The results about the EDS method with both local bases and locally adaptive grid are

shown in the second row of Table 5 (see the experiment "LB-LA"). We observe that the
EDS method with locally adaptive grid points, LB-LA, has large accuracy improvements
than the EDS method with uniformly spaced grid points, LB, in the �rst row of Table 5.
In particular, when M = 2, the average residuals for the two methods, LB-LA and LB,
are 10�4:04 and 10�3:80, respectively, and the maximum residuals are 10�1:75 and 10�1:66,
respectively. However, as the number of grid points increases, both methods arrive to
similar accuracy levels. In fact, for large values of M , the EDS method with an evenly-
spaced grid, LB, slightly overpeforms the locally-adaptive EDS method, LB-LA. Indeed,
when we have to select just two areas, the adaptive way of selecting these areas is relatively
more important than if we have to select 500 areas.
We shall �nally discuss the relation between our locally-adaptive EDS solution method

and those studied in Aruoba and Schorfheide (2013). To increase the accuracy of solutions
in the ZLB area, Aruoba and Schorfheide (2013) implemented two modi�cations to the
baseline cluster-grid algorithm studied in Judd et al. (2010, 2011b): �rst, they add grid
points near the ZLB area using the actual data on the US economy; and second, they
use two piecewise local bases to separately approximate the solution in the areas with
active and non-active ZLB. For this special case, the locally-adaptive EDS technique with
M = 2 delivers a similar type of analysis if one of the two EDS grid points is selected in a
neighborhood of the ZLB area, namely, we also approximate the solution on two disjoint
sets of 100 Sobol points that represent the areas with an active and inactive ZLB using
two piecewise local bases. The key novelty of the locally-adaptive EDS method is that it
automates the construction of adaptive grid points and local basis functions in a general
case of M piecewise local approximations.

Lessons. The studied new Keynesian model is a challenging application for any numer-
ical method. First, the dimensionality of the state space is large; second, the volatility of
exogenous variables is high; and �nally, there is a kink in the equilibrium rules due to the
ZLB. We choose this application in order to subject the EDS method to a tight test that
makes it possible to see its limitations.
Our results indicate that the EDS method is able to confront the above challenges.

First, the running time for the EDS method ranges from 4 to 25 minutes; the EDS
method would be tractable in much larger applications, as our results for the multi-
country model suggest. Second, the EDS method produces very accurate solutions if
the volatility of shocks is not excessively high, and its accuracy can be increased using
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polynomial functions of higher degrees or local bases functions, unlike the accuracy of the
perturbation methods. Finally, in the presence of the ZLB, the perturbation and EDS
methods may produce qualitatively di¤erent results. The accuracy of the EDS projection
algorithm can be increased by adapting the density of grid points to a given application
and by using more �exible functional families that can accommodate kinks and strong
non-linearities. This increases the computational cost but the studied EDS methods are
naturally parallelizable, and the cost can be reduced.

6 Conclusion

We introduce a projection algorithm that operates on a high-probability area of the ergodic
set of an economic model. The EDS algorithm is tractable in problems with much higher
dimensionality than those studied in the related literature. In particular, we are able
to compute accurate quadratic solutions to a multicountry growth model with up to 80
state variables. Furthermore, we are able to compute an accurate global solution to
a new Keynesian model. This model is of particular interest to the literature as it is
used by governments and �nancial institutions all over the world for the policy analysis.
We �nd that perturbation methods are not reliable in the context of new Keynesian
models, and we show examples where perturbation and global solution methods produce
qualitatively di¤erent predictions. We emphasize that all the numerical results in the
paper are obtained using a standard desktop computer and serial MATLAB software. The
speed and accuracy of the EDS algorithm can be increased by far using more powerful
hardware and software, as well as parallelization techniques.
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