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Abstract

We introduce a numerical algorithm for solving dynamic economic models that
merges stochastic simulation and projection approaches: we use simulation to ap-
proximate the ergodic measure of the solution, we cover the support of the con-
structed ergodic measure with a fixed grid, and we use projection techniques to
accurately solve the model on that grid. The construction of the grid is the key
novel piece of our analysis: we replace a large cloud of simulated points with a
small set of "representative" points. We present three alternative techniques for
constructing representative points: a clustering method, an epsilon-distinguishable
set method, and a locally-adaptive variant of the epsilon-distinguishable set method.
As an illustration, we solve one- and multi-agent neoclassical growth models and a
large-scale new Keynesian model with a zero lower bound on nominal interest rates.
The proposed solution algorithm is tractable in problems with high dimensionality
(hundreds of state variables) on a desktop computer.
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1 Introduction

We introduce a numerical algorithm for solving dynamic economic models that merges
stochastic simulation and projection approaches: we use simulation to approximate the
ergodic measure of the solution, we cover the support of the constructed ergodic mea-
sure with a fixed grid, and we use projection techniques to accurately solve the model
on that grid. The construction of the grid is the key novel piece of our analysis: we
replace a large cloud of simulated points with a small set of "representative" points.
We present three alternative techniques for constructing representative points: a cluster-
ing method, an epsilon-distinguishable set method, and a locally-adaptive variant of the
epsilon-distinguishable set method. As an illustration, we solve one- and multi-agent neo-
classical growth models and a large-scale new Keynesian model with a zero lower bound
on nominal interest rates. The proposed solution algorithm is tractable in problems with
high dimensionality (hundreds of state variables) on a desktop computer.

One broad class of numerical methods for solving dynamic economic models builds
on stochastic simulation. First, this class includes iterative methods for solving rational
expectations models; see, e.g., Marcet (1988), Smith (1993), Maliar and Maliar (2005)
and Judd et al. (2011a). Second, it includes learning-based analysis; see, e.g., Marcet and
Sargent (1989), Bertsekas and Tsitsiklis (1996), Pakes and McGuire (2001) and Powell
(2011). Finally, it includes methods that use simulation to reduce information sets of
decision makers; see, e.g., Krusell and Smith (1998), and Benkard et al. (2008). The key
advantage of stochastic simulation methods is that the geometry of the set on which the
solution is computed is adaptive. Namely, these methods solve dynamic economic models
on a set of points produced by stochastic simulation, avoiding thus the cost of finding
solutions in areas of the state space that are effectively never visited in equilibrium; see
Judd et al. (2011a) for a discussion. However, a set of simulated points itself is not an
efficient choice either as a grid for approximating a solution (it contains many closely-
located and hence, redundant points) or as a set of nodes for approximating expectation
functions (the accuracy of Monte Carlo integration is low).

Another broad class of numerical methods for solving dynamic economic models relies
on projection techniques; see, e.g., Wright and Williams (1984), Judd (1992), Christiano
and Fisher (2000), Krueger and Kubler (2004), Aruoba et al. (2006), Anderson et al.
(2010), Malin et al. (2011), Pichler (2011) and Judd et al. (2013). Projection methods use
efficient discretizations of the state space and effective deterministic integration methods,
and they deliver very accurate solutions. However, a conventional projection method is
limited to a fixed geometry such as a multidimensional hypercube. In order to capture all
points that are visited in equilibrium, a hypercube must typically include large areas of the
state space that have a low probability of happening in equilibrium. Moreover, the fraction
of the irrelevant areas of a hypercube domain grows rapidly with the dimensionality of
the problem.

The solution method introduced in this paper combines best features of stochastic sim-
ulation and projection methods, namely, it combines the adaptive geometry of stochastic



simulation methods with efficient discretization techniques of projection methods. As an
example, in Figure la, we show a set of points that is obtained by simulating two state
variables z} and z? of a typical dynamic economic model; this set of points identifies a
high-probability area of the state space. In Figures 1b, 1c and 1d, we distinguish three
different subsets of the simulated points — we call them "grids".

Figure 1a. A set of random draws Figure 1b. Cluster grid
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The grid shown in Figure 1b is constructed using methods from clustering analysis: we
partition the simulated data into clusters, and we compute the centers of the clusters.
The resulting cluster grid mimics the density function by placing more points in regions
where the cloud of simulated points is more dense and fewer points where it is less dense.
The grid shown in Figure 1c is produced by an e-distinguishable set (EDS) technique: we
select a subset of points that are situated at the distance at least ¢ from one another,
where ¢ > 0 is a parameter. The EDS grid is roughly uniform. Finally, in Figure 1d, we
show an example of a locally-adaptive EDS grid: instead of using a constant ¢, we allow
it to vary across the domain, i.e., for each point (z},z?), we have a different ¢, i.e., it is a
function € = ¢ (x}, z?) (in this specific example, we decrease the value of ¢ as we approach
a hyperbola 2! = [22]?). This kind of grid construction enables us to control the density
of grid points (and hence, the quality of approximation) over the solution domain.

An important question is: Which of these techniques delivers the best grid of points
to be used within a projection method? Crude simulation shown in Figure la is not an
efficient choice: having many closely-located grid points does not increase accuracy but
cost. Cluster grids tend to produce a good fit in a high-probability area of the state space,
but may result in larger errors in low-probability areas of the state space. EDS grids with
a constant ¢ tend to deliver more uniform accuracy. Finally, locally-adaptive EDS grids
allow us to automate the control of accuracy over the solution domain using the following
two-step procedure: (i) compute a solution using an EDS grid with a constant ¢ and
evaluate the quality of approximation; (ii) define ¢ to be a decreasing function of the size
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of approximation errors, construct an EDS grid with a space-dependent ¢ and recompute
the solution; iterate on steps (i) and (ii) if necessary. Thus, in those areas in which errors
are large, we use a smaller ¢; this increases the density of grid points and hence, augments
the accuracy.

An important role in our analysis plays the choice of an interpolation method, i.e.
the way in which we approximate functions off the EDS grid. We consider two kinds
of interpolant. One is a global polynomial function that approximates a given decision
function on the whole solution domain. The other is a combination of local polynomial
bases each of which approximates a decision function only in an a small neighborhood
of a given EDS grid point; a global approximation is then obtained by tying up local
approximations together. There are many ways to construct local approximations and
to tie them up into a global approximation. Our baseline technique is as follows: For
each grid point x in the EDS grid, we construct a hypercube centered at that specific
point, we populate this hypercube with low-discrepancy points (namely, Sobol points),
and we solve the model using those points as a grid; see Niederreiter (1992) for a review
of low-discrepancy methods. Here, we compute a solution to the model as many times as
the number of points in the EDS grid (since we construct a Sobol grid around each EDS
grid point). Finally, to simulate a solution, we use a nearest-neighbor approach.

We next incorporate the EDS and cluster-grid techniques into a numerical method for
solving dynamic economic models. Our solution method requires some initial guess about
the true solution to the model at the initialization stage, such as a log-linearized solution.
In particular, we need an initial guess to produce simulated points which we can use for
constructing a grid. We therefore proceed iteratively: guess a solution, simulate the model,
construct a grid, solve the model on that grid using a projection method, and perform
few iterations on these steps until the grid converges. We complement the efficient grid
construction with other computational techniques suitable for high-dimensional problems,
namely, low-cost monomial integration rules and a fixed-point iteration method for finding
parameters of equilibrium rules.! Taken together, these techniques make our solution
algorithm tractable in problems with high dimensionality — hundreds of state variables!

We first apply the EDS method to the standard neoclassical growth models with one
and multiple agents (countries). The EDS method delivers accuracy levels comparable
to the best accuracy attained in the related literature. In particular, we are able to
compute global quadratic solutions for equilibrium problems with up to 80 state variables
on a desktop computer using a serial MATLAB software (the running time ranges from
30 seconds to 24 hours). The maximum unit-free approximation error on a stochastic
simulation is always smaller than 0.01%.

Our second and a more novel application is a new Keynesian model which includes
a Taylor rule with a zero lower bound (ZLB) on nominal interest rates. This model has
eight state variables and is characterized by a kink in equilibrium rules due to the ZLB.

'Tn the present paper, we focus on equilibrium problems in which solutions are characterized by Euler
equations, however, in a working paper version of the paper, Judd et al. (2012), we also show applications
of the EDS technique to dynamic programming.



We focus on equilibrium in which target inflation coincides with actual inflation in the
steady state. We parameterize the model using the estimates of Smets and Wouters (2003,
2007), and Del Negro et al. (2007). The EDS method is tractable for global polynomial
approximations of degrees 2 and 3 (at least): the running time is less than 25 minutes in
all the cases considered. For comparison, we also assess the performance of perturbation
solutions of orders 1 and 2. We find that if the volatility of shocks is low and if we allow
for negative nominal interest rates, both the EDS and perturbation methods deliver suffi-
ciently accurate solutions. However, if either the ZLB is imposed or the volatility of shocks
increases, the perturbation method is significantly less accurate than the EDS method. In
particular, under some empirically relevant parameterizations, the perturbation methods
of orders 1 and 2 produce errors that are as large as 25% and 38% on a stochastic simula-
tion, while the corresponding errors for the EDS method are less than 5%. The difference
between the EDS and perturbation solutions is economically significant. Namely, when
the ZLB is active, the perturbation method considerably understates the duration of the
ZLB episodes and the magnitude of the crises. We also solve the new Keynesian model
with an active ZLB using a locally-adaptive EDS method, and we find that consecutive
refinements of the EDS grid can considerably increase the quality of approximation.

The mainstream of the literature on new Keynesian models relies on local perturbation
solution methods.? However, recent developments in numerical analysis triggered a quickly
growing body of literature that computes non-linear solutions to medium- and large-scale
new Keynesian models; see Judd et al. (2011b), Braun et al. (2012), Coibion et al. (2012),
Fernandez-Villaverde et al. (2012), Gust et al. (2012), Schmitt-Grohé and Uribe (2012),
Aruoba and Schorfheide (2013), Gavion et al. (2013), Mertens and Ravn (2013), Richter
and Throckmorton (2013). As is argued in Judd et al. (2011b), Ferndndez-Villaverde
et al. (2012) and Braun et al. (2012), perturbation methods, which were traditionally
used in this literature, do not provide accurate approximation in the context of new
Keynesian models with the ZLB. Moreover, recent papers of Schmitt-Grohé and Uribe
(2012), Mertens and Ravn (2013) and Aruoba and Schorfheide (2013) argue that new
Keynesian economies may have multiple equilibria in the presence of ZLB. In particular,
the last paper accurately computes a deflation and sunspot equilibria with a full set of
stochastic shocks using a modified variant of a cluster-grid algorithm (CGA) introduced in
Judd et al. (2010, 2011b). Namely, to increase the accuracy of solutions in the ZLB area,
first, they add grid points near the ZLB area using the actual data on the U.S. economy;
and second, they apply two piecewise bases to separately approximate the solution in the
areas with active and non-active ZLB.

Our locally-adaptive EDS methers are related to several other methods in the litera-
ture. First, the EDS technique with local bases has similarity to finite element approxima-

2Most papers use linear approximations, however, there are also papers that compute quadratic ap-
proximations (e.g., Kollmann, 2002, and Schmitt-Grohé and Uribe, 2007) and cubic approximations (e.g.,
Rudebusch and Swanson, 2008). Earlier applications of nonlinear solution methods either focus on low-
dimensional problems or employ simplifying assumptions; see Adam and Billi (2006), Anderson et al.
(2010), and Adjemian and Juillard (2011).



tion methods that construct a global approximation using a combination of disjoint local
approximations; see Hughes (1987) for a mathematic review of finite element methods,
and see McGrattan (1996) for their applications to economics. Second, a locally-adaptive
EDS technique with space-dependent e resembles locally-adaptive sparse-grid techniques
which refines an approximation by introducing new grid points and bases functions in
those areas in which the quality of approximation is low; see Ma and Zabaras (2009) for
a review of such methods, and see Brumm and Scheidegger (2013) for their applications
to economic problems. Finally, a locally-adaptive EDS technique is also related to the
analysis of Aruoba and Schorfheide (2013) who show the benefits of adaptive grid points
and bases functions in the context of a new Keynesian model with the ZLB.

The CGA and EDS projection methods can be used to accurately solve small-scale
models that were previously studied using other global solution methods.> However, a
comparative advantage of these algorithms is their ability to solve large-scale problems
that other methods find intractable or expensive. The speed of the CGA and EDS al-
gorithms also makes them potentially useful in estimation methods that solve economic
models at many parameters vectors; see Fernandez-Villaverde and Rubio-Ramirez (2007),
and Winschel and Kritzig (2010). Finally, cluster grids and EDS grids can be used in
other applications that require us to produce a discrete approximation to the ergodic dis-
tribution of a stochastic process with a continuous density function, in line with Tauchen
and Hussey (1991).

The rest of the paper is as follows: In Section 2, we describe the construction of
the simulation-based grids using EDS, locally-adaptive EDS and clustering techniques.
In Section 3, we integrate the EDS grid into a projection method for solving dynamic
economic models. In Section 4, we apply the EDS algorithm to solve one- and multi-
agent neoclassical growth models. In Section 5, we compute a solution to a new Keynesian
model with the ZLB. In Section 6, we conclude.

2 Discrete approximations to the ergodic set

In this section, we introduce techniques that produce a discrete approximation to the
ergodic set of a stochastic process with a continuous density function. Later, we will use
the resulting discrete approximation as a grid for finding a solution in the context of a
projection-style numerical method for solving dynamic economic models.

3For reviews of methods for solving dynamic economic models, see Taylor and Uhlig (1990), Gaspar
and Judd (1997), Judd (1998), Marimon and Scott (1999), Santos (1999), Christiano and Fisher (2000),
Adda and Cooper (2003), Aruoba et al. (2006), Den Haan (2010), Kollmann et al. (2011), and Maliar
and Maliar (2013).



2.1 A class of stochastic processes

We focus on a class of discrete-time stochastic processes that can be represented in the
form

Ti41 :¢(xt7€t+1)7 t:0717"'7 (1)

where ¢ € E C RP is a vector of p independent and identically distributed shocks, and
r € X C R%is a vector of d (exogenous and endogenous) state variables. The distribution
of shocks is given by a probability measure () defined on a measurable space (E,E), and
x is endowed with its relative Borel o-algebra denoted by X.

Many dynamic economic models have equilibrium laws of motion for state variables
that can be represented by a stochastic system in the form (1). For example, the standard
neoclassical growth model, described in Section 4, has the laws of motion for capital and
productivity that are given by k; 1 = K (ki a;) and a;1 = af exp (e441), respectively,
where €11 ~ N (0,0%), 0 > 0 and p € (—1,1); by setting z; = (k, a;), we arrive at (1).

To characterize the dynamics of (1), we use the following definitions.

Def 1. A transition probability is a function P : X x X — [0, 1] that has two properties:
(i) for each measurable set A € X, P (-, A) is X-measurable function; and (ii) for each
point x € X, P (x,-) is a probability measure on (X,X).

Def 2. An (adjoint) Markov operator is a mapping M* : X — X such that p,  (A) =
(M) (A) = [P (. A) py ().

Def 3. An invariant probability measure p is a fized point of the Markov operator M*
satisfying p = M*p.

Def 4. A set A is called invariant if P (x, A) =1 for all x € A. An invariant set
A* is called ergodic if it has no proper invariant subset A C A*.

Def 5. An invariant measure p is called ergodic if either p(A) =0 or u(A) =1 for
every invariant set A.

These definitions are standard to the literature on dynamic economic models; see
Stokey, Lucas and Prescott (1989), and Stachursky (2009). P (z,.4) is the probability
that stochastic system (1) whose today’s state is x; = x will move tomorrow to a state
11 € A. The Markov operator M* maps today’s probability into tomorrow’s probability,
namely, if 11, (A) is the probability that the system (1) is in A at ¢, then (M*p,) (A) is the
probability that the system will remain in the same set at t+1. Applying the operator M*
iteratively, we can describe the evolution of the probability starting from a given y, € X.
An invariant probability measure u is a steady state solution of the stochastic system
(1). An invariant set A is the one that keeps the system (1) forever in A, and an ergodic
set A* is an invariant set of the smallest possible size. Finally, an invariant probability
measure is ergodic if all the probability is concentrated in just one of the invariant sets.

The dynamics of (1) produced by economic models can be very complex. In particular,
the Markov process (1) may have no invariant measure or may have multiple invariant
measures. These cases represent challenges to numerical methods that approximate so-
lutions to dynamic economic models. However, there is another challenge that numerical
methods face — the curse of dimensionality. The most regular problem with a unique,



smooth and well-behaved solution can become intractable when the dimensionality of the
state space gets large. The challenge of high dimensionality is the focus of our analysis.
We employ the simplest possible set of assumptions that allows us to describe and to test
computational techniques that are tractable in high-dimensional applications.

Assumption 1. There exists a unique ergodic set A* and the associated ergodic mea-
sure [i.

Assumption 2. The ergodic measure | admits a representation in the form of a
density function g : X — RY such that [, g(x)dz = p(A) for every A C X.

2.2 An EDS technique for approximating the ergodic set

We propose a two-step procedure for forming a discrete approximation to the ergodic set.
First, we identify an area of the state space that contains nearly all the probability mass.
Second, we cover this area with a finite set of points that are roughly evenly spaced.

2.2.1 An essentially ergodic set

We define a high-probability area of the state space using the level set of the density
function.
Def 6. A set A" C A* is called a n-level ergodic set if n >0 and

AT={reX:g(x) =2n}.

The mass of A" under the density ¢ (x) is equal to p(n) = fg(w)>ng (x)dx. If p(n) ~ 1,
then A" contains all X except for points where the density is lowest, in which case A" is
called an essentially ergodic set.

By construction, the correspondence A" : Rt = R? maps 1 to a compact set. The
correspondence A" is upper semi-continuous but may be not lower semi-continuous (e.g.,
if z is drawn from a uniform distribution [0, 1]). Furthermore, if ¢ is multimodal, then for
some values of 7, A" may be disconnected (composed of disjoint areas). Finally, for n >
max {g (x)}, the set A" is empty.

Our approximation to the essentially ergodic set builds on stochastic simulation. For-
mally, let P be a set of n independent random draws 1, ..., z,, C R? generated with the
distribution function p : RY — R*. For a given subset J C R?, we define C (P;.J) as a
characteristic function that counts the number of points from P in J. Let J be a family
generated by the intersection of all subintervals of R¢ of the form 1%, [~o00,v;), where
v; > 0.

Assumption 3. The empirical distribution function [ (J) = @ converges to the
true distribution function u(J) for every J € J when n — oo.

If random draws are independent, the asymptotic rate of convergence of i to y is given
by the so-called law of iterated logarithm of Kiefer’s (1961), namely, it is (log log n)l/ 2 (271)_1/ .
For serially correlated processes like (1), the convergence rate depends on specific assump-
tions; see Zhao and Woodroofe (2008) for the results on general stationary processes.
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We use the following algorithm to select a subset of simulated points that belongs to
an essentially ergodic set A".

(Algorithm A"): Selection of points within an essentially ergodic set.
Step 1. Simulate (1) for T periods.

Step 2. Select each kth point to get a set P of n points 1, ...,z, € X C R%.
Step 3. Estimate the density function g (z;) ~ g (z;) for all x; € P.

Step 4. Remove all points for which the density is below 7.

In Step 2, we include in the set P only each kth observation to make random draws
(approximately) independent. As far as Step 3 is concerned, there are various methods in
statistics that can be used to estimate the density function from a given set of data; see
Scott and Sain (2005) for a review. We use one of such methods, namely, a multivariate
kernel algorithm with a normal kernel which estimates the density function in a point x

o7 (2)

. 1 -
r)=———7606©9//—4/Y exp|—

g(z) n(27r)d/2ﬁd ; p {
where h is the bandwidth parameter, and D (z, z;) is the distance between = and ;. The
complexity of Algorithm A" is O (n?) because it requires to compute pairwise distances
between all the sample points. Finally, in Step 3, we do not choose the density cutoff  but
a fraction of the sample to be removed, ¢, which is related to n by p (n) = fg(x)>n g(z)dx =
1—4. For example, § = 0.05 means that we remove 5% of the sample which has the lowest
density.

2.2.2 An e-distinguishable set (EDS)

Our next objective is to construct a uniformly-spaced set of points that covers the essen-
tially ergodic set (to have a uniformly-spaced grid for a projection method). We proceed
by selecting an e-distinguishable subset of simulated points in which all points are situated
at least on the distance ¢ from one another. Simulated points are not uniformly-spaced
but the EDS subset will be roughly uniform, as we will show in Appendix A3.

Def 7. Let (X, D) be a bounded metric space. A set P¢ consisting of points x5, ..., x5, €
X C RY is called e-distinguishable if D (:L‘f,:t;) >ce forall 1 <i,j < M :i# j, where
e > 0 is a parameter.

EDSs are used in mathematical literature that studies the entropy; see Temlyakov
(2011) for a review. This literature focuses on a problem of constructing an EDS that
covers a given subset of R? (such as a multidimensional hypercube). We study a different
problem, namely, we construct an EDS for a given discrete set of points. To this purpose,
we introduce the following algorithm.



(Algorithm P¢): Construction of an EDS.

Let P be a set of n points z1, ..., z, € X C R%.

Let P¢ begin as an empty set, P¢ = {&}.

Step 1. Select z; € P. Compute D (z;,z;) to all z; in P.
Step 2. Eliminate from P all z; for which D (z;,z;) < e.
Step 3. Add z; to P® and eliminate it from P.

Iterate on Steps 1-3 until all points are eliminated from P.

The complexity of Algorithm P¢ is of order O (nM), where M is the number of points
into the set P°. Indeed, consider the worst-case scenario such that € is smaller than all
inter-point distances for the first M points. Then, the algorithm will go through n — M
iterations without eliminating any point, and it will eliminate n — M points at the end.
Under this scenario, the complexity is (n — 1) + (n —2) ... + (n — M) = S (n —i) =
nM — w < nM. When no points are eliminated from P, i.e., M = n, the complexity
is quadratic, O (n?). However, the number of points M in an EDS is bounded from above
if X is bounded; see Proposition 2 in Appendix A2. This means that asymptotically,
when n — oo, the complexity of Algorithm P* is linear, O (n).

2.2.3 Distance between points

Both estimating the density function and constructing an EDS requires us to measure the
distance between simulated points. Generally, variables in economic models have different
measurement units and are correlated. This affects the distances between the simulated
points and hence, affects the resulting EDS. Therefore, prior to using Algorithm A" and
Algorithm P¢, we normalize and orthogonalize the simulated data.

To be specific, let X € R"*? be a set of simulated data normalized to zero mean
and unit variance. Let z; = (z},..,2¢) be an observation i = 1 (there are n obser-

vations), and let zf = (zf, ...,xf;)T be a variable ¢ (there are d variables), i.e., X =

(ml, ey xd) = (1, .., xn)T. We first compute the singular value decomposition of X, i.e.,

X =UQV", where U € R and V € R%? are orthogonal matrices, and @ € R%*¢

is a diagonal matrix. We then perform a linear transformation of X using PC= XV.

The variables PC = (PCI, o PCd) € R™4 are called principal components (PCs) of X,
AT

and are orthogonal (uncorrelated), i.e., <PC£> PC! = 0 for any ' # (. As a measure

of distance between two observations z; and z;, we use the Euclidean distance between
1/2
their PCs, namely, D (z;,z;) = [Z?:l (PCf — PCﬁ)z} , where all principal components

PC!, ..., PC? are normalized to unit variance.

2.2.4 An illustration of the EDS technique

In this section, we will illustrate the EDS technique described above by way of example.
We consider the standard neoclassical stochastic growth model with a closed-form solu-
tion (see Section 4 for a description of this model). We simulate time series for capital
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and productivity level of length 1,000,000 periods, and we select a sample of 10,000
observations by taking each 100th point (to make the draws independent); see Figure 2a.

Figure 2a. Simulated paints Figure 2b. Principal companents (PCs)
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We orthogonalize the data using the principal component (PC) transformation, and we
normalize the PCs to unit variance; see Figure 2b. We estimate the density function
using the multivariate kernel algorithm with the standard bandwidth of h = n~1/(¢+4)
and we remove from the sample 5% of simulated points in which the density is lowest;
see Figure 2c. We construct an EDS; see Figure 2d. We plot such a set in the PC and
original coordinates in Figure 2e and Figure 2f, respectively. As we see, the EDS technique
delivers a set of points that covers the same area as does the set of simulated points but
that is spaced roughly uniformly.*

4Our two-step procedure produces an approximation not only to the ergodic set but to the whole
ergodic distribution (because in the first step, we estimate the density function in all simulated points
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2.2.5 Dispersion and discrepancy of EDS grids

In our examples, the EDS grids constructed on simulated series appear to be uniform.
However, an important question is whether our construction guarantees the uniformity of
grid points in general. We address this question in Appendices A1 and A3, specifically,
we provide formal results about the degrees of dispersion and discrepancy of EDS grids
from a uniform distribution.

Our analysis is related to recent mathematical literature on covering-number problems
(see, Temlyakov, 2011) and random sequential packing problems (see, Baryshnikov et al.,
2008). A well-known example from this literature is a car-parking model of Rényi (1958).
Cars of a length ¢ park at random locations along the roadside of a length one subject
to a non-overlap with the previously parked cars. It is known that when cars arrive at
uniform random positions, they are also distributed uniformly in the limit e — 0.°.

Our analysis differs from Rényi’s (1958) analysis in that cars can arrive at random
positions with an arbitrary density function (normally, we do not know density functions
of stochastic processes arising in an economic model that we try to solve). In terms of
Rényi’s (1958) problem, our results are as follows: We show that EDS grids are low-
dispersion sequences for any density function, namely, any two points (cars) in the EDS
grid are situated on the distance between ¢ and 2¢ from each other, and this distance
converges to 0 as ¢ — 0 (see Proposition 1 in Appendix Al). However, we find that this
fact alone is not sufficient to guarantee the asymptotic uniformity (low discrepancy) of
the EDS grids (see Proposition 3 in Appendix A3). To see the intuition, consider Rényi’s
(1958) setup such that on the interval [0, A*], evil drivers park their cars on the distance
2¢ to leave as little parking space to other drivers as possible, and on the interval [A\*, 1],
a police officer directs the cars to park on the distance ¢ in a socially optimal way. Under
this construction, there are twice as many points in the second subinterval as in the first
one for any ¢ (and this non-uniformity is not reduced when ¢ — 0). Finally, we establish
that even though EDS grids do not possess the property of low-discrepancy sequences in
general, their discrepancy from the uniform distribution is bounded from above for any
density function; see Proposition 3 in Appendix A3.

2.2.6 Number of points in EDS grids

Under our baseline Algorithm P, the cardinality of an EDS grid (i.e., the number of points
in it)depends on the value of € > 0: the smaller is €, the more points are included in the
EDS grid. We derive bounds on the number of points in the EDS grids in Proposition
2 of Appendix A2, however, the exact relation is hard to characterize analytically, in

including those that form an e-distinguishable set). The density weights show what fraction of the sample
each "representative" point represents, and can be used to construct weighted-average approximations.
If our purpose is to construct a set of evenly-spaced points, we do not need to use the density weights
and should treat all points equally.

SRényi (1958) shows that they occupy about 75% of the roadside at jamming, namely, iLI%E [M]e ~

0.748.
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particular, because the cardinality of the EDS grid depends on the order in which points
are processed.

In applications, it may be necessary to control the number of grid points, for example,
in a projection method, we need to construct a grid with a given number of grid points
M. To construct the relation between ¢ and M = M (¢), we can use a simple numerical
bisection method.

(Algorithm M): Construction of an EDS with a target number of points M.
For iteration 7 = 1, fix z—:Em)n and a(m)m such that M (51(11;)() <M<M ( (1) )

min
RORING!

Step 1. On iteration i, take e = “mins=22x ' congtruct an EDS and compute M (e).
Step 2. If M (¢) > M, then set sl(fl;;l) = ¢; and otherwise, set 61(11:)1) =e.

Iterate on Steps 1 and 2 until M (¢) converges.

To find initial values of £,.x and i, we use the bounds established in Appendix A2 (see

_ _ -1
Proposition 2), namely, we set 55&2»( = 0.57pax M 1/ and 5fnm = T'min (M va _ 1) , where

Tmax and ryi, are, respectively, the largest and smallest PCs of the simulated points. Since
the essentially ergodic set is not necessarily a hypersphere (as is assumed in Proposition
2), we take Tyay and 7y, to be the radii of the limiting hyperspheres that contain none
and all PCs of the simulated points, respectively.

2.3 Reducing the cost of constructing an EDS on the essentially
ergodic set

The two-step procedure described in Section 2.2 has a complexity of O (n?). This is
because the estimation of the density function in Step 3 of Algorithm A" has a complexity
of order O (n?), and the construction of an EDS set in Step 1 of Algorithm P¢ has a
complexity of order O (nM). (The latter is significantly lower than the former if M < n).
The complexity of order O (n?) does not imply a substantial cost for the size of applications
we study in the present paper, however, it might be expensive for larger applications.

We now describe an alternative implementation of the two-step procedure that has
a lower complexity, namely, O (nM). The idea is to invert the steps in the two-step
procedure described in Section 2.2, namely, we first construct an EDS with M points
using all simulated points, and we then remove from the EDS a subset of points with
the lowest density. Since we need to estimate the density function only in M simulated
points, the complexity is reduced to O (nM).

(Algorithm P° — cheap): Construction of an EDS.

Step 1. Simulate (1) for T periods.

Step 2. Select each sth point to get a set P of n points 1, ...,z, € X C R%.
Step 3. Select an EDS P° of M points, x7, ..., 5, using Algorithm P*.

Step 4. Estimate the density function g (zf) ~ g (z5) for all 25 € P* using (2).
Step 5. Remove a fraction of points d of P¢ which has the lowest density.
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To control the fraction of the sample removed, we use the estimated density function g.

Note that when eliminating a point x5 € P, we remove Z:”L;()g) of the original sample.
i=1 9\

We therefore can proceed with eliminations of points from the EDS one by one until their
cumulative mass reaches the target value of ¢.

To illustrate the application of the above procedure, we again use the example of the
neoclassical stochastic growth model with a closed-form solution studied in Section 2.2.4;
see Figures 3a-3f.

Figura 3a. Simulated paints: Figure 3b. Principal components (PCs)
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We first compute the normalized PCs of the original sample; see Figure 3b (this step in
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the same as in Figure 2b). We compute an EDS P¢ on the normalized PCs; see Figure
3c. We then estimate the density function in all points of P° using the kernel density
algorithm. We next remove from P¢ a set of points that has the lowest density function
and that represents 5% of the sample. The removed points are represented with crosses
in Figure 3d. The resulting EDS is shown in Figure 3e. Finally, we plot the EDS grid in
the original coordinates in Figure 3f.

2.4 Cluster-grid technique

We have described one specific EDS procedure for forming a discrete approximation to
the essentially ergodic set of tthe stochastic process (1). There are other procedures that
can be used for this purpose. In particular, we can use methods from cluster analysis
to select a set of representative points from a given set of simulated points; see Everitt
et al. (2011) for a review of clustering techniques. Namely, we partition the simulated
data into clusters (groups of closely-located points), and we replace each cluster with one
representative point. In this paper, we study two clustering methods that can be used
in the context of our analysis, an agglomerative hierarchical and K-means ones. The
steps of an agglomerative hierarchical method are shown below, and a K-means method
is described in Appendix B2.5

(Algorithm P¢): Agglomerative hierarchical clustering algorithm.
Initialization. Choose M, the number of clusters to be created.

In a zero-order partition P(©), each simulated point represents a cluster.

Step 1. Compute all pairwise distances between the clusters in a partition P,

Step 2. Merge a pair of clusters with the smallest distance to obtain a partition P+1),
Iterate on Steps 1 and 2. Stop when the number of clusters in the partition is M.

Represent each cluster with a simulated point which is closest to the cluster’s center.

As a measure of distance between two clusters, we use Ward’s measure of distance; see
Appendix Bl. In Figures 4a-4c, we show an example in which we partition a set of
simulated points into 4 clusters and construct 4 representative points. A representative
point is the closest point to the cluster center (computed as the average of all observations
in the given cluster).

6The clustering methods were used to produce all the numerical results in the earlier versions of the
paper, Judd et al. (2010, 2011b). In our examples, projection methods operating on cluster grids and
those operating on EDSs deliver comparable accuracy of solutions.
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The advantage of the clustering methods is that we can control the number of grid points
directly (while the number of points in an EDS is controlled via ). The drawbacks are
that their complexity is higher, namely, it is of order O (n®) and O (! logn) for the
agglomerative hierarchical and K-means algorithms, respectively. Also, the properties of
grids produced by clustering methods are hard to characterize analytically.

As is in the case of the EDS technique, two versions of the cluster grid technique can be
constructed: we can first remove the low-density points and then construct representative
points using clustering methods (this is parallel to the basic two-step EDS procedure of
Section 2.2), or we can first construct clusters and then eliminate representative points
in which the density function is the lowest (this is parallel to the cheap version of the
two-step procedure described in Section 2.3). Prior to applying the clustering methods,
we preprocess the data by constructing the normalized PCs, as we do when constructing
an EDS grid in Section 2.2.3.

2.5 Locally-adaptive EDS grids

The locally-adaptive EDS grid technique makes it possible to control the quality of ap-
proximation over the state space. Namely, we place more grid points in those areas in
which the accuracy is low.

In simple cases, we may know a priory that an approximation is less accurate in some
area X; C R? than in other areas. Consequently, we can use a small £; in the area X,
and we can use a large 5 everywhere else. This produces more dense grid points in X;
than in the rest of the domain; an example of this construction is shown in Figure 1d.
However, in the typical case, it is not a priory known where the solution is accurate, and
we proceed as follows:
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(Algorithm P¢ — locally adaptive): Construction of a locally adaptive EDS.
Step 1. Define €1, ..., &, for a given set z1,...,z, € X C R? (initially, ¢; = ¢ for all 7).

Step 2. Construct an EDS P¢ by using €; for each z; € X and approximate fz I

Step 3. Evaluate approximation errors R (z;) = Hf(a:z) — f(x;)|| for all z; € X.

Step 4. Define € (R (x;)) to be a decreasing function of approximation errors.
Step 5. Compute ¢; = € (R (z;)) for all x; € X and go to Step 2.

Under the above algorithm, the larger is the approximation error in a given data point
x;, the smaller is the corresponding value of ¢; = £ (R (;)) and hence, the higher is the
density of grid points. In certain sense, this construction is similar to locally-adaptive
techniques in the sparse-grid literature in that it refines an approximation by introducing
new grid points and bases functions in those areas in which the quality of approximation
is low; see Ma and Zabaras (2009) for a review of this literature; and see Brumm and
Scheidegger (2013) for examples of economic applications. The locally-adaptive EDS grid
technique is especially useful in applications with kinks and strong non-linearities. In
Section 5, we will study an example of such an application — a new Keynesian model with
a ZLB on the nominal interest rate.

2.6 Approximating a function off the EDS grid

There is a variety of numerical techniques in mathematical literature that can be used
to approximate functions off the grid. They typically require us to assume a flexible
functional form f (x;b) characterized by a parameters vector b, and to find a parameters
vector b that minimizes the approximation errors, € (x5;b) = f(xf ;b) — f(25), on the
constructed EDS grid z5, ...,25, € P° according to some norm ||-||. If the constructed
f(-; b) coincides with f in all grid points, then we say that f(, b) interpolates f off the
EDS grid (this requires that the number of grid points in the EDS grid is the same as
the number of the parameters in b). Otherwise, we say that fA(, b) approximates f on
the EDS grid (this is similar to a regression analysis in econometrics when the number of

data points is larger than the number of the regression coefficients).

Global polynomial basis functions. A convenient choice for an approximating func-
tion is a high-degree ordinary polynomial function. Such a function is easy to construct,
and it can be fitted to the data using simple and reliable linear approximation methods;
see Judd et al. (2011a). Orthogonal polynomial families are another useful choice even
though the property of orthogonality is not satisfied for the simulation-based grid points;
see Judd et al. (2011a) for a discussion. However, global polynomial approximations
may be not sufficiently flexible to accurately approximate decision functions with strong
non-linearities and kinks.

Piecewise local basis functions. Piecewise local bases are more flexible than global
ones because each local polynomial basis function approximates a decision function just
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in an a small neighborhood of a given EDS grid point. A global approximation is obtained
by combing local approximations together. There are many ways to construct local ap-
proximations and to tie them up into a global approximation. Our baseline technique is as
follows: For each grid point x5 in the EDS grid, we construct a hypercube centered at that
specific point, cover the hypercube with a uniformly distributed set of points, and solve
the model on this set of points. As a set of points that covers the hypercube uniformly, we
use low-discrepancy sequences, namely, a Sobol sequence; an example of such a sequence
is shown in Figure 5b; see Niederreiter (1992) for a review of low-discrepancy methods.
Thus, we re-compute a solution to the model as many times as the number of points
in the EDS grid. Under piecewise local polynomial approximations, we use low-degree
polynomial bases, which helps us to keep the cost reasonably low. Finally, to simulate
the solution, we rely on a nearest neighbor approach. Our construction of local bases has
similarity to finite-element methods; see Hughes (1987) for a mathematic review of such
methods; and see McGrattan (1996) for their applications to economics.

Piecewise local basis functions with locally-adaptive EDS grids. Piecewise local
basis functions can be naturally combined with the locally-adaptive EDS grid technique.
This combination enables us to refine the solution only in those areas in which the accu-
racy is not sufficient and to hold fixed the solution in the remaining points. That is, when
we add new points to the EDS grid, we need to compute the solutions in the neighborhood
of these new grid points but we need not re-compute it in the existing grid points. This
useful feature is specific to approximations with local bases functions; for global approxi-
mations, we need to re-compute the solution entirely when changing either grid points or
an approximating function.

3 Incorporating the EDS grid into projection meth-
ods

In this section, we incorporate the EDS grid into projection methods for solving dynamic
economic models, namely, we use the EDS grid as a set of points on which the solution is
approximated.

3.1 Comparison of the EDS grid with other grids used in the
context of numerical solution methods

Let us first compare the EDS grid to other grids used in the literature for solving dynamic
economic models. We must make a distinction between a geometry of the set on which the
solution is computed and a specific discretization of this set. A commonly-used geometry
in the context of projection solution methods is a fixed multidimensional hypercube. Fig-
ures Ha-bd plot 4 different discretizations of the hypercube: a tensor-product Chebyshev
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grid, a low-discrepancy Sobol grid, a sparse Smolyak grid and a monomial grid, respec-
tively (in particular, these type of grids were used in Judd (1992), Rust (1998), Krueger
and Kubler (2004), and Pichler (2011), respectively).”

Figure 5a. Tensor-praduct Chebyshey grid Figure 5b. Sobol grid
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In turn, stochastic simulation methods use the adaptive geometry; see Marcet (1988),
Smith (1993), Maliar and Maliar (2005), Judd et al. (2011a) for examples of methods that
compute solutions on simulated series.® Focusing on the right geometry can be critical
for the cost, as the following example shows.

7 Also, Tauchen and Hussey (1991) propose a related discretization technique that delivers an approx-
imation to a continuous density function of a given stochastic process. Their key idea is to approximate
a Markov process with a finite-state Markov chain. This discretization technique requires to specify the
distribution function of the Markov process explicitly and is primarily useful for forming discrete approx-
imations of density functions of exogenous variables. In contrast, the EDS discretization technique builds
on stochastic simulation and does not require to know the distribution function. It can be applied to
both exogenous and endogenous variables.

8For a detailed description of Marcet’s (1988) method, see Den Haan and Marcet (1990), and Marcet
and Lorenzoni (1999).
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Example. Consider a vector of uncorrelated random variables z € R? drawn from a
multivariate Normal distribution 2z ~ N (0, I;), where I, is an identity matrix. An essen-
tially ergodic set A" has the shape of a hypersphere. Let us surround such a hypersphere
with a hypercube of a minimum size. For dimensions 2, 3, 4, 5, 10, 30 and 100, the ratio
of the volume of a hypersphere to the volume of the hypercube is equal to 0.79, 0.52,
0.31, 0.16, 3-1073, 2- 107" and 2 - 1077, respectively. These numbers suggest that an
enormous savings in cost are possible by focusing on an essentially ergodic set instead of
the standard multidimensional hypercube.

However, a stochastic simulation is not an efficient discretization of a high-probability set:
a grid of simulated points is unevenly spaced, has many closely-located, redundant points
and contains some points in low-density regions.

The EDS grid is designed to combine the best features of the existing grids. It combines
the adaptive geometry (similar to the one used by stochastic simulation methods) with
an efficient discretization (similar to that produced by low-discrepancy methods on a
hypercube). In Figure 5e, we show an example of a cloud of simulated points of irregular
shape, and in Figure 5f, we plot the EDS grid delivered by the two-step procedure of
Section 2.2. As we can see, the EDS grid appears to cover the high-probability set
uniformly.

There are cases in which the EDS grid may be not a good choice. First, focusing on
a high-probability set may not have advantages relatively to a hypercube; for example,
if a vector 2 € R? is drawn from a multivariate uniform distribution, = ~ [0,1]%, then
an essentially ergodic set coincides with the hypercube |0, 1]d, and no saving in cost is
possible. Second, in some applications, one may need to have a sufficiently accurate
solution outside the high-probability set, for example, when analyzing a transition path
of a developing economy with low initial endowment. In those cases, one may augment
the grid on a high-probability set to include some "important" points situated outside
this set. An example of this approach is shown by Aruoba and Schorfheide (2013) in
the context of a new Keynesian model. They construct a grid by combining selected
draws from the ergodic distribution of the model with a set of values for state variables
filtered from the actual data. In this way, they augment the grid to include points from
the 2008-2009 Great recession which do not naturally belong to a high-probability set of
the studied model. Finally, our worst case analysis in Appendix A3 shows that there are
scenarios in which EDSs constructed on simulated data are highly non-uniform. However,
these scenarios require extreme assumptions about the density of simulated points, e.g.,
a set of highly uneven Dirac point masses. We did not observe the worst-case outcomes
in our experiments. If we know that we are in those cases, we may opt for grids on a
multidimensional hypercube.

20



3.2 General description of the EDS algorithm

In this section, we develop a projection method that uses the EDS grid. We focus on
equilibrium problems, however, the EDS method can be also used to solve dynamic pro-
gramming problems; see Judd et al. (2012) for examples.

3.2.1 An equilibrium problem

We study an equilibrium problem in which a solution is characterized by the set of equi-
librium conditions for t = 0,1, ..., oo,

E, [G (5t7 2ty Yty St+1, Zt+1, yt—i—l)] =0, (3)
241 =2 (Zm €t+1) ) (4)

where (s, 29) is given; E; denotes the expectations operator conditional on information
available at t; s, € R% is a vector of endogenous state variables at ¢; 2, € R% is a vector
of exogenous (random) state variables at t; y; € R% is a vector of non-state variables —
prices, consumption, labor supply, etc. — also called non-predetermined variables; G is a
continuously differentiable vector function; ¢;,1; € R? is a vector of shocks. A solution is
given by a set of equilibrium functions s;41 = S (s, 2¢), and y; = Y (84, 2;) that satisfy
(3), (4) in the relevant area of the state space. In terms of notations of Section 2.1, we
have ¢ = (S,Y), z; = (s¢,2) and d = ds + d,. The solution (S,Y) is assumed to satisfy
the assumptions of Section 2.1.

3.2.2 A projection algorithm based on the EDS grid

Our construction of the EDS grid in Section 2.2 is based on the assumption that the
stochastic process (1) for the state variables is known. However, the law of motion for
endogenous state variables is unknown before the model is solved: it is precisely our goal
to approximate this law of motion numerically. We therefore proceed iteratively: guess
a solution, simulate the model, construct an EDS grid, solve the model on that grid
using a projection method, and iterate on these steps until the grid converges. Below, we
elaborate a description of this procedure for the equilibrium problem (3), (4).
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(EDS algorithm): A projection algorithm for equilibrium problems.
Step 0. Initialization.

a. Choose (so, 29) and simulation length, 7T'.

b. Draw {€;+1},_ _p_q- Compute and fix {2411}, 7, using (4).

c. Choose approximating functions S ~ S (-; b%) and Y ~ Y (;0Y).

d. Make an initial guess on b* and Y.

e. Choose integration nodes, €;, and weights, w;, j =1,..., J.
Step 1. Construction of an EDS grid.

a. Use S (+;0°) to simulate {st41}, 7 1-

b. Construct an EDS grid, I' = {sm, 2m},m1._m-

Step 2. Computation of a solution on EDS grid using a projection method.

a. For m =1, ..., M, construct residuals

J
_ § 1o /
-R (Sma Zm) = wj - G (Sma Zms Yms Sms Zm,j,ymd')»
7j=1

where Y = Y ($m, 2m: 0Y), 84 = S (Sm, 2m; b%), 2 = Z (2m, €5);
Y, =Y (s;n, Zm g} by>

b. Find b° and bY that minimize residuals according to some norm.

Iterate on Steps 1, 2 until convergence of the EDS grid.

3.2.3 Discussion of the computational choices

We construct the EDS grid as described in Section 2.2. We guess the equilibrium rule
S, simulate the solution for T periods, construct a sample of n points by selecting each
rth observation, estimate the density function, remove a fraction ¢ of the sample with
the lowest density, and construct an EDS grid with a target number of points M using
a bisection method. Below, we discuss some of the choices related to the construction of
the EDS grids.

Initial guess on 0°. To insure that the EDS grid covers the right area of the state space,
we need a sufficiently accurate initial guess about the equilibrium rules. Furthermore, the
equilibrium rules used must lead to non-explosive simulated series. For many problems in
economics, linear solutions can be used as an initial guess; they are sufficiently accurate,
numerically stable and readily available from automated perturbation software (we use
Dynare solutions; see Adjemian et al., 2011). Finding a sufficiently good initial guess can
be a non-trivial issue in some applications, and techniques from learning literature can be
useful in this context; see Bertsekas and Tsitsiklis (1996) for a discussion.

Choices of n and T. Our construction of an EDS relies on the assumption that simu-
lated points are sufficiently dense on the essentially ergodic set. Technically, in Appendix
A1, we require that each ball B (z;¢) inside A" contains at least one simulated point. The
probability Pr (0) of having no points in a ball B (x;¢) inside A" after n draws satisfies
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Pr(0) < (1 —p.)" where p. = fB(:c;a) ndx ~ \ge¥n and )\, is the volume of a d-dimensional
unit ball. (Note that on the boundary of A" where g = 7, we have Pr (0) = (1 — p.)").
Thus, given € and 7, we must choose n and T" = nk, so that Pr(0) is sufficiently small.
We use T" = 100,000 and « = 10, so that our sample has n = 10,000 points, and we
choose 7 to remove 1% of points with the lowest density.

Choices of ¢ and M. We need to have at least as many grid points in the EDS as the
parameters b° and ¥ in S and Y (to identify these parameters). Conventional projection
methods rely on collocation, when the number of grid points is the same as the number
of parameters to identify. Collocation is a useful technique in the context of orthogonal
polynomial constructions but is not convenient in our case (because our bisection method
does not guarantee that the number of grid points is exactly equal to the target number
M). Hence, we target a slightly larger number of points than parameters, which also
helps us to increase both accuracy and numerical stability.

Reconstructing the EDS grid iteratively. Under Assumptions 1 and 2, the con-
vergence of the equilibrium rules implies the convergence of the time-series solution;
see Peralta-Alva and Santos (2005). Therefore, we are left to check that the EDS
grid constructed on the simulated series also converges. Let I' = {z}},_, ,, and

I = {m;' }j: L e the EDS grids constructed on two different sets of simulated points.

Our criteria of convergence is sup inf D (x;, 'l ) < 2¢. That is, each grid point of I'” has
2 er a:;GF’
J

a grid point of I" at the distance smaller than 2¢ (this is the maximum distance between
the grid points on the essentially ergodic set; see Proposition 3 in Appendix A3).

How often do we need to reconstruct the EDS grid? Constructing EDS grids may
be costly, especially, in problems with high dimensionality because we need to produce
a long simulation, to estimate the density function and to construct EDS grids several
times until a bisection procedure locates a grid with the target number of grid points.
The cost of constructing EDS grids can be especially high in those applications in which
researchers must solve their models repeatedly using different parameters vectors, for
example, in estimation or calibration studies.

Hence, an important question is: "How often do we need to reconstruct the EDS
grid in a given application?" We found that typically, the properties of solutions are not
sensitive to small changes in the EDS grid. For example, the EDS grid constructed on
a log-linear solution would normally lead to as accurate non-linear solutions as the one
constructed using highly accurate non-linear solutions. Furthermore, we found that small
changes in the model’s parameters do not require us to re-compute the grid. In the
presence of kinks, such as the ZLB in new Keynesian model, the solution is more sensitive
to a specific construction of the EDS grid, however, using more accurate solutions for
constructing the grid does not necessarily lead to smaller approximation errors. Thus,
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our experiments suggest that in many applications, we can construct an EDS grid just
once using a relatively rough initial guess, and we can keep this grid when iterating on
decision functions until convergence (without a visible accuracy loss).

Integration. Unlike simulation- and learning-based methods, we rely on deterministic
integration methods such as the Gauss-Hermite quadrature and monomial integration
methods. Deterministic methods dominate in accuracy the Monte Carlo method by orders
of magnitude in the context of the studied class of models; see Judd et al. (2011a) for
comparison results.” The cost of Gaussian product rules is prohibitive in high-dimensional
problems but monomial formulas are tractable even in models with hundreds of state
variables; see Judd et al. (2011b) for the description of these formulas.

Solving systems of non-linear equations: the convergence issue. In Step 2 of the
EDS algorithm, we must find the parameters vector b = (b%,b") in the decision functions
S (-;b%) and Y (-; ) that satisfy the model’s equations. Here, we have a system of n =
M x H non-linear equations, where H is the number of equations in the vector function
G with n/ unknown parameters in b. By construction, n’ < n. If n’ = n, i.e., we have the
same number of unknowns (grid points) as equations, we may have a unique solution that
satisfies all equations exactly (this case is referred to as collocation). However, if n’ < n,
we construct a solution that satisfies the model’s equations by minimizing a weighed sum
of residuals in the model’s equations (this case is similar to regression in econometrics).

There is a variety of numerical methods in the literature that can be used to solve
a system of non-linear equations in Step 2 of the EDS algorithm, see, e.g., Judd (1998,
pp 93-128)) for a review of such methods. In the paper, we restrict attention to a sim-
ple derivative-free fixed-point iteration method; see Wright and Willams (1984), Marcet
(1988), Den Haan (1990), Gaspar and Judd (1997) for early applications of fixed-point
iteration to economic problems. In terms of our problem, fixed-point iteration can be
written as follows:

(FPI): Fixed-point iteration with damping.

Initialization. Write a system of equations in the form b = U (b).

Fix initial guess b(®), a norm ||-|| and a convergence criterion .

Step 1. On iteration i, compute b= (b(i)).

Step 2. If HB— b

Otherwise, set b(+1) = ¢b + (1 —&) b, where ¢ € (0,1] and go to Step 1.

< w, then stop.

That is, for iteration 4, we guess some b, compute new b and use it to update our guess

9For example, assume that a Monte Carlo method is used to approximate an expectation of y ~
N (0,0,) with n random draws. The distribution of 7 = 237" v is J ~ N (0, %) If oy = 1% and
n = 10,000, we have approximation errors of order U—\/% = 10~*. To bring the error to the level of 1078,

which we attain using quadrature methods, we need to have n = 10*2. That is, such a slow, \/n-rate of
convergence makes it very expensive to obtain highly accurate solutions using stochastic simulation.
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for iteration ¢ + 1, where £ is the damping parameter that controls the speed of updating.
The advantage of fixed-point iteration is that it can iterate in this simple manner on
objects of any dimensionality, for example, on a vector of the polynomial coefficients.
The cost of this procedure does not grow rapidly with dimensionality of the problem,
unlike does the cost of Newton-style methods. As other non-linear solvers, fixed-point
iteration may fail to converge. The following example, borrowed from Judd (1998, p 159),
illustrates the possibility of non-convergence.

Example. Let us find a solution to 23 — x — 1 = 0 using a fixed point iteration. We
can rewrite it as 2 = (z+1)"/% and construct a sequence 21 = (2 4+1)'/3 starting from
z© = 1. This yields a sequence (" = 1.26, z(® = 1.31, (3 = 1.32,... which converges
to a solution. However, we can also rewrite this equation as x = 23 — 1 and construct a
sequence (1) = (x(i))3 — 1 starting from 2(®) = 1 which diverges to —ooc.

This example shows that whether fixed-point iteration succeeds or not in finding a
solution may depend on a specific way in which it is implemented. Judd (1998, pp 557-
558) also shows that fixed-point iteration may fail to converge in growth models like the
ones studied in the present paper under some parameterizations. Damping helps us to
increase the likelihood of convergence; see Judd (1998, pp 78-84). Newton-style methods
may have better convergence properties but they may also fail if an initial guess is not
sufficiently accurate. In sum, CGA and EDS solution methods are effective numerical
methods for solving high-dimensional applications, but they share limitations that are
common for all projection methods, namely, they may fail to converge. In our examples,
the studied EDS and CGA solution methods were highly accurate and reliable, however,
the reader must be aware of the existence of the above potential problems and must be
ready to detect and to address such problems if they arise in applications.

3.2.4 Evaluating the accuracy of solutions

Provided that the EDS algorithm succeeds in producing a candidate solution, we subject
such a solution to a tight accuracy check. We specifically generate a set of points within
the domain on which we want the solution to be accurate, and we compute residuals in
all equilibrium conditions.

(Evaluation of accuracy): Residuals in equilibrium conditions.
a. Choose a set of points {s;,2r}._; s« for evaluating the accuracy.

b. For 7 = 1, ..., 7' compute the size of the residuals:
Jtest

— test / / /
R(S‘MZT) — E w] : [G (STuvayTvsruzT,jvyﬂj)} )
i=1

where y, = Y (87,27, 0Y), st = §(S7—, 273 b%),

2i=7 (zT, e;.ebt>, yr ;=Y (yT,z’TJ; by),
test
J

c. Find a mean and/or maximum of the residuals R (s, 27).

63-‘3“ and w*" are the integration nodes and weights.
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If the quality of a candidate solution is economically inacceptable, we modify the choices
made in the EDS algorithm (i.e., simulation length, number of grid points, approximating
functions, integration method) and recompute the solution. In the paper, we evaluate
the accuracy on a set of simulated points. This new set of points which is different from
that used in the solution procedure: it is constructed under a different sequence of shocks
(i.e., we test accuracy out of sample). Other possible accuracy checks include evaluating
the residuals in the model’s equations on a given set of points in the state space (Judd,
1992), and testing the orthogonality of residuals in the optimality conditions (Den Haan
and Marcet, 1994); see Santos (2000) for a discussion.

4 Neoclassical stochastic growth model

In this section, we use the EDS approach to solve the standard neoclassical stochastic
growth model. We discuss some relevant computational choices and assess the perfor-
mance of the algorithm in one- and multi-agent setups.

4.1 The set up

The representative agent solves

max E bu (e 5

the+1etlizo, oo 0;5 (@) ®)

s.t. Cct + k’t+1 = (1 - 5) kt + atAf (kt) ) (6)
Inag 1 =plna; + €41, €1~ N <0> 02) ; (7)

where (ko, ag) is given; F; is the expectation operator conditional on information at time
t; ¢, ki and a4 are consumption, capital and productivity level, respectively; 5 € (0,1);
b€ (0,1]; A>0; pe (=1,1); 0 > 0; u and f are the utility and production functions,
respectively, both of which are strictly increasing, continuously differentiable and concave.
Under our assumptions, this model has a unique solution; see, e.g., Stokey and Lucas
with Prescott (1989, p 392). For numerical experiments, we use u(c) = Cl{_# with
v € {},1,5} and f (k) = k* with a = 0.36, and we set 3 = 0.99, 6 = 0.025, p = 0.95
and o0 = 0.01. A version of the model under u (¢) =In(c), § =1 and f (k) = k* admits a
closed-form solution ki1 = afa; Ak

4.2 An EDS algorithm iterating on the Euler equation

We describe an example of the EDS method that iterates on the Euler equation. For the
model (5)—(7), the Euler equation is

u ()

u' (c)

1 = BE (1—6+dAf (K)], (8)
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where primes on the variables denote next-period values, and ' and f’ denote the
derivatives of u and f, respectively. We must solve for equilibrium rules ¢ = C (k,a)
and k' = K (k,a) that satisfy (6)—(8). To implement fixed-point iteration, we repre-
sent (8) in the form &' = W (k') by multiplying both sides with k&' which yields k' =
BKE | L) (1 =0+ dAf (K')]. In our iterative procedure, we substitute (k') obtained

e)

in iteration ¢ in the right side of this equation, compute %' in the left side and use the
solution to improve our guess (k' )(Hl) for iteration i + 1; see Appendix C for a detailed
description of the EDS solution method.

In Table 1, we provide the results for the Euler equation EDS algorithm under the
target number of grid points M = 25 points.

Table 1: Accuracy and speed of the Euler equation EDS algorithm in the one-agent
model.*

Polynomial v=1/5 y=1 y=5
degree M (e) =21 M(e) =27 M (e) =25

Ly Loo CPU L L, CPU Ly Lo CPU
1st -4.74 -3.81 25.5 | -4.29 -3.31 24.7 | -3.29 -235 23.6
2nd -6.35 -5.26 1.8 | -5.94 -4.87 0.8 | -4.77 -3.60 0.4
3rd -7.93 -6.50 1.9 | -726 -6.04 0.9 | -5.97 -4.47 0.4
4th -9.37  -7.60 2.0 | -8.65 -7.32 0.9 | -7.05 -5.26 0.4
5th -9.82 -8.60 14.25 | -9.47 -8.24 5.5 | -7.89 -6.46 2.8

% Notes: Ly and Lo, are, repectively, the average and maximum of absolute residuals across optimality
condition and test points (in logl0 units) on a stochastic simulation of 10,000 observations; CPU is the
time necessary for computing a solution (in seconds); <y is the coefficient of risk aversion; M(E) is the
realized number of points in the EDS grid (the target number of grid points is M=25).

The accuracy of solutions delivered by the EDS algorithm is comparable to the highest
accuracy attained in the related literature. The residuals in the optimality conditions
decrease with each polynomial degree by one or more orders of magnitude. For the
fifth-degree polynomials, the largest unit-free residual corresponding to our least accurate
solution is still less than 107 (see the experiment with a high degree of risk aversion
v = 5). Computing high-degree polynomial solutions is relatively fast (a few seconds).
Most of the cost of the EDS algorithm comes from the construction of the EDS grid (here,
the EDS grid is constructed just once under the polynomial solution of degree 1, and the
time for the grid construction is included in the total time for computing that solution).
The cost increases gradually with the degree of approximating polynomial because we have
a larger number of terms in the approximating functions. This results in a "U"-shaped
pattern for the CPU time in the table.

We perform sensitivity experiments in which we vary the target number of grid points
and find that the results are robust to the modifications considered. We also vary the
number of nodes in the Gauss-Hermite quadrature rule, and we find that even the 2-no