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Abstract Numerical dynamic programming algorithms typically use Lagrange data
to approximate value functions over continuous states. Hermite data can be easily
obtained from solving the Bellman equation and used to approximate the value func-
tions. We illustrate the use of Hermite data with one-, three-, and six-dimensional
examples. We find that Hermite approximation improves the accuracy in value func-
tion iteration (VFI) by one to three digits using little extra computing time. More-
over, VFI with Hermite approximation is significantly faster than VFI with Lagrange
approximation for the same accuracy, and this advantage increases with the dimension
of the continuous states.
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1 Introduction

Dynamic optimization problems in economics are generally formulated in terms of
dynamic programming (DP).1 Value function iteration (VFI) is often used to solve
DP problems, but it is often numerically challenging due to nonlinearities and/or
dimensionality of the DP problems. VFI proceeds in a backwards recursion manner,
beginning with the specified value function at the terminal time T . At each time t < T ,
VFI first solves the Bellman equation at a finite number of approximation nodes,
and then uses the optimal values, also known as the Lagrange data, to construct an
approximation of the time t value function; we call that approach L-VFI for Lagrange
Value Function Iteration.

This paper uses the Envelope Theorem to reformulate the Bellman optimization
problem to get both the levels and gradients of the value function at the approximation
nodes, which together comprise the Hermite data, with no increase in computational
effort. We then use a Hermite approximation method to construct an approximation
to the value function; we call this approach H-VFI for Hermite value function itera-
tion. We demonstrate that H-VFI is significantly more efficient than L-VFI for some
common economics problems. The efficiency of H-VFI is particularly important for
finite-horizon problems, such as life-cycle consumption problems (e.g., Cocco et al.
2005), that can be solved only by some form of VFI. Our results are consistent with
the simple intuition that knowing the value and the gradient of a d-dimensional func-
tion at a point is roughly equivalent to knowing the values of the function at d + 1
points.

In this paper, we show the efficiency of H-VFIwith two kinds of examples: dynamic
portfolio problems and multi-country optimal growth problems.2 For these examples
we approximate the value functions with Chebyshev polynomials. The approximation
scheme consists of two parts: basis functions and approximation nodes. The approx-
imation nodes can be chosen as uniformly spaced nodes, Chebyshev nodes, or some
other specifiednodes.Approximationmethods canbe classified as either spectralmeth-
ods or finite elementmethods. A spectral method uses globally nonzero basis functions
φ j (x), such that V̂ (x;b) = ∑n

j=0 b jφ j (x) is a degree n approximation. Examples of
spectral methods include ordinary polynomial approximation, Chebyshev polynomial
approximation, and shape-preserving Chebyshev polynomial approximation (Cai and
Judd 2013). In contrast, a finite element method uses locally basis functions φ j (x)
that are nonzero over sub-domains of the approximation domain. Examples of finite
element methods include piecewise linear interpolation, cubic splines, and B-splines.
See Rivlin (1990), Judd (1998), and Cai et al. (2010) for more details. In Appendices A

1 Examples include optimal growth problems (e.g., Trick and Zin 1997; Judd 1998; Den Haan et al. 2011),
life-cycle consumption problems (e.g., Cocco et al. 2005), dynamic portfolio problems (e.g., Gupta and
Murray 2005; Infanger 2006; Cai et al. 2013), dynamic resource allocation problems (e.g., Powell and Van
Roy 2004), and optimal carbon tax problems (e.g., Cai et al. 2013a). See Judd (1998), Bertsekas (2005,
2007), Powell (2007), Rust (2008), and Cai and Judd (2014) for more examples.
2 H-VFI can also be more efficient than L-VFI in solving other kinds of DP problems with differential
value functions over continuous state variables, such as life-cycle consumption problems (e.g., Cocco et al.
2005), dynamic resource allocation problems (e.g., Powell and Van Roy 2004), and optimal carbon tax
problems (e.g., Cai et al. 2013a).
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and B we describe one-dimensional Chebyshev polynomials and multi-dimensional
complete Chebyshev polynomials, respectively. For one-dimensional problems, the
Hermite approximation can also be used in combination with spline methods, such
as the Schumaker shape-preserving spline method (Schumaker 1983) or the ratio-
nal function spline method (Cai and Judd 2012). For multi-dimensional problems,
we use complete Chebyshev polynomials to fit our Hermite data, but we could also
use many alternatives such as multivariate splines and radial basis functions, as H-
VFI does not depend on a specific functional form used for approximating the value
functions.

The key idea in H-VFI is generating and using gradient information. Some of the
ideas presented in this paper have been discussed in the literature, but as far as the
authors know, this is the first complete discussion of the issues and analysis of its
performance on a range of common problems in economics. Philbrick and Kitanidis
(2001) describe the generation and the use of Hermite information but do not invoke
the Envelope Theorem to construct the gradients. Instead, they propose computing the
gradients in a much more costly manner. They also use tensor products of splines for
approximation, an approach that suffers from a curse of dimensionality. We propose a
complete polynomial approximationmethod, forwhich this “curse-of-dimensionality”
problem does not exist.3 Philbrick and Kitanidis (2001) report at most three-digit
accuracy for their examples of dimension four or less, but less than two digits for higher
dimensions. Our examples achieve higher accuracy. Wang and Judd (2000) combine
Hermite approximation with shape preservation for two-dimensional problems, but
use a much less efficient approach to approximation. The rational function spline
method (Cai and Judd 2012) also uses Hermite interpolation, but that method only
works for one-dimensional problems, and produces only C1 approximations of the
value functions. Moreover, none of these papers document the actual performance of
H-VFI relative to L-VFI for economics problems.

The paper is organized as follows. Section 2 outlines the basic numerical L-VFI
algorithm with Chebyshev polynomials. Section 3 presents the H-VFI algorithm. Sec-
tion 4 gives some numerical examples, where we compare the efficiency of Lagrange
and Hermite value function iteration. Section 5 concludes.

2 Review of numerical methods for DP

In a generalDPproblem,we letx denote thevector of continuous states, and let θ denote
the vector of discrete states. We use x+ and θ+ to denote the vectors of continuous
and discrete states in the next period. Numerical solutions to a DP problem are based
on the Bellman equation (Bellman 1957):

3 Rust (1997) and Rust et al. (2002) prove that the curse of dimensionality exists for dynamic programming
problems in the worst-case analysis. However, Griebel and Wozniakowski (2006) show that there is no
curse of dimensionality in approximating functions having sufficient smoothness, while many DP problems
in economics have smooth value functions which can be approximated well by the complete polynomial
approximation method.
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Vt (x, θ) = max
a∈D(x,θ,t)

ut (x, a) + βEt
{
Vt+1(x+, θ+)

}
,

s.t. x+ = gt (x, θ, a, ω),

θ+ = ht (θ, ε), (1)

for t = 0, 1, ..., T − 1, where a is the vector of action variables constrained by
a ∈ D(x, θ, t), ω and ε are vectors of random variables, and gt and ht are laws of
motion for states x and θ at time t . We call Vt (x, θ) the value function at time t . The
terminal value function VT (x, θ) is given. Here, ut (x, a) is the utility function at time
t , β is the discount factor, and Et {·} is the expectation operator conditional on time-t
information.

In the simpler case where there are only continuous states with deterministic tran-
sition laws, the Bellman equation (1) becomes

Vt (x) = max
a∈D(x,t)

ut (x, a) + βVt+1(x+),

s.t. x+ = gt (x, a). (2)

Without loss of generality, we will use the simpler DP case to describe our algorithms.
If state and control variables in a DP problem are continuous, then the value func-

tions must be approximated in some computationally tractable manner. It is common
to approximate the value functions with a finitely parameterized collection of func-
tions; that is, we use some functional form V̂ (x;b), where b is a vector of parameters,
and approximate the value function, V (x), with V̂ (x;b) for some parameter value b.
For example, V̂ could be a linear combination of polynomials, where b would be the
weights on polynomials. After the functional form is specified, we focus on finding
the vector of parameters, b, such that V̂ (x;b) approximately satisfies the Bellman
equation (2). The following algorithm gives the traditional value function iteration to
solve the deterministic DP problem (2).

Algorithm 1. Lagrange Value Function Iteration (L-VFI)
Initialization. Choose the approximation nodes, Xt = {xt,i : 1 ≤ i ≤ Nt } ⊂ R

d , for
every t < T , and choose a functional form for V̂ (x;b). Let V̂ (x;bT ) ≡ VT (x).
Then for t = T − 1, T − 2, . . . , 0, iterate through steps 1 and 2.

Step 1. Maximization Step. Compute

vi = max
a∈D(xi ,t)

ut (xi , a) + β V̂ (x+;bt+1) (3)

s.t. x+ = gt (xi , a),

for each xi ∈ Xt , 1 ≤ i ≤ Nt .

Step 2. Fitting Step. Using an appropriate approximation method, compute bt such
that V̂ (x;bt ) approximates (xi , vi ) data.

Algorithm 1 shows that there are two main components in value function iteration
for the deterministic DP problems: optimization and approximation. In this paper we
focus on approximation methods. Detailed discussion of numerical DP can be found
in Cai et al. (2010), Judd (1998) and Rust (2008).
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3 Hermite value function iteration algorithm

L-VFI is the traditional approach to value function iteration. In this section, we show
how to generate more information in each maximization step that will allow us to
construct better value function approximations. More specifically, we will first show
that each maximization problem in the maximization step of L-VFI can produce the
gradient of the value function at any approximation node. Then we show how to use
the gradient information to produce better value function approximations.

3.1 H-VFI

Traditional approximation methods (L-VFI) in DP problems use only Lagrange data
{(xi , vi ) : i = 1, . . . , N } for pre-specified approximation nodes {xi }. However, the
optimization problem (3) in L-VFI can give us more information, not just vi . We can
also let the optimization problem (3) produce the gradient of the value function at xi
at almost no cost if the value function is differentiable. This is done by invoking the
Envelope Theorem (see, e.g., Judd 1998), which we next state.

Theorem 1 (Envelope Theorem) Let

H(x) =max
a

f (x, a)

s.t. g(x, a) = 0,

(x, a) ≥ 0, (4)

where x = (x1, ..., xd) ∈ R
d . Suppose that a∗(x) is the optimizer of (4). Let λ∗(x) be

the vector of shadow prices for the equality constraints g(x, a) = 0, and let μ∗(x) be
the vector of shadow prices of the inequality constraints h(x, a) ≥ 0. Then

∂H(x)
∂x j

= ∂ f

∂x j
(x, a∗(x)) + λ∗(x)� ∂g

∂x j
(x, a∗(x)) + μ∗(x)� ∂h

∂x j
(x, a∗(x)), (5)

for j = 1, . . . , d.

The Envelope Theorem can be applied to the Bellman equation (2) at an approxi-
mation node xi , and then we could use the formula (5) to generate Hermite data of the
value function Vt at xi . But the formula (5) requires the computation of the gradients
of f , g, and h. Corollary 1 shows how to reformulate the optimization problem so that
an optimization solver can directly output the value of ∂H(x)/∂x j .

Corollary 1 The optimization problem (4) is equivalent to

H(x) =max
a,y

f (y, a)

s.t. g(y, a) = 0,

h(y, a) ≥ 0,

x j − y j = 0, j = 1, . . . , d. (6)
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250 Y. Cai, K. L. Judd

Therefore,

∂H(x)
∂x j

= τ ∗
j (x),

where τ ∗
j (x) is the shadow price of the trivial constraint x j −y j = 0, for j = 1, . . . , d.

Corollary 1 takes the optimization problem (4), adds variables y j and constraints
x j − y j = 0, and replaces the vector x by the vector y in the objective function and
all constraints. The Envelope Theorem tells us that ∂H(x)/∂x j is the shadow price of
the trivial constraint x j − y j = 0. Any modern solver will include this shadow price
in the output if the user requests that information.4 The extra cost of the reformulated
problem is trivial for anymodern solver. This procedure eliminates the need to compute
the costly formula (5).

Using Corollary 1, Algorithm 2 shows how to efficiently use Hermite information
in the numerical DP algorithms.

Algorithm 2. Hermite value function iteration (H-VFI)
Initialization. Choose the approximation nodes, Xt = {xt,i : 1 ≤ i ≤ Nt } ⊂ R

d , for
every t < T , and choose a functional form for V̂ (x;b). Let V̂ (x;bT ) ≡ VT (x).
Then for t = T − 1, T − 2, . . . , 0, iterate through steps 1 and 2.

Step 1. Maximization Step. For each xi = (
xi,1, ..., xi,d

) ∈ Xt , 1 ≤ i ≤ Nt , compute

vi = max
a∈D(y,t),y

ut (y, a) + β V̂ (x+;bt+1),

s.t. x+ = gt (y, a),

xi, j − y j = 0, , j = 1, . . . , d,

and

si = (
τ ∗
1 (xi ), ..., τ ∗

d (xi )
)
,

where τ ∗
j (xi ) is the shadow price of the constraint xi, j − y j = 0.5

Step 2. Hermite Fitting Step. Using an appropriate approximation method, compute
bt such that V̂ (x;bt ) approximates (xi , vi , si ) data.

4 It is standard for a solver to report the multipliers associated with a solution of a constrained optimization
problem. For example, in fmincon, the solver in the Matlab Optimization Toolbox, the command

[X,FVAL,EXITFLAG,OUTPUT,LAMBDA] = fmincon(FUN,X0, . . .)

prompts the solver to report the multipliers in the vector LAMBDA. Similar commands are provides by
other solvers, such as KNITRO (Byrd et al. 2006), CONOPT (Drud 1996), SNOPT (Gill et al. 2005),
MINOS (Murtagh and Saunders 2003), and so on. Moreover, these solvers are available in the NEOS server
(Czyzyk et al. 1998; Gropp and Moré 1997) by uploading code in AMPL (Fourer et al. 1990, 2003) or
GAMS (Bisschop and Meeraus 1982; Brooke et al. 1997; McCarl 2011) with the NEOS graphical user
interface (http://www.neos-server.org/neos/) or a callable interface (Dolan et al. 2008).
5 For problems with a simple formulation of (5), such as the dynamic portfolio problem (9), we will use
the formula (5) to generate the Hermite data.
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We can easily extend the above algorithm to solve the general stochastic DP model
(1). Moreover, this H-VFI method can also be efficiently parallelized to solve high-
dimensional problems like what the L-VFI method did in Cai et al. (2015).

3.2 Hermite approximation methods

Many approximation methods can use Hermite information. Our examples have
smooth value functions, as is often the case for economics problems. In this section,
we describe polynomial approximation methods that produce smooth approximations
using the Hermite information. We next introduce Chebyshev–Hermite interpolation
for one dimensional cases, and Hermite approximation with complete Chebyshev
polynomials for multi-dimensional problems.

3.2.1 One-dimensional Chebyshev–Hermite interpolation

Chebyshev interpolation is often used in L-VFI, and can also be used for H-VFI. For
the one-dimensional approximation in this paper, we use the interpolation only, so
we just discuss the one-dimensional interpolation using Hermite information in the
following.

Assume that we have Hermite data {(xi , vi , si ) : i = 1, . . . ,m} on [xmin, xmax],
where xi = (zi + 1)(xmax − xmin)/2 + xmin (with zi = − cos ((2i − 1)π/(2m)))
are the Chebyshev nodes, vi = V (xi ) and si = V ′(xi ). The following system of 2m
linear equations can produce coefficients for the degree 2m−1 Chebyshev polynomial
interpolation (see “Appendix 1”) on the Hermite data:

⎧
⎪⎨

⎪⎩

∑2m−1
j=0 b jT j (zi ) = vi , i = 1, . . . ,m,

2
xmax−xmin

∑2m−1
j=1 b jT ′

j (zi ) = si , i = 1, . . . ,m,

(7)

where T j (z) are Chebyshev basis polynomials (see “Appendix 1”). After the coeffi-
cients are computed from solving the linear system (7), we can use the degree 2m − 1
Chebyshev polynomial (17) to approximate V (x).

3.2.2 Multidimensional Hermite approximation with complete Chebyshev
polynomials

We can generalize the idea of combining Chebyshev polynomials and Hermite data
to higher dimensions. We use a least squares approach to fit complete Chebyshev
polynomials to Hermite data.

For simplicity, we assume that the approximation domain is [−1, 1]d in a d-
dimensional approximation problem. It can be easily extended to any domain
[xmin, xmax] ⊂ R

d . Let us assume that we have Hermite data {(xi , vi , si ) : i =
1, . . . , N } on [−1, 1]d , where xi ∈ [−1, 1]d is the i-th approximation node, vi =
V (xi ), and si = (si,1, . . . , si,d) is the gradient of V at xi , i.e., si, j = ∂

∂x j
V (xi ). The
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following least squares model can produce coefficients for the degree n complete
Chebyshev polynomial approximation (see “Appendix 2”) on the Hermite data:

min
b

⎧
⎪⎨

⎪⎩

N∑

i=1

⎛

⎝vi −
∑

0≤|α|≤n

bαTα (xi )

⎞

⎠

2

+
N∑

i=1

d∑

j=1

⎛

⎝si, j −
∑

0≤|α|≤n

bα

∂

∂x j
Tα (xi )

⎞

⎠

2
⎫
⎪⎬

⎪⎭
.

(8)
It is easy to solve the least squares problem (8) to get the coefficientsbof theHermite

approximation as it has no constraints.6 When the approximation nodes are tensor
grids with m nodes in each dimension, there are N = md approximation nodes {xi },
so there are (d + 1)md information data {vi , si } used for computing the coefficients
of the degree n complete Chebyshev polynomial approximation. In this case, it is
generally better to use degree n = 2m − 1 complete Chebyshev polynomials for the
Hermite approximation, as the number of the unknown coefficients is

(2m−1+d
d

)
, which

is less than the number of the information data, (d +1)md , for any d ≥ 2 andm > 1.7

In our examples, when we apply H-VFI, we always use Hermite data on N = md

approximation nodes and degree n = 2m − 1 complete Chebyshev polynomials, and
then solve the least squares problem (8) to compute the coefficients of our Hermite
approximation.

4 Applications

This section applies the H-VFI algorithm to solve multi-stage portfolio optimiza-
tion problems using one-dimensional Hermite interpolation, and to solve multi-
dimensional optimal growth problems using Hermite approximation with complete
Chebyshev polynomials.

4.1 Multi-stage portfolio optimization

We next compare H-VFI and L-VFI by solving multi-stage portfolio optimization
problems.The dynamic portfolio optimization problemassumes that there are D stocks
and one bond available for investment over the stages t = 0, 1, . . . , T − 1. The
investor’s objective is to maximize the expected utility of wealth at the terminal stage
T . For each period, the bond has a risk-free return R f = er where r is the interest
rate, and the stocks have a multivariate random return vector R = (R1, . . . , RD) �.
This is a standard financial problem.

In each period t , the investor’s portfolio has market value wealthWt ; we assume no
transaction costs, implying that Wt can be used as the unique state variable. In period
t , the investor chooses a new portfolio St = (

St,1, . . . , St,D
)� where St,i is the market

value of the i-th stock. The amount of wealth invested in the bond is Bt = Wt − e�St

6 The objective in (8) is an unweighted sum of squared errors. Weighted versions of the least squares may
do better but we do not pursue that possibility in this paper.
7 This can be proved recursively.
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where e is the D-dimensional column vector of ones. Thus, the wealth at time t + 1
is

Wt+1 = R f Bt + R�St ,

for t = 0, 1, . . . , T − 1.
Wewant to find an optimal portfolioSt at each time t such that the expected terminal

utility is maximized:

V0(W0) = max
St ,0≤t<T

E{u(WT )},

where u(W ) = W 1−γ /(1 − γ ) for some constant γ > 0 and γ 
= 1. Moreover,
we assume that neither borrowing nor shorting is allowed (i.e., Bt ≥ 0 and St ≥ 0
for all t).

The DP model of this multi-stage portfolio optimization problem is

Vt (W ) = max
B,S≥0

E{Vt+1(R f B + R�S)}, (9)

s.t. W − B − e�S = 0,

for t = 0, 1, . . . , T−1, whereW is the state variable, B and S are the control variables,
and the terminal value function is VT (W ) = u(W ).8 Here we assume that the stocks’
one-period random return vectorR has the identically independent distribution across
all periods.

4.1.1 True solution

To determine the accuracy of the solutions from L-VFI and H-VFI, we use examples
where we can find their true solutions without implementing value function iteration.
Since the terminal utility function is u(W ) = W 1−γ /(1− γ ), we know that Vt (W ) =
αtW 1−γ with αT = 1/(1 − γ ), and

αt = E

{(
R f

(
1 − e�s∗

)
+ R�s∗

)1−γ
}

αt+1,

where s∗ is the vector of the optimal allocation fractions of wealth invested in the
stocks, for any t < T . This tells us that the optimal solutions are B∗

t = (
1 − e�s∗

)
Wt

and S∗
t = s∗Wt for all time t and any wealth Wt . Moreover, s∗ can be easily obtained

from computing the single-period portfolio optimization problem with the terminal
power utility function. We use this as the true solution when we do our accuracy tests
for L-VFI or H-VFI.

8 This is a special case of the model (1) with ut ≡ 0 for t < T and β = 1 (the value of β does not matter
if it is positive).
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4.1.2 Bounded variant of normal random variable

In the dynamic portfolio optimization problem, a typical assumption about the stocks
is that they have log-normal returns. This means that the next-stage value of any stock
could be any number in (0,∞), making it difficult to approximate the value function
well. Particularly, when the terminal utility function is the power utility with γ > 1, if
wealth goes to 0, then the value function tends to −∞. To overcome this unbounded
problem, we assume that the stocks have bounded returns having distributions close
to be log-normal in this example.

We use the following function to transform a standard normal random variable
ς ∼ N (0, 1) to a bounded random variable �:

� = 1 − e−κς

1 + e−κς
ϒ, (10)

where ϒ and κ are two positive parameters. We see that � has zero mean, and it is
symmetric around the mean and bounded in (−ϒ,+ϒ). Once we choose a number
for ϒ , we find a corresponding κ so that � has a unit variance.9 For example, if we
set ϒ = 4, then we will let κ = 0.532708. Thus, � is close to ς , particularly in the
interval (−2, 2) if we choose ϒ ≥ 4.

Therefore, in this example, we assume that the stocks have bounded returns R =
(R1, . . . , RD) � with

log(R j ) = μ j + 1 − e−κς j

1 + e−κς j
ϒσ j , (11)

where ς j is a standard normal random variable for j = 1, . . . , D. We assume that the
correlation matrix of (ς1, . . . , ςD) is �.

In the objective function of the Bellman equation (9), we need to compute the
expectation of Vt+1. When we assume that the returns of the stocks are bounded with
transformation from normal random variables, this expectation can be computed by
the product Gaussian-Hermite quadrature (see “Appendix 3”).

4.1.3 Nonlinear change of variable

When the relative risk aversion coefficient γ in the power utility function is bigger
than 1, the value function is steep when the wealth is nearly 0, and it becomes very
flat when the wealth is large. Thus, it will be hard to approximate the value function
well with a polynomial of the state variable W . Therefore, to approximate the value
function accurately, approximation nodes should be assigned in such a way that they
are denser when they are closer to the small lower bound, and they are sparser when
they are closer to the large upper bound.

9 We provide a MATLAB subroutine in https://sites.google.com/site/dphermite/boundednormal to com-
pute κ for any given ϒ > 0.
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To solve this problem, we set w = log(W ) instead of W as our state variable. We
approximate the value function on an interval

(
W ,W

)
with

V̂ (W ;b) =
n∑

j=0

b jT j

(
2 log(W ) − w − w

w − w

)

,

where w = log(W ) and w = log(W ), and T j are the Chebyshev basis polynomials.
Moreover, we choose the approximation nodes as

Wi = exp

(
(zi + 1)(w − w)

2
+ w

)

with zi = − cos ((2i − 1)π/(2m)) for i = 1, . . . ,m. From our experience, this
approach helps constructing accurate polynomial approximations of the value func-
tions.

Since our example does not allow shorting or borrowing, and the i-th stock return
is assumed to be bounded in

(
eμi−ϒσi , eμi+ϒσi

)
, we can obtain the approximation

intervals [Wt ,Wt ] recursively as

Wt+1 = min
j=1,...,D

{
eμ j−ϒσ j

}
Wt ,

Wt+1 = max
j=1,...,D

{
eμ j+ϒσ j

}
Wt ,

with a given initial wealth bound [W 0, W 0].

4.1.4 Numerical examples

In our numerical examples, we choose a portfolio with one risk-less bond and
D = 4 stocks having the bounded return R = (R1, ..., R4)

� specified in (11).
We use the distributions of the risky returns from Infanger (2006): the mean of
log(R) isμ = (0.0956, 0.0897, 0.0878, 0.0778)�, the standard deviation of log(R) is
σ = (0.1572, 0.1675, 0.0657, 0.0489)�, and the correlation matrix of corresponding
(ς1, ..., ς4) in the formula (11) is

� =

⎡

⎢
⎢
⎣

1 0.601 0.247 0.062
0.601 1 0.125 0.027
0.247 0.125 1 0.883
0.062 0.027 0.883 1

⎤

⎥
⎥
⎦ .

The interest rate of the risk-less bond is r = 0.05. We let the initial wealth bound
be [W 0, W 0] = [0.9, 1.1], and choose ϒ = 4 and κ = 0.532708 in the for-
mula (11), and let T = 6. Thus, the terminal wealth bound becomes [W 6, W 6]
= [0.044, 66.11].
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Table 1 Errors and running times of L-VFI or H-VFI for dynamic portfolio optimization

γ m L-VFI error H-VFI error L-VFI time H-VFI time
(seconds) (seconds)

0.5 5 7.2 (−3) 1.3 (−7) 11 23

10 3.8 (−7) 1.2 (−6) 35 64

20 1.0 (−9) 152

2 5 5.4 (−2) 9.1 (−5) 15 23

10 9.2 (−5) 6.6 (−6) 43 83

20 8.5 (−7) 158

5 10 8.9 (−1) 6.7 (−3) 40 85

20 6.5 (−3) 1.5 (−6) 159 299

40 1.3 (−6) 587

The column “L-VFI error” lists the L∞ absolute errors of optimal stock allocations of all stocks at the
initial stage from L-VFI, and the column “L-VFI time” lists the running times of L-VFI. Similarly, “H-VFI
error” and “H-VFI time” list the errors and times of H-VFI. a(k) means a × 10k

The computational results of L-VFI or H-VFI are given by GAMS code, and the
optimization solver in the maximization step of L-VFI or H-VFI is CONOPT (Drud
1996). We use the Chebyshev polynomial interpolation as the approximation method,
anduse the productGaussian-Hermite quadrature formulawith sevenquadrature nodes
in each dimension to compute the expectation in the objective function of the Bellman
eq. (9).

Table 1 lists absolute errors of the initial optimal stock allocations and running
times10 of L-VFI or H-VFI for three relative risk aversion coefficients γ = 0.5, 2, 5,
and various numbers of approximation nodes m.11 From Table 1, we see that a higher
γ will need a higher m to obtain small errors. When γ is too high (e.g., γ = 10),
Chebyshev polynomials cannot approximate the value functionswellwith a reasonable
m.

With the same m Chebyshev nodes, L-VFI uses the degree m − 1 Chebyshev poly-
nomial interpolation on the Lagrange data and its coefficients are computed by the
regression algorithm (see “Appendix 1”); H-VFI uses the degree 2m − 1 Chebyshev
polynomial interpolation on the Hermite data and its coefficients are computed by
solving the linear system (7). From Table 1, we see that H-VFI obtains higher accu-
racy than L-VFI using the same approximation nodes (except the case with γ = 0.5
and m = 10, which has already had six digits accuracy). Moreover, if L-VFI wants
to achieve the same accuracy of H-VFI using m approximation nodes, it should
use about 2m approximation nodes, and will then take nearly double computation
time.

10 All the examples are run on a 2.5GHz Intel core.
11 We omit some cases of m = 20 or 40 for H-VFI to make it clearer in comparison between L-VFI and
H-VFI. Moreover, for economics problems, usually the accuracy O(10−6) is enough.
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4.2 Multi-country optimal growth problems

The use of slope information is more important for multidimensional DP problems,
where computing the optimal policy will be time-consuming for each approximation
node. For a d-dimensionalDPproblem,H-VFI uses not only V (xi ) atm approximation
nodes xi but also d×m slopes which come almost freely at cost, while L-VFI can only
use m values of V (xi ). Thus, H-VFI will reduce the computation time significantly,
if one wants to achieve the same accuracy of L-VFI. We show this by solving multi-
country optimal growth problems (DenHaan et al. 2011; Juillard andVillemot 2011).12

Here we adapt the model to be a finite-horizon problem. This allows us to find its true
solution by solving it directly as a large-scale optimal control problem. We then use
the true solution for accuracy tests to L-VFI and H-VFI.

We assume that there are d countries, and let kt = (kt,1, . . . , kt,d) denote the vector
of capital stocks of these countries at time t . Let �t = (

�t,1, . . . , �t,d
)
denote the vector

of elastic labor supply levels of the countries. Let the net production of country j at
time t be

f (kt, j , �t, j ) = Akψ
t, j�

1−ψ
t, j ,

with A = (1−β)/(ψβ), for j = 1, . . . , d. Let ct = (
ct,1, . . . , ct,d

)
denote the vector

of consumptions of the countries. The utility function is

u(c, �) =
d∑

j=1

[(
c j/A

)1−γ − 1

1 − γ
− (1 − ψ)

�
1+η
j − 1

1 + η

]

.

We want to find the optimal consumption and labor supply decisions such that the
expected total utility over a finite-horizon time is maximized. That is,

V0(k0) = max
It ,ct ,�t

T−1∑

t=0

β t u(ct , �t ) + βT VT (kT ),

s.t. kt+1, j = (1 − δ)kt, j + It, j , j = 1, . . . , d,

�t, j = ζ

2
kt, j

(
It, j
kt, j

− δ

)2

, j = 1, . . . , d,

d∑

j=1

(
ct, j + It, j − δkt, j

) =
d∑

j=1

(
f (kt, j , �t, j ) − �t, j

)
, (12)

where δ is the depreciation rate of capital, It = (It,1, ..., It,d) is the vector of invest-
ments of the countries, �t, j is the investment adjustment cost of country j , and ζ

governs the intensity of the friction.

12 Many papers tried to get an approximate solution to such a real-business cycle model using various
methods including value function iteration (e.g., Trick and Zin 1997; Aldrich et al. 2011; Judd et al. 2011;
Malin et al. 2011).
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The DP formulation of the multi-country model (12) in H-VFI is

Vt (k) = max
I,c,�,y

u(c, �) + βVt+1(k+),

s.t. k+
j = (1 − δ)y j + I j , j = 1, . . . , d,

� j = ζ

2
y j

(
I j
y j

− δ

)2

, j = 1, . . . , d,

d∑

j=1

(
c j + I j − δy j

) =
d∑

j=1

(
f (y j , � j ) − � j

)
,

k j − y j = 0, j = 1, . . . , d, (13)

for t < T . The dummy variable y j and the trivial constraint k j − y j = 0 are used in
order to get the gradient of the value function directly from the optimization solver as
described in H-VFI, for j = 1, . . . , d.

In the examples of this subsection, we let T = 5, ψ = 0.36, δ = 0.025, ζ =
0.5, and let the domain of the capital stocks be [0.5, 1.5]d . The parameter values
come from Juillard and Villemot (2011). The terminal value function is VT (k) =
u( f (k, e), e)/(1 − β) where e is the d-dimensional vector of ones. We get the true
solution of thismulti-countrymodel by solving (12) directly using theCONOPT solver
in the GAMS environment.

We first solve a three-country RBC problem (i.e., d = 3) with various parameters.
Figure 1 displays relative errors of the optimal consumption and labor supply, and
running times 13 of L-VFI or H-VFI, for various β = 0.9, 0.95, 0.99, γ = 0.5, 2, 5,
and η = 0.2, 1, 5.14 We use tensor grid ofm = 5, 7, 10 expanded Chebyshev nodes in
each dimension (the overall number of nodes ismd ). For the Lagrange approximation
using md nodes, we use degree m − 1 complete Chebyshev polynomials and apply
the regression algorithm (see “Appendix 1”) to compute its coefficients. And for the
Hermite approximation using md nodes, we use degree 2m − 1 complete Chebyshev
polynomials and apply the least square method (8) to compute its coefficients. We
implement L-VFI and H-VFI with GAMS code and use CONOPT as the optimization
solver. In the figure, the stars, the marks, and the pluses represent the log10 of relative
errors and the log10 of running times of L-VFI with m = 5, 7, 10, respectively, while
the circles and the squares represent those of H-VFI with m = 5 and 7,15 for various
β, γ , and η.

Figure 1 shows that, for any combination of (β, γ, η), the solutions ofH-VFI (circles
in the figure) have more than two digits higher accuracy than the solutions of L-VFI
(stars in the figure), using the same 53 = 125 approximation nodes. Moreover, the
running times of H-VFI (circles in the figure) are only around 120s, just a bit more

13 All the examples in this paper are run on a 2.5GHz Intel core of a laptop.
14 The ranges of β, γ , and η have already covered the most of values in the economics literature for the
optimal growth problems.
15 We omit the cases of H-VFI with m = 10 because H-VFI with m = 7 has produced solutions with the
accuracy at O(10−6).
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Fig. 1 L-VFI vs H-VFI for three-country optimal growth problems

than L-VFI (around 100s). Figure 1 also shows that H-VFI with 125 approximation
nodes (circles in the figure) is not only nearly three times faster but also about one digit
more accurate than L-VFI with 73 = 343 approximation nodes (marks in the figure).

123



260 Y. Cai, K. L. Judd

Figure 1 also tells us that if L-VFI wants to have the same accuracy as H-VFI with 125
approximation nodes (circles in the figure), it uses 1000 approximation nodes (pluses
in the figure) and takes about seven times the computation time of H-VFI, for the
three-country optimal growth problems. Moreover, H-VFI withm = 7 (squares in the
figure) can achieve the higher accuracy up to O(10−6) using less computation time
than L-VFI with m = 10 (pluses in the figure). The results are more clearly shown
in Table 2, which lists the relative errors of the optimal consumption and the running
times of several selected cases.

From Fig. 1 and Table 2, we see that the higher efficiency of H-VFI relative to
L-VFI is almost the same for all parameter choices. Next, we solve the multi-country
RBC problem with β = 0.99, γ = 5, and η = 5, and we use different numbers of
countries to check the relationship of the efficiency of H-VFI and the dimension of
continuous states. Table 3 lists relative errors of the optimal consumption and labor
supply, and running times of L-VFI or H-VFI for d = 3, 4, and 5 countries, using

Table 2 Errors and running times of L-VFI or H-VFI for three-country growth problems

β γ η m L-VFI error H-VFI error L-VFI time H-VFI time
(seconds) (seconds)

0.9 0.5 0.2 5 3.8 (−3) 9.6 (−6) 99 124

7 2.9 (−4) 4.3 (−7) 344 468

10 5.4 (−6) 865

0.95 2 1 5 5.4 (−3) 1.4 (−5) 95 124

7 4.0 (−4) 9.0 (−7) 353 493

10 7.8 (−6) 881

0.99 5 5 5 1.0 (−1) 2.3 (−4) 101 132

7 1.2 (−2) 2.6 (−6) 346 505

10 2.6 (−4) 896

a(k) means a × 10k

Table 3 Errors and running times of L-VFI or H-VFI for multi-country growth problems

d m Error of c∗0 Error of l∗0 Time (minutes)

L-VFI H-VFI L-VFI H-VFI L-VFI H-VFI

3 4 1.1 (−1) 2.5 (−3) 1.1(−1) 2.4 (−3) 1.1 2.2

7 1.2 (−2) 2.6 (−6) 1.1 (−2) 2.4 (−6) 5.8 8.4

8 3.7 (−3) 3.4 (−3) 9.1

4 4 9.2 (−2) 2.3 (−3) 9.4 (−2) 2.2 (−3) 3.4 4.3

7 2.3 (−3) 7.0 (−7) 2.2 (−3) 1.8 (−6) 36.8 188.6

5 4 1.0 (−1) 2.4 (−3) 1.0 (−1) 2.2 (−3) 14.0 31.5

5 4.7 (−2) 2.2 (−4) 4.2 (−2) 2.1 (−4) 45.8 241.1

7 2.2 (−3) 2.0 (−3) 349.1

a(k) means a × 10k
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tensor grid of m expanded Chebyshev nodes in each dimension. We see that when
m = 7, H-VFI achieves the accuracy up to O(10−6) for d = 3 or 4,16 while L-VFI
can have only O(10−2) or O(10−3). Moreover, from the table, to achieve the same
accuracy of H-VFI with m = 4, L-VFI needs 4.1 times the computation time of H-
VFI for the three-country example, 8.6 times for the four-country example, and 11.1
times for the five-country example. Therefore, we conclude that the speed advantage
of H-VFI over L-VFI increases with the dimension of continuous states.

4.3 Six-country optimal stochastic growth problems

In this subsection, we show the advantage ofH-VFIwith six-country stochastic growth
problems (12). The setting is similar to the previous examples, but we assume that the
net productions of all countries are dependent on a common random economic shock
θt , which is a Markov chain. That is, the net production of country j at time t is

f (kt, j , �t, j , θt ) = θt Ak
ψ
t, j�

1−ψ
t, j ,

for j = 1, ..., d with d = 6. The possible values of θt are ϑ1 = 0.98 and ϑ2 = 1.02,
and the probability transition matrix from θt to θt+1 = g(θt , εt ) is

[
0.6 0.4
0.4 0.6

]

,

for t = 0, . . . , T − 1. Therefore, we have the stochastic version of the multi-country
model (12):

V0(k0, θ0) = max
It ,ct ,�t

E

{
T−1∑

t=0

β t u(ct , �t ) + βT VT (kT , θT )

}

,

s.t. kt+1, j = (1 − δ)kt, j + It, j , j = 1, . . . , d,

�t, j = ζ

2
kt, j

(
It, j
kt, j

− δ

)2

, j = 1, . . . , d,

d∑

j=1

(
ct, j + It, j − δkt, j

) =
d∑

j=1

(
f (kt, j , �t, j , θt ) − �t, j

)
,

θt+1 = g(θt , εt ). (14)

In the following examples, the number of the decision stages is T = 5, and the
domain of the capitals is [0.5, 1.5]6. We apply the tree method (see “Appendix 4”) to
compute the “true” solutions at test points of k0 and each possible value of θ0. We
implement L-VFI and H-VFI with GAMS code and use CONOPT as the optimization

16 We omit the case of H-VFI with d = 5 and m = 7, because it will be too time-consuming to run
the GAMS code using a laptop. But for the five-country problem, H-VFI with m = 5 achieves O(10−4)

accuracy, which is one-digit more accurate and also faster than L-VFI with m = 7.

123



262 Y. Cai, K. L. Judd

Table 4 H-VFI versus L-VFI for six-dimensional stochastic problems

m Error of c∗0 Error of l∗0 Running times (hour)

L-VFI H-VFI L-VFI H-VFI L-VFI H-VFI

Case 1: (β, γ, η) = (0.95, 2, 1)

3 4.3 (−2) 2.0 (−3) 6.0 (−2) 3.0 (−3) 0.3 0.66

4 1.2 (−2) 1.1 (−4) 1.7 (−2) 1.6 (−4) 2.0 14.3

5 3.2 (−3) 4.7 (−3) 8.7

6 9.3 (−4) 1.4 (−3) 36.6

Case 2: (β, γ, η) = (0.99, 5, 5)

3 2.9 (−1) 1.1 (−2) 2.1 (−1) 1.0 (−2) 0.3 0.8

4 6.6 (−2) 1.5 (−3) 6.6 (−2) 1.4 (−3) 2.1 17.9

5 1.7 (−2) 1.5 (−2) 10.5

6 3.8 (−3) 3.5 (−3) 47.9

a(k) means a × 10k

solver. Since it is time-consuming to run such examples with the GAMS code using a
laptop,17 here we just give two cases of (β, γ, η) = (0.95, 2, 1) and (0.99, 5, 5), and
run H-VFI with m = 3 or 4 only.

Table 4 lists running times and relative errors of the optimal consumption and labor
supply of L-VFI and H-VFI using tensor grid ofm expanded Chebyshev nodes in each
dimension. On the tensor grid ofm nodes in each dimension, L-VFI uses degreem−1
completeChebyshev polynomials, andH-VFI uses degree 2m−1 completeChebyshev
polynomials and the least squares model (8) is applied to obtain its coefficients.

From Table 4, we see that for the first case (β, γ, η) = (0.95, 2, 1), H-VFI using
md = 36 approximation nodes takes only 0.66h to achieve a higher accuracy than
L-VFI using 56 (i.e., m = 5) approximation nodes which takes 8.7h, about 13 times
the computation time of H-VFI. Moreover, if L-VFI wants to use 66 (i.e., m = 6)
approximation nodes to achieve a bit higher accuracy than H-VFI with m = 3, its
running time is up to 36.6h, about 55 times the computation time of H-VFI. But H-
VFI with m = 4 is about 2.5 times faster and also nearly one-digit more accurate than
L-VFI with m = 6. The second case (β, γ, η) = (0.99, 5, 5) has the similar results.
It shows again that the efficiency of H-VFI relative to L-VFI is almost independent of
the values of (β, γ, η), which has already been shown in Fig. 1 and Table 2.

5 Conclusion

We have shown that gradients of value functions can be obtained easily and almost
freely during value function iteration, and using them in Hermite approximation meth-
ods will produce significant improvement in the efficiency of numerical dynamic

17 All the running times can be dramatically reduced if we use Fortran code and the NPSOL solver (Gill
et al. 1994), but the relative difference between H-VFI and L-VFI is still almost the same.
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programming. These conclusions are supported by examples from dynamic portfo-
lio optimization problems and multi-dimensional optimal growth problems. We have
shown that this improvement of H-VFI over L-VFI can be used to either increase
the accuracy within a given amount of computation time, or attain the same accuracy
with much less computation time. These examples also indicate that H-VFI will be
particularly valuable in solving multi-dimensional dynamic programming problems.

Appendix 1: One-dimensional Chebyshev polynomial approximation

One-dimensional Chebyshev basis polynomials on [−1, 1] are defined as T j (x) =
cos( j cos−1(x)),while general Chebyshev polynomials on [xmin, xmax] are defined as
T j (Z(x)) where

Z(x) = (2x − xmin − xmax)/(xmax − xmin)

for j = 0, 1, 2, . . .. These polynomials are orthogonal under the weighted inner
product: 〈 f, g〉 = ∫ xmax

xmin
f (x)g(x)w(x)dx with the weighting function w(x) =

(
1 − (Z(x))2

)−1/2
. The degree n Chebyshev polynomial approximation for V (x) on

[xmin, xmax] is
V̂ (x;b) =

n∑

j=0

b jT j (Z(x)) , (15)

where b = {
b j
}
are the Chebyshev coefficients.

If we choose the Chebyshev nodes on [xmin, xmax]: xi = (zi +1)(xmax − xmin)/2+
xmin with zi = − cos ((2i − 1)π/(2m)) for i = 1, . . . ,m, and Lagrange data
{(xi , vi ) : i = 1, . . . ,m} are given (where vi = V (xi )), then the coefficients

{
b j
}
in

(15) can be easily computed by the following formula:

b0 = 1

m

m∑

i=1

vi ,

b j = 2

m

m∑

i=1

viT j (zi ) j = 1, . . . , n. (16)

The method is called the Chebyshev regression algorithm in Judd (1998).
When the number of the Chebyshev nodes is equal to the number of the Chebyshev

coefficients (i.e.,m = n+1), the approximation (15)with the coefficients given by (16)
becomes the Chebyshev polynomial interpolation (which is a Lagrange interpolation),
as V̂ (xi ;b) = vi , for i = 1, . . . ,m.

It is often more stable to use the expanded Chebyshev polynomial interpolation
(Cai et al. 2010), as the above standard Chebyshev polynomial interpolation gives poor
approximation in the neighborhood of the end points of the approximation interval.
That is, we use the following formula to approximate V (x):
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V̂ (x;b) =
n∑

j=0

b jT j

(
2x − x̃min − x̃max

x̃max − x̃min

)

, (17)

where x̃min = xmin − δ and x̃max = xmax + δ with δ = (z1 + 1)(xmin − xmax)/(2z1).
Moreover, if we choose the expanded Chebyshev nodes on [xmin, xmax]: xi = (zi +1)
(x̃max − x̃min)/2+ x̃min, then the coefficients

{
b j
}
can also be calculated easily by the

expanded Chebyshev regression algorithm (Cai et al. 2010), which is similar to (16).

Appendix 2: Multidimensional complete Chebyshev polynomial approximation

In a d-dimensional approximation problem, let the approximation domain of the value
function be

{
x = (x1, . . . , xd) : xmin, j ≤ x j ≤ xmax, j , j = 1, . . . d

}
,

for some real numbers xmin, j and xmax, j with xmax, j > xmin, j for j = 1, . . . , d.
Let xmin = (xmin,1, . . . , xmin,d) and xmax = (xmax,1, . . . , xmax,d). Then we denote
[xmin, xmax] as the approximation domain. Let α = (α1, . . . , αd) be a vector of non-
negative integers. LetTα(z)denote the product

∏
1≤ j≤d Tα j (z j ) for z = (z1, . . . , zd) ∈

[−1, 1]d . Let

Z(x) =
(
2x1 − xmin,1 − xmax,1

xmax,1 − xmin,1
, . . . ,

2xd − xmin,d − xmax,d

xmax,d − xmin,d

)

for any x = (x1, . . . , xd) ∈ [xmin, xmax].
Using these notations, the degree n complete Chebyshev approximation for V (x)

is
V̂n(x;b) =

∑

0≤|α|≤n

bαTα (Z(x)) , (18)

where |α| = ∑d
j=1 α j . The number of terms with 0 ≤ |α| = ∑d

j=1 αi ≤ n is
(n+d

d

)

for the degree n complete Chebyshev approximation in Rd .

Appendix 3: Multivariate numerical integration

From the formula (11), we know that Vt+1(R f B +R�S) in the objective function of
(9) can be rewritten asG(ς) for some functionG where ς is the D-dimensional vector
of the corresponding standard normal random variables with a correlation matrix �.
Since � must be a positive semi-definite matrix from the covariance property, we can
have its Cholesky factorization, � = LL�, where L is a D × D lower triangular
matrix. Therefore,

123



Dynamic programming with Hermite approximation 265

E

{
Vt+1(R f B + R�S)

}
= E{G(ς)}

=
(
(2π)Ddet(�)

)−1/2
∫

RD
G(q)e−q��−1q/2dq

=
(
(2π)Ddet(L)2

)−1/2
∫

RD
G
(√

2Lq
)
e−q�q · 2D/2det(L)dq

.= π− D
2

K∑

i1=1

· · ·
K∑

iD=1

wi1 · · ·wiDG

⎛

⎝

⎛

⎝
D∑

j=1

LD, j qi j

⎞

⎠
√
2L1,1qi1 ,

√
2(L2,1qi1 + L2,2qi2), · · · ,

√
2

⎛

⎝
D∑

j=1

LD, j qi j

⎞

⎠

⎞

⎠ ,

where {wi : 1 ≤ i ≤ K } and {qi : 1 ≤ i ≤ K } are the Gauss-Hermite quadrature
weights and nodes over (−∞,∞), Li, j is the (i, j)-element of L , and det(·) means
the matrix determinant operator.

Appendix 4: Tree method

Assume that θt is aMarkov chain with possible states, ϑ1, . . . , ϑM , and the probability
of going from state ϑi to state ϑ j in one step is

P(θt+1 = ϑ j | θt = ϑi ) = pi, j .

Thus, from time 0 to time t , there are Mt paths of θt for a given initial state, for
0 ≤ t ≤ T . These paths comprise a tree structure. We can then compute the exact
solutions of the dynamic stochastic problems with the tree structure by applying an
optimization solver to solve a large-scale optimal control problem directly, called the
tree method here.

In the tree method for the stochastic optimal growth problem (14), the goal is to
find the optimal decisions

{(
It,i , ct,i , �t,i

) : 1 ≤ i ≤ Mt , 0 ≤ t < T
}
to maximize

the expected total utility:

max
I,c,�

T−1∑

t=0

β t
Mt
∑

i=1

(Pt,i u(ct,i , �t,i )) +

βT
MT−1
∑

i=1

PT−1,i

M∑

j=1

pmod(i−1,M)+1, j VT (kT,i , ϑ j ), (19)

subject to the corresponding constraints of (14) for all paths, where mod(i − 1, M) is
the remainder of division of (i − 1) by M , Pt,i is the probability of the i-th path from
time 0 to time t with the following recursive formula:

Pt+1,(i−1)M+ j = Pt,i · pmod(i−1,M)+1, j ,
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for j = 1, . . . , M , i = 1, . . . , Mt , t = 1, . . . , T − 2, where P0,1 = 1 and P1, j =
P(θ1 = ϑ j | θ0) for a given θ0.

This approach is practical for only small values of M and T . In our examples, we
set M = 2 and T = 5, implying that there are only 32 possible paths, and nonlinear
optimization solverswill produce resultswith asmuch precision as possible in a double
precision environment. We will treat those solutions as the “true” solution which can
be used for the error analysis of numerical DP algorithms.
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