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Summary. General equilibrium analysis is difficult when asset markets are in-
complete. We make the simplifying assumption that uncertainty is small and use
bifurcation methods to compute Taylor series approximations for asset demand
and asset market equilibrium. A computer must be used to derive these approxi-
mations since they involve large amounts of algebraic manipulation. We use this
method to analyze the allocative and welfare effects of introducing a new secu-
rity. We find that adding any nontrivial derivative security will raise the price of
the risky security relative to the bond when risks are small.
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1 Introduction

Precise analysis of equilibrium in asset markets is difficult since few cases can
be solved exactly for equilibrium prices and volume. Many analyses assume that
markets are complete, implying that equilibrium is efficient and equivalent to
some social planner’s problem. That approach is limited since it ignores trans-
action costs, taxes, and incompleteness in asset markets. This paper develops
bifurcation methods to approximate asset market equilibrium without assuming
complete asset markets. We begin from a trivial deterministic case where all as-
sets have the same safe return and use local approximation methods to compute
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asset market equilibrium when assets have small risk. We compute Taylor series
expressing equilibrium asset prices and holdings as a function of preference pa-
rameters such as absolute risk aversion, and asset return statistics such as mean,
variance, and skewness. The formulas completely characterize equilibrium for
small risks.

Implementing this approach is straightforward, but involves an enormous
amount of algebraic manipulation far beyond the capacity of human hands. For-
tunately, desktop computers using symbolic software can execute the necessary
algebraic manipulation and compute the series expansions in reasonable time.
We use Mathematica, but the computation could be executed by other symbolic
languages such as Macsyma and Maple. The asymptotic expansions tell us about
the qualitative properties of equilibrium and can be used to compute a numerical
approximation to equilibrium of particular problems with a specified nonzero risk.
Therefore, the bifurcation approach is computational in two ways: the formulas
are qualitative asymptotic approximations derived by computer algebra, and can
be used to produce numerical approximations to specific problems. This paper fo-
cuses on the qualitative asymptotic results and leaves the numerical applications
for future study.

The result is essentially a mean-variance-skewness-etc. theory of asset de-
mand and equilibrium pricing, similar to Samuelson’s [22] analysis of asset
demand. This approach is also more intuitive than the standard contingent state
approach to equilibrium. The incomplete markets paradigm focuses on the dif-
ference between the number of contingent states and the number of assets. For
example, welfare results in Hart [11], Cass and Citanna [3], and Elul [7] de-
pend on how many assets are missing and the number of agents. It is difficult
to interpret such indices of incompleteness since we can count neither the num-
ber of contingent states nor the number of different kinds of agents in a real
economy. Furthermore, one expects that the impact of asset incompleteness on
economic performance is related more to the statistical character of riskiness and
the diversity of investor objectives than to the number of states and the num-
ber of agents. For example, the number of different agents is a poor measure
of agent diversity since an economy with 100 types of investors with different
risk aversions close to the mean risk aversion is less diverse than an economy
with 10 types of investors with substantially different risk aversions. Similarly,
the number of contingent states is at best a poor indicator of the magnitude
and character of riskiness. This paper’s analysis produces asymptotic formulas
depending solely on the moments of asset returns and the differences in utility
indices, showing that they, not the number of states, govern the asymptotic prop-
erties of equilibrium. Since moments are more easily observed in real markets
than the number of contingent states the result is a more practical and intuitive
approach to equilibrium analysis of asset markets.

Our approach is intuitive and similar in spirit to standard linearization and
comparative static methods from mathematical economics. If fact, the analysis re-
sembles Jones [12] classic analysis of international trade. Linearization methods
based on the Implicit Function Theorem (IFT) are important computational tools
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that allow us to approximate nonlinear relationships with tractable, asymptoti-
cally valid approximations. We begin with the no-risk case where we know the
equilibrium. We then use that information to compute equilibria for nearby cases
of risky economies. However, the IFT does not apply here because the critical
Jacobian is singular. In particular, when risk disappears all assets must become
perfect substitutes and the portfolios of individuals are indeterminate when risk
is zero. We cannot use the IFT if we do not know the equilibrium portfolio in the
case of zero risk. Instead, we must apply tools from bifurcation theory to solve
our problem. These tools are natural since they are essentially generalizations of
L’Hospital’s rule. Furthermore, because of the singularity at zero risk, we will
need to compute higher-order approximations, not just the familiar first-order
terms from linear approximation methods.

The purpose of this paper is to present the key mathematical ideas and illus-
trate them with basic economic applications. We first apply bifurcation methods
to derive approximations of asset demand, refining the similar Samuelson [22]
method. We then use these approximations of asset demand to compute approx-
imations of asset market equilibrium. We compute asymptotically valid expres-
sions for equilibrium with different asset combinations, and use them to show
how changes in asset availability affects equilibrium.

The bifurcation approach is particularly interesting since it handles the com-
plete and incomplete asset market cases in the same way. This contrasts sharply
with the conventional approach where the incomplete asset market case is far
more complex than the complete market case (see Magill and Quinzii [21] for a
more complete discussion). We can do this because we focus on small risks. Since
our analysis makes no assumptions about the span of assets, it is also a method
for computing equilibrium in some economies with incomplete asset markets.
This is generally a difficult problem because the excess demand function is not
continuous. Brown et al. [2] and Schmedders [23] have formulated algorithms
for computing equilibria when asset markets are incomplete. Their methods aim
to compute equilibrium for any such model. Our method is only valid locally but
is much faster since it relies on relatively simple and direct formulas.

The applications presented in this paper are just a small sampling of the
possibilities. Guu and Judd [15] applies the results of this paper to compute
the optimal derivative asset. Leisen and Judd [19] uses similar methods to price
options and determine equilibrium trade in options when they are not priced
by arbitrage. We stay with the single good model in this paper so that we can
focus on the key mathematical problems. The methods do generalize to the
multicommodity models examined in Hart and others, but space limitations force
us to leave that for future studies.

Section 2 reviews local approximation theory and previous small noise analy-
ses. Section 3 presents the bifurcation to theorems that generalize the IFT. Section
4 applies the bifurcation theorems to asset demand. Section 5 presents a small
noise analysis of an asset market with one risky asset and Section 6 examines
a market with one fundamental risky asset plus a derivative asset. Comparisons
of these cases allows us to analyze the effects of introducing a derivative asset.
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Section 7 discusses some computational considerations. Section 8 outlines the
approach to more general models. Section 9 concludes.
2 Local approximation methods at nonsingular points

Local approximation methods are based on a few basic theorems. They begin
with Taylor’s theorem and the IFT for R”. We first state the basic theorems in
this section, and then present the bifurcation theorems in the next section.

2.1 Taylor series approximation

The most basic local approximation is presented in Taylor’s Theorem.

Theorem 1 (Taylor’s Theorem for R") Let X C R"and p be an interior point of
X. Suppose f : X — R is C*¥*! in an open neighborhood .V~ of p. Then, for all
xeN
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The Taylor series approximation of f(x) based at p uses derivative informa-
tion at p to construct a polynomial approximation. The theory only guarantees
that this approximation is good near p. While the accuracy of the approximation
decays as x moves away from p, this decay is often slow, implying that a finite
Taylor series can be a good approximation for x in a large neighborhood of p.

2.2 The meaning of “approximation”

We often use the phrase “f (x) approximates g(x) for x near p”, but the meaning of
this phrase is seldom made clear. One trivial sense of the term is that f (p) = g(p).
While this is certainly a necessary condition, it is generally too weak to be a
useful concept. Approximation usually means at least that f/(p) = g'(p) as well.
In this case, we say that “f is a first-order (or linear) approximation to g at
x =p”. In general, “f is an n’th order approximation of g at x = p” if and only
if
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This definition says that the error ||f(x) — g(x)|| of the approximation f(x) is
asymptotically bounded above by ¢ ||x — p||" for any constant ¢ > 0. Therefore,
for any x near p, the approximating function f(x) is very close to g(x). In partic-
ular, the degree k Taylor series of a C¥*! function is a k’th order approximation
since its error is 7 (||x — pH)k“. This may seem trivial but this is not always
the definition of n’th order approximation used in economics. We state it here
for the purpose of precision.

2.3 The implicit function theorem for analytic functions

Our analysis will rely on the IFT for analytic functions. It is useful to review
some basic facts about analytic functions that will help us understand our results.
The following definition for analytic functions is the most helpful of the many
equivalent definitions.

Definition 1 A function f(x) : R — R is analytic at x, if and only if there is some
nonempty open set £2 C R such that xo € 2 and for all x € 2, f(x) =Y 5, aix’

and Y52 a; [x|' < oo forall x € Q.

Basically, analytic functions are C* and locally equal to the power series
created by Taylor series expansions. The key word here is “local”. For example,
the power series expansion of log x around xp = 1 cannot be globally valid since
logx is not defined at x = 0. To make this precise, we need the concept of
radius of convergence. The next theorem states the key result that the domain of
convergence for a power series is a disk.

Theorem 2 Let C = {x| Y 5 aix'} < oc. Then the closure of C, C, is a disk,
and the radius of C is called the radius of convergence of Yo aix'.

The focus on analytic functions is essential since some C>° functions are
not analytic. The best example of this is e ~!/*". The function e~!/*" is defined
everywhere, even at x = 0. Furthermore, it is C* everywhere, even at x = 0
where each derivative equals zero. This implies that the Taylor series expansion
based at xo = 0 is the zero function. However, e !/ "j equals zero just at x = 0,
not in any neighborhood of x = 0. Therefore, e ~!/*" does not equal its Taylor
series expansion in any open neighborhood of x = 0 and is not analytic at x = 0.
In general, a C*° function is analytic at xy if and only if it equals its power series
in some nondegenerate neighborhood of xg.

We have discussed just the univariate case. Analytic functions on R" are
similarly defined; see, for example, Zeidler {26]. The next important tool is the
Implicit Function Theorem (IFT) for analytic functions.

Theorem 3 (Implicit Function Theorem) Let H(x,y) : R" x R" — R" be ana-
Iytic at (xo, yo) and assume H (xg, yo) = 0. If Hy(xo, yo) is nonsingular, then there is
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a unique function h : R" — R™ such that h(x) is analytic at xo and H (x, h(x)) =0
for (x,y) in an open neighborhood of (xy, yo). Furthermore, the derivatives of h
at xo can be computed by implicit differentiation of the identity H (x, h(x)) = 0.

The IFT states that 4 can be uniquely defined for x near xo by H (x, h(x)) =0
if Hy(xo,yo) is not singular and allows us to implicitly compute the derivatives
of h. For example, the gradient of 4 at xy is

oh
3 00) = —Hy(x0,50) ™' H(x0, yo)
X

and provides us with the first-order terms of the power series representation for
h(x) based at xo. When we combine Taylor’s theorem and the IFT, we have a
way to compute a locally valid polynomial' approximation of a function A(x) for
x near xp implicitly defined by H (x, h(x)) = 0. There is an IFT for C *° functions,
but it does not give us a positive radius of convergence for the implied power
series. Therefore, we must proceed with an analytic function perspective.

The focus on analytic functions is not restrictive since most functions
economists use are locally analytic at points of economic relevance. For ex-
ample, logc is a common utility function and is analytic at each positive value
of c. Similarly for Cobb-Douglas production functions k*¢'~®. However, these
functions are only locally analytic, implying that different power series represen-
tations are valid over different finite intervals. For example, suppose we construct
a power series for u(c) = logc based at co = 1. Since log ¢ is undefined at ¢ =0,
the radius of convergence for that power series is at most 1, which in turn implies
that that power series is not valid for any ¢ > 2. However, the power series based
at ¢o = 2 is valid for ¢ € (0,4). When we use the IFT for analytic functions, we
need to be aware of the radii of convergence of the power series we implicitly
use and be sure that they are consistent with our application of the IFT.

The power series constructed in the IFT for analytic functions will have a
positive radius of convergence, but we know anything about its magnitude in
general. This is a drawback in some contexts. This issue is not important in this
paper since we examine only the asymptotic properties of models. We will return
later to the issue of the range of validity for our formulas.

2.4 Previous small noise analyses

The small noise approach is not new to the economics literature, but the approach
we take differs in substance and formalism from previous efforts. One line of
previous work is taken by Fleming [8], which was elaborated on by Judd and
Guu [14]. Fleming showed how to go from the solution of a deterministic control
problem to one with small noise added to the law of motion. Specifically, consider
the problem

mive information could also be used to compute a Padé approximant, or other nonlinear

approximation schemes. Judd and Guu (1993) and Judd (1998) examine both approaches. In this
paper, we will stay with the conventional Taylor expansions.
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T
max E {/ e”“’ﬂ(x,u)dt} ()
0

dx =f(u,x)dt + eo(u,x)dz

Fleming approximated the problem in (1) for small € by finding the control law
u =U(x,t) of the e = 0 problem and then apply the IFT to Bellman’s equation.
A key detail was that the control law needed to be unique in the € = O case. Judd
and Guu implement this approach for infinite horizon problems, and show that
the Fleming procedure produces good approximations.

The problem discussed in Fleming, and Judd and Guu was easy since it
could be handled by the standard IFT. A less trivial problem was examined in
Samuelson [22]. He examined the problem of asset demand when riskiness was
small. We will return to that problem below.

A third example of the small noise analysis is Magill’s [20] analysis of what
is now called real business cycles. Magill showed how to compute linear approxi-
mations to (1), use these approximations to compute spectra of the resulting linear
model, and proposed that the spectra of these models be compared to empiri-
cal data on spectra. Kydland and Prescott [18] focussed on the special case of
Magill’s method where the law of motion f(u,x) is linear in (u, x), and partially
implemented Magill’s spectral comparison ideas by comparing variances and co-
variances of these linear approximations of deterministic models to the business
cycle data. This special case of Magill’s approach to stochastic dynamic general
equilibrium has been important in the Real Business Cycle literature. Gaspar and
Judd [10] shows how to compute higher-order expansions around deterministic
steady states. Also, the methods in Magill, and Kydland and Prescott were “cer-
tainty equivalent approximations”, that is, they compute a linear approximation to
the deterministic problem, e = 0, and apply it to problems where € # 0, whereas
Gaspar and Judd [10] computes approximations which includes the effect of e.
Similarly, we will compute high-order expansions where € is allowed to vary.

A fourth example that particularly illustrates the importance of using bifurca-
tion theory is Tesar [25]. Tesar used a linear-quadratic approach to evaluate the
welfare impact on countries from opening up trade in assets. Some of her numer-
ical examples showed that moving to complete markets would result in a Pareto
inferior allocation, a finding that contradicts the first welfare theorem of general
equilibrium. Kim and Kim [16] have shown that this approach will often produce
incorrect results. These examples illustrate the need for using methods from the
mathematical literature instead of relying on ad hoc approximation procedures
based loosely on “economic intuition.”

This paper illustrates the critical mathematical structure of asset market prob-
lems with small risks, and develops the relevant mathematical tools. While the
model analyzed below is simple, the basic approach is generally applicable.
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3 Bifurcation methods

Our asset market analysis requires us to approximate an implicitly defined func-
tion at a point where the conditions of the IFT do not hold. Fortunately, we will
be able to exploit additional structure and arrive at a solution using bifurcation
methods. We first present the general theorems and then apply them to some
asset problems.

3.1 Bifurcation in R!

Suppose that H (x,€) is C? and x(e) is implicitly defined by H (x(e), €) = 0. One
way to view the equation H (x, €) = 0 is that for each ¢ it defines a collection of
x that solves H(x,e) = 0. The number of such x may change as we change .
We next define the concept of a bifurcation point.

Definition 2 (xg, €g) is a bifurcation point of H iff the number of solutions x
to H(x,e) = O changes as € passes through €y, and there are two distinct
parametric paths, (X;(s),E;(s)), i = 1,2, such that H(X;(s),E;(s)) = 0, and
limg_,0(Xi(s), Ei(s)) = (x0, €0), { = 1,2.

A trivial example of a bifurcation is H(x,€) = e(x — ¢€) at (x,¢) = (0,0). If
€ # 0, the unique solution to H =0 is x(¢) = ¢, but at ¢ = 0 any x solves H =0.
There is a bifurcation point at (x, €) = (0,0), and the two branches of solutions
to H =0 are X,(s) = E|(s) =s and X,(s) = s, E|(s) = 0. We cannot apply the
IFT to H(x(€),e) = 0 at (0,0) directly since the Jacobian of H, is singular at
(0,0). Suppose that we are interested in the branch x(e) = ¢, and not the trivial
branch where ¢ = 0 and x is arbritrary. This is natural since we want to know
how x changes as e changes, not just the situation at € = 0. Bifurcation theorems
help us accomplish this. The case for x € R is summarized in the Theorem 4.

Theorem 4 (Bifurcation Theorem for R) Suppose H : R x R — R, H is analytic
for (x, €) in a neighborhood of (xy,0), and H (x,0) = 0 for all x € R. Furthermore,
suppose that

H,(x0,0) = 0 = He(xg,0), Hye(xo,0) _T'(0

Then (xy, 0) is a bifurcation point and there is an open neighborhood .V " of (xy, 0)
and a function h(e), h(e) # 0 for € # 0, such that h is analytic and H (h(€),€) =
0 for (h(e),e) € .V

Proof. The strategy to prove this theorem follows the trick of “solving a singu-
larity through division by €” (see Zeidler, 1998, Chapter 8). Define

H(x,e)
—== €40
F(x,e) = { K x 0) . f 0 2)
de -

Since H is analytic and H(x,0) = O for all x, H(x,€) = €F(x,¢) and F is
analytic in (x,e€). Since 0 = H(xp,0), F(xp,0) = 0. Direct computation shows
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Fy(x,€) + €Fyc(x,€) = Hye(x, €), which implies F(xg,0) = Hyc(xp,0) # 0. Since
F.(x9,0) # 0, we can apply the IFT to F at (xo,0). Therefore, there is an open
neighborhood .7 of (xg, 0) and an analytic function h(¢), A(€) # 0 for € # 0, such
that F(h(e),€) = 0 for (h(e),e) € .4, which in turn implies H (k(e), €) = 0 for
(h(e),e) € AN,

In general, Theorem 4 tells us we can compute derivatives through implicit
differentiation. In particular, #’(0) and 4" (0) are defined by

h'(0)

1
~[F:(x0,0)] "' Fe(x0,0) = —E[er(xo,on—lﬂee(xo,m

3H,(x0,00h (0) = —[3h (0)Hyee(x0, 00k (0) + 3Hyec(x0, 0)h'(0) + Hece (X0, 0)]

which implies a unique value for A’(0) and h”(0) as long as H,(xp,0) # 0.
Notice the sequentially linear character of the problem. One only needs linear
operations to compute 4’(0), and once we have computed h’(0) the problem of
computing h”(0) is also a linear problem. The existence of h'(0), 1" (0), and all
higher derivatives of h relies solely on the solvability condition H,(xp,0) # 0
and the existence of the higher-order derivatives of H at the bifurcation point.

Theorem 4 resolves the problem when H(x,€) = e(x — €) = 0. In this case,
H(x,0) = 0 for all x, H,(0,0) = 0 = H.(0,0), but H,.(x0,0) = 1 # 0. Implicit
differentiation shows that 4’(0) = 1, and that every other derivative of 7 at x =0
is zero. The example of H = e(x — €) seems quite trivial, but our problems will
have a similar form and Theorem 4 gives us conditions under which the general
problem is really no more complex than this simple example.

Implicit differentiation of H (x(¢), €) = 0 will produce a power series expan-
sion for x(e) around € = 0, but we know nothing about the radius of convergence
of that power series. For example, H(x,€) = € (x — (¢ + 1)!/2) = 0 has the obvi-
ous global solution x(e) = (e+1)!/2 but the power series for (e+1)!/? around € = 0
is valid only when —1 < € < 1 because there is a singularity at € = —1.2 Also,
in practice, we will only be able to use finite-order Taylor series approximations,
which are just the initial segments of the full power series. In general, any such
Taylor series approximation will do well for € close to zero, but the quality of
the approximation will degrade as ¢ moves away from zero.

We assumed H,.(xo,0) # 0 in Theorem 4. The division-by-zero trick can
be applied to problems with higher-order degeneracies. If H,.(x0,0) = O then
Fy(x0,0) =0, and we cannot apply the IFT to F in the proof. But if Fc(xp,0) =0
and F,(xp,0) # 0 we can apply the bifurcation theorem to F.

2 The difficulty in this case could be fixed by a nonlinear change of variables. Appropriate and
clever nonlinear change of variables can help with this problem, but we do not pursue that strategy
in this paper.
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3.2 Bifurcation in R" : the zero Jacobian case

The foregoing focussed on one-dimensional functions 4. We can also apply these
ideas for functions over R". The same trick used in Theorem 4 works for Theorem
5; therefore, its proof is omitted.

Theorem S (Bifurcation Theorem for R") Suppose H : R* x R — R" is analytic
near (x,0), and H(x,0) =0 for all x € R". Furthermore, suppose that

Hx(x(),O) = Opxn (3)
H. (x,0) = 0, “
det(er(an O)) ?'( 0 (5)

Then there is an open neighborhood .V~ of (xy,0) and an analytic function h(e) :
R — R” such that h(€) # 0 for € #0, and H (h(e), €) = 0 for (h(e),e) € ..

Since Theorem 5 shows that s is analytic, it can be approximated by a
multivariate Taylor series. In particular, the first-order derivatives are defined by

1
h'(0) = —EH;'(XO,O) Hee(xo,0) (6)

Theorem 5 assumes H, (xg, 0) is a zero matrix. There are generalizations that only
assume that H,(xg,0) is singular. We do not present any extensions here since
they are substantially more complex to present and are not needed below. See
Zeidler or Chow and Hale for more complete treatments of bifurcation problems.

4 Portfolio demand with small risks

The key assumption we exploit is that risks are small. This is motivated not by
any claim that actual risks are small, but is reasonable for three reasons. First,
this assumption allows us to solve the problem without making any parametric
assumptions for either tastes or returns. We derive critical formulas for alloca-
tions and welfare in a parameter-free fashion. The results tell us which moments
of asset returns are important and which properties of the utility function are
important for the case of small risks. Second, the results for small risks may be
suggestive of general results. For example, the asymptotic results could provide
counterexamples to conjectures since the asymptotic results are asymptotically
explicit solutions. Furthermore, any general property of the model will be true
for the case of small risks and will be revealed as general properties of our
asymptotic solutions. In this paper, we pursue the implications of the small risk
assumption, leaving it for later work to see how robust those results are.

Third, the period of time in our model is not meant to be an entire life, but
rather the period of time between trades. Given modern markets and the presence
of many high-volume, low-transaction cost traders, it is reasonable to assume that
only a moderate amount of risk is borne between trading periods. A dynamic
model is necessary to examine the validity of this point, but we believe that our
static analysis will give useful insights and leave dynamic generalizations for
future work.
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4.1 Demand with two assets

We begin by applying the bifurcation approximation methods to asset market
demand. Suppose that an investor has W in wealth to invest in two assets. The
safe asset, called a bond, yields one dollar per dollar invested, and the risky asset,
called stocks or equity, yields Z dollars per dollar invested. There is no savings-
consumption decision in this model. Therefore, this is equivalent to making bonds
in the second period the numeraire. If an investor has @ shares of stock, final
wealth is Y = (W — 6)+6Z. We assume that he chooses 6 to maximize E{u(Y)}
for some concave utility function u(-).

Economists have studied this problem by approximating u# with a quadratic
function and then solving the “approximate” quadratic optimization problem. The
bifurcation approach allows us to examine this procedure rigorously and extend
it. We first create a continuum of portfolio problems by assuming

Z=1+ez+€m )

where z is a fixed random variable. We assume E {z} = 0 since we want (7)
to decompose Z into its mean, 1 + e, and its risky component, ez. We also
assume 022 = 1; this makes ¢ the standard deviation of Z and €2 its variance in
the € problem. Both of these assumptions are just normalizations, implying no
loss of generality. At e = 0, Z is degenerate and equal to 1, the payoff of the
bond. The scalar m represents the risk premium. More precisely, o = 1 implies
that 7 is the the price of risk, that is, the risk premium per unit variance. In
this demand problem we make the natural assumption that 7 > 0 but that is not
necessary for the analysis.

Equation (7) scales its terms in a manner consistent with economic theory.
We want (7) to represent a continuum of problems connecting a degenerate de-
terministic problem to problems with nontrivial risk. Note that (7) multiplies z
by € and 7 by €2. Since the variance of €z is €2 a2, this models the intuition that
risk premia are proportional to the variance. The continuum of problems param-
eterized in (7) all have the same price of risk 7. The particular parameterization
in (7) may seem to prejudge the results. That will not be a problem since the
application of the bifurcation theorems will validate the assumptions implicitly
made in (7).

The investor chooses @ to maximize E {u(W + (ez + €*7))}. The first-order
condition for the investor’s problem is

€E{u (W +0(ez + €m)) (z + em)} = 0. ®)

The condition (8) states that the future marginal utility of consumption must be
orthogonal to the excess return of equity. Let y be the probability measure for
z and (a, b) the (possibly infinite) support. The choice of # as a function of € is
implicitly defined by

3 Pages 518-519 in Judd (1998) show that alternative parameterizations of the form Z = 1+ez+e’m

for v # 2 lead to singularities which prevent the application of implicit function or bifurcation
theorems.
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Figure 1. Bifurcation possibilities for asset demand

b
0=H((),e) = / u' (W +0(e)(ez + €m)) (z + em) d p. ©)

We want to analyze the solutions of (9) for small e. However, 0 = H (6, 0) for
all 4, because at € = 0 the assets are perfect substitutes. #(0) is multivalued since
any choice of 6§ satisfies the first-order condition (9) when ¢ = 0. Furthermore,
0 = H(6,0) for all § implies 0 = Hy(A,0) for all 8, violating the nonsingularity
condition in the IFT. Therefore, we cannot use the IFT to compute a Taylor series
for O(e) at e = 0.

The situation is displayed in Figure 1. As e changes, the equilibrium demand
for equity, 6, follows a path like ABC or like DEF. Since the asset demand
problem is a concave optimization problem there is a unique path of solutions
to the first-order conditions whenever ¢ # 0. At € = 0, however, the entire € = 0
horizontal axis is also a solution to the equity demand problem. The path ABC
crosses the @ axis vertically and represents a pitchfork bifurcation, whereas the
path DEF crosses the 6 axis obliquely and represents a transcritical bifurcation.
The objective is to first find the bifurcation point, B or E, where the branch of
equity demand solutions crosses the trivial branch of solutions to the first-order
conditions, and then compute a Taylor series that approximates 6(¢) along the
nontrivial branch.

4.1.1 Computing 6.

We proceed intuitively to derive a solution which we validate with the Bifurcation
Theorem. Since we want to solve for @ as a function of € near 0, we first need to
compute 6y = lim._,( 6(¢). Implicit differentiation of (9) with respect to ¢ implies

0= Hy(8(e), )8 (¢) + He(B(e), €). (10)

Differentiating H (6, €) with respect to 6 and € implies

b
H.8,¢ / u”"(Y)(Oz +20em) (z +em)+u'(Y)m dp

Hy(9,¢)

b
/ u"(Y)(z +en)edp

At € =0, Hyp(0,0) = 0 for all §. The derivative §’(0) can be well-defined in (10)
only if H.(8, 0) = 0. Therefore, we look for 6, defined by 0 = H.(6, 0). Ate =0,
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this reduces to (using the fact that fab 22dp=02=1)0=u"(W)8 +u' (W),
which implies
u'(W)
W) T (1)
This is the simple portfolio rule indicating that # is the product of risk tolerance
and the risk premium per unit variance. If 6, is well-defined, then this must be
its value.

Theorem 6 states the critical result.

Bo = -

Theorem 6 Let (11) define 6y. If H(6,¢€) is analytic at (6y,0), then there is an
analytic function 0(¢) that satisfies (9) such that 6(0) = 6y and 6(c) # 0 for € # 0.

Proof. Direct application of the Bifurcation Theorem.

The assumption in Theorem 6 that H (8, €) is analytic at f is not trivially
satisfied. H (0, €) is an integral and is analytic if u(c) is analytic over the set of ¢
at which u’(c) is evaluated in the integrand of H (6, €), because the integral of a
power series is a power series. If the support of 4 is compact and u is analytic at
W then H (8, ¢) is analytic at (6, 0) since for small €, u’(c) is evaluated only at
values of ¢ close to W. However, if 4 has infinite support there may be problems
because u’(c) in the integrand of (9) is evaluated over an infinite range whenever
€,0 # 0. If the radius of convergence for the power series representation of u'(c)
based at W is finite, then it will not be valid at some points in the support of y,
rendering the power series approach invalid. This will be the case, for example,
if u(c) = logc and p is the measure for a log Normal random variable. The
radius of convergence of power series approximations of u(c) at ¢ = W is a
critical element, as well as the analyticity of the density function of u. The next
corollary presents a sufficient condition for using the bifurcation approach on an
open neighborhood . ¥

Corollary 1 Define 0y as in (11). If u(c) is analytic at ¢ = W and the support of
[ is compact, then there is a function 6(e) analytic and satisfies (9) on (—eg, €o)
for some €y > 0 with 6(0) = 6y and 6(e) # 0 for € £ 0 in (—eo, €).

In all formulas below, we will assume that the critical functions are locally
analytic.
4.1.2 Computing 6'(0).
Equation (11) is not an approximation to the portfolio choice at any particular

variance. Instead, 6 is the limiting portfolio share as the variance vanishes. We
generally need to compute several terms of the Taylor series expansion for 6(¢)

1 " 62 " 63
0(e)=00+0 (0)e+6 (0)5+0 (O)E-F"“ (12)

In particular, the linear approximation is
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0(e) = 6(0) + € 6'(0). (13)

To calculate 6'(0), differentiate (10) with respect to € to find 0 = Hgg 66 +
2Hg 0 + Hg0" + Hc.. At (6),0), Hee = u' (W) E{z®}, Hpo = 0, and Hy, =
u (W). Therefore,

1

6'(0) = -EHO;IH“ =-

l ul/l(W)
2 u"(W)

E{z*} 6. (14)

Again, we can use Corollary 1 to establish the existence of the derivatives of H
for some random variables.

Equation (14) tells us how the share of wealth invested in equity changes
as the riskiness increases. It highlights the importance of the third derivative of
utility and the skewness of returns. If the distribution of Z is symmetric, then
E{z®} = 0, and the constant 6 is the linear approximation of f(e) at € = 0.
This is also true if u”/(W) = 0, such as in the quadratic utility case. The case of
0'(0) = 0 corresponds to a pitchfork bifurcation point like B in Figure 1. However,
if the utility function is not quadratic and the risky return is not symmetrically
distributed, then 6'(0) # 0, and the linear approximation is a nontrivial function
of utility curvature and higher moments of the distribution. This indicates that
the bifurcation point is transcritical like E in Figure 1.

Dividing both sides of (14) by 6, implies

6'(0) _ 1u'(R) u"(R)
6o 2u"(R) u”"(R)

7 E{z*} (15)

Equation (15) expresses the relative change in equity demand as e increases
in terms of skewness, E{z3}, the risk premium, 7, and utility derivatives. Our
formulas would be unintuitive and cumbersome if we expressed them in terms
of u(c) and its derivatives. Fortunately, there are some useful utility parameters
we can use. Define the functions

)
() = 70
p(c) _ 7'_214/”((:) _ 1 ul(c) ul/l(c)

2 u'(c)  2u"(c) u"(c)

The function 7(c) is the conventional risk tolerance. The bifurcation point 6
equals 7(W) 7, the product of risk tolerance at the deterministic consumption,
7(W), and the price of risk, .

The definition of p(c) implies that (15) can be expressed as

0'(0)

=p(W) m E{z*} (16)
bo

This motivates our definition of skew tolerance.*

4 Skew tolerance is obviously related to prudence, as defined in Kimball (1990), but we do not
pursue those connections here.
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Definition 3 Skew tolerance at c is

1 u'(c) um(c)
plc) = 30 7 ()
u(c) u(c)

Skew tolerance has ambiguous sign since the sign of u’”’ is ambiguous. If
there is more upside potential than downside risk, then skewness is positive.
If " > 0, an increase in skewness will cause asset demand to increase as
riskiness increases. We suspect that investors prefer positively skewed returns,
holding mean and variance constant. For example, u””’ > 0 for the CRRA and
CARA families of utility functions. We never assume this, but this case provides
us with some intuition for the results. There are many ways to manipulate the
expression in (14). We chose our definition of skew tolerance because of the
expression in (16) and the intuitive role it plays in critical expressions below.

The linear approximation (13) may not be sufficient. To compute 6”(0), dif-
ferentiate (10) with respect to € at ¢ = 0 to find

3H950H(0) = —(3H06€0,(0) + 3H095(01(O))2 + Heee) (17)

Equation (17) is linear in 6”(0). Since Hg. # O at (6y,0), 6”(0) exists and is
uniquely defined by (17). To express 6”(0), we define kurtosis tolerance.

Definition 4 Kurtosis tolerance at c is

BUROIGEI0)
3u’(c) u’(c)u"(c)

Solving (17) at € = 0 shows that

9// (0) _
o

k(c) =

72 ((6p(W) — 2) + 4p(W)*E{2°}? + k(W)E{z*}) (18)

Equation (18) says that the impact of kurtosis on equity demand is proportional
to the square of the price of risk and the kurtosis tolerance.

We could continue this indefinitely if u is locally analytic, an assumption
satisfied by standard utility functions. Of course, the terms become increasingly
complex. We end here since it illustrates the main ideas and these results are
the only ones needed for the applications below. The general procedure is clear.
Computing the higher-order terms is straightforward since any particular deriva-
tive is the solution to linear equations similar to (17) once we have computed
lower-order derivatives.

4.1.3 Samuelson’s method

Samuelson [22] also examined the problem of asset demand with small risks. We
now illustrate the relationships between our bifurcation approach and Samuel-
son’s method. Samuelson’s method replaced u(Y) with a polynomial approxi-
mation based at the deterministic consumption, as in
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u(W +0(ez + 1)) = u(W)+ebz'(W)
2
+ (207 (W) + 622" (W)
3
+% (62726%u" (W) +6323u" (W) + .

When we use the quadratic approximation in the first-order condition (8) we
arrive at the equation 0 = (mu/(W) + 0u” (W)) €+ O(€®), which, to O(e), implies
0(e) = —(u'(W)/u"(W))m, our bifurcation point.

However, the Samuelson method differs from ours for higher-order approx-
imations. Samuelson’s second-order approximation is computed by using the
third-order approximation of u(Y') in the first-order condition (8), implying

0= (mu' (W) +0u"(W)) € + 63%92E{z3}u”’(W) (19)

which is a quadratic equation with solution

—u"(W) + \/u”(W)2 = 2nE{z3}eu’ (W)u'(W)
E{z3}u"(W)e

b(e) = (20)
One could arrive at our first-order derivative in equation (14) by differentiating
(20) with respect to € at ¢ = 0. The two methods are consistent and of similar
complexity for the first-order approximation in a two-asset problem. However,
the asymptotic approach we pursue here becomes relatively more efficient as we
move to higher-order approximations and to more assets. Samuelson’s approach
generally requires solving nonlinear equations, as was the case in equation (19).
The equations become more difficult to solve, and are impossible to solve exactly
beyond the fourth order since there is no closed-form solution for polynomials of
degree five and higher. Our bifurcation method uses linear operations to compute
asymptotically valid approximations of the function 8(¢). Therefore, we can easily
derive each term and go to an arbitrary order as long as the necessary moments
and derivatives exist.

The main reason for pursuing the asymptotic approach is its ability to de-
rive economically interesting results. Equation (20) shows that linear-quadratic
approximations would not be as good as higher-order approximations since equa-
tion (20) involves the skewness of Z and the third derivative of utility. However,
Samuelson conjectured that LQ approximations are probably adequate in actual
economic problems. This paper gives examples where the linear-quadratic ap-
proximation would be unreliable, and higher-order approximations are necessary
to answer critical questions.

4.2 Demand with three assets

We applied the R! version of the Bifurcation Theorem to the two-asset case.
We next analyze the three-asset case to show the generality of the method and
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illustrate the key multivariate details. Consider again our investor model but with
three assets. The bond yields one dollar per dollar invested and risky asset i yields
Z; dollars per dollar invested, for i = 1,2. Let 6; denote the amount of wealth
invested in risky asset i. Final wealth is Y = (W — 0, — 6,)+ 6,Z; + 6,Z; The
investor chooses ; to maximize E {u(Y)}. To apply the Bifurcation Theorem,
we assume that Z; = 1 + ez; + e*m;. Without loss of generality, we assume that
E{z} =0. Let 6} = E {z?} be the variance of risky asset i’s return and o, =
E {2122} the covariance. We assume that the assets are not perfectly correlated;
hence, aizajz # (aij)z .

The first-order condition for risky asset i is €E {u/(Y)(em +z,~)} = 0. The
asset demand functions 6;(e) are defined implicitly by 