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Summary. General equilibrium analysis is difficult when asset markets are in 

complete. We make the simplifying assumption that uncertainty is small and use 

bifurcation methods to compute Taylor series approximations for asset demand 

and asset market equilibrium. A computer must be used to derive these approxi 
mations since they involve large amounts of algebraic manipulation. We use this 

method to analyze the allocative and welfare effects of introducing a new secu 

rity. We find that adding any nontrivial derivative security will raise the price of 

the risky security relative to the bond when risks are small. 
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1 Introduction 

Precise analysis of equilibrium in asset markets is difficult since few cases can 

be solved exactly for equilibrium prices and volume. Many analyses assume that 

markets are complete, implying that equilibrium is efficient and equivalent to 

some social planner's problem. That approach is limited since it ignores trans 

action costs, taxes, and incompleteness in asset markets. This paper develops 
bifurcation methods to approximate asset market equilibrium without assuming 

complete asset markets. We begin from a trivial deterministic case where all as 

sets have the same safe return and use local approximation methods to compute 
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asset market equilibrium when assets have small risk. We compute Taylor series 

expressing equilibrium asset prices and holdings as a function of preference pa 
rameters such as absolute risk aversion, and asset return statistics such as mean, 

variance, and skewness. The formulas completely characterize equilibrium for 

small risks. 

Implementing this approach is straightforward, but involves an enormous 

amount of algebraic manipulation far beyond the capacity of human hands. For 

tunately, desktop computers using symbolic software can execute the necessary 

algebraic manipulation and compute the series expansions in reasonable time. 

We use Mathematica, but the computation could be executed by other symbolic 

languages such as Macsyma and Maple. The asymptotic expansions tell us about 

the qualitative properties of equilibrium and can be used to compute a numerical 

approximation to equilibrium of particular problems with a specified nonzero risk. 

Therefore, the bifurcation approach is computational in two ways: the formulas 

are qualitative asymptotic approximations derived by computer algebra, and can 

be used to produce numerical approximations to specific problems. This paper fo 

cuses on the qualitative asymptotic results and leaves the numerical applications 
for future study. 

The result is essentially a mean-variance-skewness-etc. theory of asset de 

mand and equilibrium pricing, similar to Samuelson's [22] analysis of asset 

demand. This approach is also more intuitive than the standard contingent state 

approach to equilibrium. The incomplete markets paradigm focuses on the dif 

ference between the number of contingent states and the number of assets. For 

example, welfare results in Hart [11], Cass and Citanna [3], and Elul [7] de 

pend on how many assets are missing and the number of agents. It is difficult 

to interpret such indices of incompleteness since we can count neither the num 

ber of contingent states nor the number of different kinds of agents in a real 

economy. Furthermore, one expects that the impact of asset incompleteness on 

economic performance is related more to the statistical character of riskiness and 

the diversity of investor objectives than to the number of states and the num 

ber of agents. For example, the number of different agents is a poor measure 

of agent diversity since an economy with 100 types of investors with different 

risk aversions close to the mean risk aversion is less diverse than an economy 
with 10 types of investors with substantially different risk aversions. Similarly, 
the number of contingent states is at best a poor indicator of the magnitude 
and character of riskiness. This paper's analysis produces asymptotic formulas 

depending solely on the moments of asset returns and the differences in utility 

indices, showing that they, not the number of states, govern the asymptotic prop 
erties of equilibrium. Since moments are more easily observed in real markets 

than the number of contingent states the result is a more practical and intuitive 

approach to equilibrium analysis of asset markets. 

Our approach is intuitive and similar in spirit to standard linearization and 

comparative static methods from mathematical economics. If fact, the analysis re 

sembles Jones [12] classic analysis of international trade. Linearization methods 

based on the Implicit Function Theorem (IFT) are important computational tools 
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that allow us to approximate nonlinear relationships with tractable, asymptoti 

cally valid approximations. We begin with the no-risk case where we know the 

equilibrium. We then use that information to compute equilibria for nearby cases 

of risky economies. However, the IFT does not apply here because the critical 

Jacobian is singular. In particular, when risk disappears all assets must become 

perfect substitutes and the portfolios of individuals are indeterminate when risk 

is zero. We cannot use the IFT if we do not know the equilibrium portfolio in the 

case of zero risk. Instead, we must apply tools from bifurcation theory to solve 

our problem. These tools are natural since they are essentially generalizations of 

L'Hospital's rule. Furthermore, because of the singularity at zero risk, we will 

need to compute higher-order approximations, not just the familiar first-order 

terms from linear approximation methods. 

The purpose of this paper is to present the key mathematical ideas and illus 

trate them with basic economic applications. We first apply bifurcation methods 

to derive approximations of asset demand, refining the similar Samuelson [22] 
method. We then use these approximations of asset demand to compute approx 
imations of asset market equilibrium. We compute asymptotically valid expres 
sions for equilibrium with different asset combinations, and use them to show 

how changes in asset availability affects equilibrium. 
The bifurcation approach is particularly interesting since it handles the com 

plete and incomplete asset market cases in the same way. This contrasts sharply 
with the conventional approach where the incomplete asset market case is far 

more complex than the complete market case (see Magill and Quinzii [21] for a 

more complete discussion). We can do this because we focus on small risks. Since 

our analysis makes no assumptions about the span of assets, it is also a method 

for computing equilibrium in some economies with incomplete asset markets. 

This is generally a difficult problem because the excess demand function is not 

continuous. Brown et al. [2] and Schmedders [23] have formulated algorithms 
for computing equilibria when asset markets are incomplete. Their methods aim 

to compute equilibrium for any such model. Our method is only valid locally but 

is much faster since it relies on relatively simple and direct formulas. 

The applications presented in this paper are just a small sampling of the 

possibilities. Guu and Judd [15] applies the results of this paper to compute 
the optimal derivative asset. Leisen and Judd [19] uses similar methods to price 

options and determine equilibrium trade in options when they are not priced 

by arbitrage. We stay with the single good model in this paper so that we can 

focus on the key mathematical problems. The methods do generalize to the 

multicommodity models examined in Hart and others, but space limitations force 

us to leave that for future studies. 

Section 2 reviews local approximation theory and previous small noise analy 
ses. Section 3 presents the bifurcation to theorems that generalize the IFT. Section 

4 applies the bifurcation theorems to asset demand. Section 5 presents a small 

noise analysis of an asset market with one risky asset and Section 6 examines 

a market with one fundamental risky asset plus a derivative asset. Comparisons 
of these cases allows us to analyze the effects of introducing a derivative asset. 
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Section 7 discusses some computational considerations. Section 8 outlines the 

approach to more general models. Section 9 concludes. 

2 Local approximation methods at nonsingular points 

Local approximation methods are based on a few basic theorems. They begin 
with Taylor's theorem and the IFT for Rn. We first state the basic theorems in 

this section, and then present the bifurcation theorems in the next section. 

2.1 Taylor series approximation 

The most basic local approximation is presented in Taylor's Theorem. 

Theorem 1 (Taylor's Theorem for W1) Let X ? Wandp be an interior point of 
X. Suppose f : X ?? R is Ck+l in an open neighborhood ?4^ of p. Then, for all 

xe^ 

fix) = /(p) + 
? ^-(P){xi-Pi) 

i'=l 7=1 
J 

?1=1 i*=l 

+^(II*-Pll)'+1 

The Taylor series approximation off(x) based at/? uses derivative informa 

tion at p to construct a polynomial approximation. The theory only guarantees 
that this approximation is good near p. While the accuracy of the approximation 

decays as x moves away from /?, this decay is often slow, implying that a finite 

Taylor series can be a good approximation for x in a large neighborhood of/?. 

2.2 The meaning of "approximation' 

We often use the phrase "/(x) approximates g(x) for x near/?", but the meaning of 

this phrase is seldom made clear. One trivial sense of the term is that/(p) 
= 

g(p). 
While this is certainly a necessary condition, it is generally too weak to be a 

useful concept. Approximation usually means at least that/'(/?) 
= 

gf(p) as well. 

In this case, we say that "/ is a first-order (or linear) approximation to g at 

x =/?". In general, "/ is an n'th order approximation of g at jc =/?" if and only 
if 
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x->p y X - p \\n 

This definition says that the error \\f(x) 
? 

g(x)\\ of the approximation/^) is 

asymptotically bounded above by c ||jc 
? 

p\\n for any constant c > 0. Therefore, 
for any x near/?, the approximating function f(x) is very close to g(x). In partic 
ular, the degree k Taylor series of a Ck+l function is a fc'th order approximation 
since its error is &' (||jc ?/?||) 

. This may seem trivial but this is not always 
the definition of n'th order approximation used in economics. We state it here 

for the purpose of precision. 

2.3 The implicit function theorem for analytic functions 

Our analysis will rely on the IFT for analytic functions. It is useful to review 

some basic facts about analytic functions that will help us understand our results. 

The following definition for analytic functions is the most helpful of the many 

equivalent definitions. 

Definition 1 A function f(x) : K ?y E is analytic atxo if and only if there is some 

nonempty open set Q C R such that jco ? J? and for all x G Q,f(x) 
= 

Yl^ aix* 

and 5^0 a?\x\l < oc for all x G ft. 

Basically, analytic functions are C?? and locally equal to the power series 

created by Taylor series expansions. The key word here is "local". For example, 
the power series expansion of logx around jco = 1 cannot be globally valid since 

log* is not defined at x = 0. To make this precise, we need the concept of 

radius of convergence. The next theorem states the key result that the domain of 

convergence for a power series is a disk. 

Theorem 2 Let C 
- 

\x\ Y^saix%} 
< oc- Then the closure of C, C, is a disk, 

and the radius of C is called the radius of convergence ofY^Q^x1. 

The focus on analytic functions is essential since some C?? functions are 

not analytic. The best example of this is e~x?x . The function e~x?x is defined 

everywhere, even at x = 0. Furthermore, it is C?? everywhere, even at x = 0 

where each derivative equals zero. This implies that the Taylor series expansion 
based at xo 

= 0 is the zero function. However, e~x?x equals zero just at jc = 
0, 

not in any neighborhood of x = 0. Therefore, e~xlx does not equal its Taylor 
series expansion in any open neighborhood of jc = 0 and is not analytic at x = 0. 

In general, a C?? function is analytic at jco if and only if it equals its power series 

in some nondegenerate neighborhood of jco. 
We have discussed just the univariate case. Analytic functions on Rn are 

similarly defined; see, for example, Zeidler [26]. The next important tool is the 

Implicit Function Theorem (IFT) for analytic functions. 

Theorem 3 (Implicit Function Theorem) Let H(x,y):Rn xRm -> Rm be ana 

lytic at (jco, yo) and assume H (xo, yo) 
= 0. IfHy(xo,yo) is nonsingular, then there is 
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a unique function h : W -? Rm such thath(x) is analytic atxo andH(x,h(x)) = 0 

for (x,y) in an open neighborhood of(xo,yo). Furthermore, the derivatives of h 

at xo can be computed by implicit differentiation of the identity H(x,h(x)) = 0. 

The IFT states that h can be uniquely defined for x near xo by //(x, h(x)) = 0 

if Hy(xo,yo) is not singular and allows us to implicitly compute the derivatives 

of h. For example, the gradient of h at xo is 

?(x0) = 
-Hy(x0,yo)~{Hx(xo,yo) 

and provides us with the first-order terms of the power series representation for 

h(x) based at xo. When we combine Taylor's theorem and the IFT, we have a 

way to compute a locally valid polynomial1 approximation of a function h(x) for 
x near xo implicitly defined by H(x, h(x)) = 0. There is an IFT for C?? functions, 
but it does not give us a positive radius of convergence for the implied power 
series. Therefore, we must proceed with an analytic function perspective. 

The focus on analytic functions is not restrictive since most functions 

economists use are locally analytic at points of economic relevance. For ex 

ample, log c is a common utility function and is analytic at each positive value 

of c. Similarly for Cobb-Douglas production functions ka?l~a. However, these 

functions are only locally analytic, implying that different power series represen 
tations are valid over different finite intervals. For example, suppose we construct 

a power series for u(c) = 
loge based at c0 = 1. Since loge is undefined at c = 0, 

the radius of convergence for that power series is at most 1, which in turn implies 
that that power series is not valid for any c > 2. However, the power series based 

at Co = 2 is valid for c G (0,4). When we use the IFT for analytic functions, we 

need to be aware of the radii of convergence of the power series we implicitly 
use and be sure that they are consistent with our application of the IFT. 

The power series constructed in the IFT for analytic functions will have a 

positive radius of convergence, but we know anything about its magnitude in 

general. This is a drawback in some contexts. This issue is not important in this 

paper since we examine only the asymptotic properties of models. We will return 

later to the issue of the range of validity for our formulas. 

2.4 Previous small noise analyses 

The small noise approach is not new to the economics literature, but the approach 
we take differs in substance and formalism from previous efforts. One line of 

previous work is taken by Fleming [8], which was elaborated on by Judd and 

Guu [14]. Fleming showed how to go from the solution of a deterministic control 

problem to one with small noise added to the law of motion. Specifically, consider 

the problem 

1 The derivative information could also be used to compute a Pad? approximant, or other nonlinear 

approximation schemes. Judd and Guu (1993) and Judd (1998) examine both approaches. In this 

paper, we will stay with the conventional Taylor expansions. 
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max Ell e-^>K(x,u)dt \ (1) 

dx =f(u,x)dt + ea(u,x)dz 

Fleming approximated the problem in (1) for small e by finding the control law 
u = U(x, t) of the e = 0 problem and then apply the IFT to Bellman's equation. 

A key detail was that the control law needed to be unique in the e = 0 case. Judd 

and Guu implement this approach for infinite horizon problems, and show that 

the Fleming procedure produces good approximations. 
The problem discussed in Fleming, and Judd and Guu was easy since it 

could be handled by the standard IFT. A less trivial problem was examined in 

Samuelson [22]. He examined the problem of asset demand when riskiness was 

small. We will return to that problem below. 

A third example of the small noise analysis is MagiU's [20] analysis of what 

is now called real business cycles. Magill showed how to compute linear approxi 
mations to (1), use these approximations to compute spectra of the resulting linear 

model, and proposed that the spectra of these models be compared to empiri 
cal data on spectra. Kydland and Prescott [18] focussed on the special case of 

MagiU's method where the law of motion f(u,x) is linear in (w, jc), and partially 

implemented MagiU's spectral comparison ideas by comparing variances and co 

variances of these linear approximations of deterministic models to the business 

cycle data. This special case of MagiU's approach to stochastic dynamic general 

equilibrium has been important in the Real Business Cycle literature. Gaspar and 

Judd [10] shows how to compute higher-order expansions around deterministic 

steady states. Also, the methods in Magill, and Kydland and Prescott were "cer 

tainty equivalent approximations", that is, they compute a linear approximation to 

the deterministic problem, e = 0, and apply it to problems where e ̂  0, whereas 

Gaspar and Judd [10] computes approximations which includes the effect of e. 

Similarly, we will compute high-order expansions where e is allowed to vary. 
A fourth example that particularly illustrates the importance of using bifurca 

tion theory is Tesar [25]. Tesar used a linear-quadratic approach to evaluate the 

welfare impact on countries from opening up trade in assets. Some of her numer 

ical examples showed that moving to complete markets would result in a Pareto 

inferior allocation, a finding that contradicts the first welfare theorem of general 

equilibrium. Kim and Kim [16] have shown that this approach will often produce 
incorrect results. These examples illustrate the need for using methods from the 

mathematical literature instead of relying on ad hoc approximation procedures 
based loosely on "economic intuition." 

This paper illustrates the critical mathematical structure of asset market prob 
lems with small risks, and develops the relevant mathematical tools. While the 

model analyzed below is simple, the basic approach is generally applicable. 
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3 Bifurcation methods 

Our asset market analysis requires us to approximate an implicitly defined func 

tion at a point where the conditions of the IFT do not hold. Fortunately, we will 

be able to exploit additional structure and arrive at a solution using bifurcation 

methods. We first present the general theorems and then apply them to some 

asset problems. 

3.1 Bifurcation in R1 

Suppose that //(x, e) is C2 and x(e) is implicitly defined by //(x(e), e) = 0. One 

way to view the equation H(x, e) = 0 is that for each e it defines a collection of 

x that solves //(x, e) = 0. The number of such x may change as we change e. 

We next define the concept of a bifurcation point. 

Definition 2 (xo,eo) is a bifurcation point of H iff the number of solutions x 

to //(x,e) = 0 changes as e passes through eo, and there are two distinct 

parametric paths, (X,(s),?;(s)), i = 1,2, such that H(X?(s),Ei(s)) = 0, and 

]ims^o(Xi(s),Ei(s)) = (xo,e0), i = 1,2. 

A trivial example of a bifurcation is //(x,e) = e(x 
- 

e) at (x,e) = (0,0). If 

e t? 0, the unique solution to H = 0 is x(e) = e, but at e = 0 any x solves H = 0. 

There is a bifurcation point at (x,e) = (0,0), and the two branches of solutions 

to H = 0 are X\(s) = E\(s) = s and X\(s) = s, E\(s) = 0. We cannot apply the 

IFT to //(x(e),e) = 0 at (0,0) directly since the Jacobian of Hx is singular at 

(0,0). Suppose that we are interested in the branch x(e) = e, and not the trivial 

branch where e = 0 and jc is arbritrary. This is natural since we want to know 

how x changes as e changes, not just the situation at e = 0. Bifurcation theorems 

help us accomplish this. The case for jc G R is summarized in the Theorem 4. 

Theorem 4 (Bifurcation Theorem for RJ Suppose H : R x R ?? R, H is analytic 

for (x, e) in a neighborhood of (xo, 0), andH(x, 0) = Ofor all x G R. Furthermore, 

suppose that 

/YJC(x0,0) = 0 = //e(x0,0), /7xe(x0,0)y0. 

Then (xn, 0) is a bifurcation point and there is an open neighborhood jV 
' 
of (xo, 0) 

and a function /i(e), h(e) y Ofor e ̂  0, such that h is analytic and H(h(e), e) = 

0for(h(e\e)e.f\ 

Proof. The strategy to prove this theorem follows the trick of "solving a singu 

larity through division by e" (see Zeidler, 1998, Chapter 8). Define 

F(x,e)={ a^ _n (2) 
l de ' 6 * U 

Since H is analytic and H(x,0) = 0 for all x, H(x,c) = eF(x,e) and F is 

analytic in (x,e). Since 0 = 
//e(x0,0), F(x0,0) 

= 0. Direct computation shows 
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Fx(x, e) + eFxe(x, e) = Hxe(x,e), which implies Fx(x0,0) = Hxe(x0,0) 40. Since 

jFjc(xo,0) 4 0, we can apply the IFT to F at (jco,0). Therefore, there is an open 

neighborhood JV^ of (jco, 0) and an analytic function /i(e), h(e)^0 for e y 0, such 

that F(h(e), e) = 0 for (/i(e), e) G JST, which in turn implies H(h(e), e) = 0 for 

(/l(6),6)G.^-. 

In general, Theorem 4 tells us we can compute derivatives through implicit 
differentiation. In particular, h'(0) and h"(0) are defined by 

h'(0) = 
-[Fx(jc00)]-1F (xoO) = 

-^[//xe(jc00)]-1//e 
(jcoO) 

3Hxe(x0,0)h'(0) 
= 

-W'WH^xo, 0)h(0) + 3//X (jc0, 0)h'(0) + //eee(jt0,0)] 

which implies a unique value for hf(0) and /i"(0) as long as HX (xo,Q) ^ 0. 

Notice the sequentially linear character of the problem. One only needs linear 

operations to compute h'(0), and once we have computed hf(0) the problem of 

computing h"(0) is also a linear problem. The existence of h'(0), h (0), and all 

higher derivatives of h relies solely on the solvability condition Hxe(xoO) f 0 

and the existence of the higher-order derivatives of H at the bifurcation point. 
Theorem 4 resolves the problem when H(x,e) = e(x 

? 
e) = 0. In this case, 

#(jc,0) = 0 for all jc, Hx(0,0) = 0 = //e(0,0), but Hxe(x0,0) = 
1^0. Implicit 

differentiation shows that h'(0) = 1, and that every other derivative of h at jc = 0 

is zero. The example of H = e(x 
? 

e) seems quite trivial, but our problems will 

have a similar form and Theorem 4 gives us conditions under which the general 

problem is really no more complex than this simple example. 

Implicit differentiation of H(x(e), e) = 0 will produce a power series expan 
sion for jc(e) around e = 0, but we know nothing about the radius of convergence 
of that power series. For example, H(x, e) = e (x 

? 
(e + 

l)1/2) =0 has the obvi 

ous global solution x(e) = 
(e+1)1/2 but the power series for (e+1)1/2 around e = 0 

is valid only when -1 < e < 1 because there is a singularity at e = -1 ? Also, 
in practice, we will only be able to use finite-order Taylor series approximations, 

which are just the initial segments of the full power series. In general, any such 

Taylor series approximation will do well for e close to zero, but the quality of 

the approximation will degrade as e moves away from zero. 

We assumed Hxe(xo,0) ^ 0 in Theorem 4. The division-by-zero trick can 

be applied to problems with higher-order degeneracies. If Hxe(xoO) = 0 then 

Fx(xo,0) 
= 0, and we cannot apply the IFT to F in the proof. But if F (jco,0) 

= 0 

and Fxe(xoO) /Owe can apply the bifurcation theorem to F. 

2 The difficulty in this case could be fixed by a nonlinear change of variables. Appropriate and 

clever nonlinear change of variables can help with this problem, but we do not pursue that strategy 
in this paper. 
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3.2 Bifurcation in Rn : the zero Jacobian case 

The foregoing focussed on one-dimensional functions h. We can also apply these 

ideas for functions over Rn. The same trick used in Theorem 4 works for Theorem 

5; therefore, its proof is omitted. 

Theorem 5 (Bifurcation Theorem for Rn) Suppose H : Rn x R ->> Rn is analytic 
near (xo, 0), and //(x, 0) = 

Ofor all x G R". Furthermore, suppose that 

Hx(x0,0) 
= 0nxn (3) 

/Ye(x0,0) = 0n (4) 

dtt(Hxe(x0,0)) 4 0 (5) 

Then there is an open neighborhood Ar of(xo, 0) and an analytic function h(e) : 

R -> Rn such that h(e) 4Ofor e =?0, and H(h(e), e) = Ofor (h(e), e) G JV'. 

Since Theorem 5 shows that h is analytic, it can be approximated by a 

multivariate Taylor series. In particular, the first-order derivatives are defined by 

h'(0) 
= 

-^H-{(x0,0)Hee(x(h0) 
(6) 

Theorem 5 assumes Hx(xq, 0) is a zero matrix. There are generalizations that only 
assume that Hx(xq,0) is singular. We do not present any extensions here since 

they are substantially more complex to present and are not needed below. See 

Zeidler or Chow and Hale for more complete treatments of bifurcation problems. 

4 Portfolio demand with small risks 

The key assumption we exploit is that risks are small. This is motivated not by 

any claim that actual risks are small, but is reasonable for three reasons. First, 
this assumption allows us to solve the problem without making any parametric 

assumptions for either tastes or returns. We derive critical formulas for alloca 

tions and welfare in a parameter-free fashion. The results tell us which moments 

of asset returns are important and which properties of the utility function are 

important for the case of small risks. Second, the results for small risks may be 

suggestive of general results. For example, the asymptotic results could provide 

counterexamples to conjectures since the asymptotic results are asymptotically 

explicit solutions. Furthermore, any general property of the model will be true 

for the case of small risks and will be revealed as general properties of our 

asymptotic solutions. In this paper, we pursue the implications of the small risk 

assumption, leaving it for later work to see how robust those results are. 

Third, the period of time in our model is not meant to be an entire life, but 

rather the period of time between trades. Given modern markets and the presence 
of many high-volume, low-transaction cost traders, it is reasonable to assume that 

only a moderate amount of risk is borne between trading periods. A dynamic 
model is necessary to examine the validity of this point, but we believe that our 

static analysis will give useful insights and leave dynamic generalizations for 

future work. 
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4.1 Demand with two assets 

We begin by applying the bifurcation approximation methods to asset market 

demand. Suppose that an investor has W in wealth to invest in two assets. The 

safe asset, called a bond, yields one dollar per dollar invested, and the risky asset, 
called stocks or equity, yields Z dollars per dollar invested. There is no savings 

consumption decision in this model. Therefore, this is equivalent to making bonds 

in the second period the numeraire. If an investor has 6 shares of stock, final 

wealth is Y =(W ?6) + 6Z. We assume that he chooses 9 to maximize E{u(Y)} 
for some concave utility function w(). 

Economists have studied this problem by approximating u with a quadratic 
function and then solving the "approximate" quadratic optimization problem. The 

bifurcation approach allows us to examine this procedure rigorously and extend 

it. We first create a continuum of portfolio problems by assuming 

Z = 1 + ez + e27T (7) 

where z is a fixed random variable. We assume E {z} 
- 0 since we want (7) 

to decompose Z into its mean, 1 + e27r, and its risky component, ez. We also 

assume o2 = 1; this makes e the standard deviation of Z and e2 its variance in 

the e problem. Both of these assumptions are just normalizations, implying no 

loss of generality. At e = 0, Z is degenerate and equal to 1, the payoff of the 

bond. The scalar n represents the risk premium. More precisely, o\ 
= 1 implies 

that 7T is the the price of risk, that is, the risk premium per unit variance. In 

this demand problem we make the natural assumption that tt > 0 but that is not 

necessary for the analysis. 

Equation (7) scales its terms in a manner consistent with economic theory. 
We want (7) to represent a continuum of problems connecting a degenerate de 

terministic problem to problems with nontrivial risk. Note that (7) multiplies z 

by e and n by e2. Since the variance of ez is e2 cr2, this models the intuition that 

risk premia are proportional to the variance. The continuum of problems param 
eterized in (7) all have the same price of risk n. The particular parameterization 
in (7) may seem to prejudge the results. That will not be a problem since the 

application of the bifurcation theorems will validate the assumptions implicitly 
made in (7).3 

The investor chooses 0 to maximize E{u(W + 6(ez + e27r))}. The first-order 

condition for the investor's problem is 

eE{u'(W + 6(ez + e27r)) (z + ctt)} 
= 0. (8) 

The condition (8) states that the future marginal utility of consumption must be 

orthogonal to the excess return of equity. Let p be the probability measure for 

z and (a, b) the (possibly infinite) support. The choice of 6 as a function of e is 

implicitly defined by 
3 

Pages 518-519 in Judd (1998) show that alternative parameterizations of the form Z = l+ez+euTv 

for v ^ 2 lead to singularities which prevent the application of implicit function or bifurcation 

theorems. 
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Figure 1. Bifurcation possibilities for asset demand 

0 = H(9(e),e) 
Ja 

(W + 9(e)(ez + e2n)) (z + eir) dp. (9) 

We want to analyze the solutions of (9) for small e. However, 0 = H (6,0) for 

all 0, because at e = 0 the assets are perfect substitutes. 9(0) is multivalued since 

any choice of 9 satisfies the first-order condition (9) when 6 = 0. Furthermore, 
0 = 

H(6,0) for all 9 implies 0 = Hq(9,0) for all 0, violating the nonsingularity 
condition in the IFT. Therefore, we cannot use the IFT to compute a Taylor series 

for 0(e) at e = 0. 

The situation is displayed in Figure 1. As e changes, the equilibrium demand 

for equity, 0, follows a path like ABC or like DEF. Since the asset demand 

problem is a concave optimization problem there is a unique path of solutions 

to the first-order conditions whenever e ̂  0. At e = 0, however, the entire e = 0 

horizontal axis is also a solution to the equity demand problem. The path ABC 

crosses the 0 axis vertically and represents a pitchfork bifurcation, whereas the 

path DEF crosses the 0 axis obliquely and represents a transcritical bifurcation. 
The objective is to first find the bifurcation point, B or E, where the branch of 

equity demand solutions crosses the trivial branch of solutions to the first-order 

conditions, and then compute a Taylor series that approximates 0(e) along the 

nontrivial branch. 

4.1.1 Computing 9$. 

We proceed intuitively to derive a solution which we validate with the Bifurcation 

Theorem. Since we want to solve for 9 as a function of e near 0, we first need to 

compute #o = lime->o 9(e). Implicit differentiation of (9) with respect to e implies 

0 = 
He(9(e),e)9'(e) + He(9(e),e)> 

Differentiating H(9,e) with respect to 9 and e implies 

He(9,e) = ? u"(Y)(9z+29e<ir)(z+e7r) + u'(Y)>Kdp 
Ja 

(10) 

He(8,e) 
= 

[ u"< Ja (Y)(z+e7T)2edp 

At 6 = 0, He(9,0) 
= 0 for all 9. The derivative 9'(0) can be well-defined in (10) 

only if He(9, 0) = 0. Therefore, we look for 90 defined by 0 = He(90, 0). At e = 0, 
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this reduces to (using the fact that 
f* z2 dp 

= 
o\ 

= 1) 0 = u"(W)0o + uf(W)ir, 
which implies 

*-^' <?> 
u"(W) 

This is the simple portfolio rule indicating that 0 is the product of risk tolerance 

and the risk premium per unit variance. If 0q is well-defined, then this must be 

its value. 

Theorem 6 states the critical result. 

Theorem 6 Let (11) define #0. If H(0,e) is analytic at (f?o,0), then there is an 

analytic function 0(e) that satisfies (9) such that 0(0) = #o and 0(e) ^ Ofor e ̂  0. 

Proof Direct application of the Bifurcation Theorem. 

The assumption in Theorem 6 that H(0,e) is analytic at 9q is not trivially 
satisfied. H(0, e) is an integral and is analytic if u(c) is analytic over the set of c 

at which u'(c) is evaluated in the integrand of H(0, e), because the integral of a 

power series is a power series. If the support of p is compact and u is analytic at 

W then H(0, e) is analytic at (r?0,0) since for small e, u'(c) is evaluated only at 

values of c close to W. However, if p has infinite support there may be problems 
because u'(c) in the integrand of (9) is evaluated over an infinite range whenever 

e, 0 ^ 0. If the radius of convergence for the power series representation of uf(c) 
based at W is finite, then it will not be valid at some points in the support of p, 

rendering the power series approach invalid. This will be the case, for example, 
if u(c) = 

loge and p is the measure for a log Normal random variable. The 

radius of convergence of power series approximations of u(c) at c = W is a 

critical element, as well as the analyticity of the density function of p. The next 

corollary presents a sufficient condition for using the bifurcation approach on an 

open neighborhood jV*. 

Corollary 1 Define 0q as in (11). Ifu(c) is analytic at c = W and the support of 

p is compact, then there is a function 0(e) analytic and satisfies (9) on (?eo, eo) 

for some eo > 0 with 0(0) = 0q and 0(e) ^ Ofor e ^ 0 in (?eo, eo). 

In all formulas below, we will assume that the critical functions are locally 

analytic. 

4.1.2 Computing 0'(O). 

Equation (11) is not an approximation to the portfolio choice at any particular 
variance. Instead, 0q is the limiting portfolio share as the variance vanishes. We 

generally need to compute several terms of the Taylor series expansion for 0(e) 

0(e) = ?o + 0(0)6 + 0"(O)e- + 0"'(O)e- + .... (12) 
2 o 

In particular, the linear approximation is 
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0(e) = 0(0) + e 0'(O). (13) 

To calculate 0'(O), differentiate (10) with respect to e to find 0 = Hed9'9' + 

2Hee0f+He9"+Hee. At (0o,O), H e = 
u'"(W)92E{z3}, Hee = 0, and H0e = 

u (W). Therefore, 

m..?Hi'H..-l^EU'}^. 
04, 

Again, we can use Corollary 1 to establish the existence of the derivatives of H 

for some random variables. 

Equation (14) tells us how the share of wealth invested in equity changes 
as the riskiness increases. It highlights the importance of the third derivative of 

utility and the skewness of returns. If the distribution of Z is symmetric, then 

E{z3} 
= 0, and the constant 0o is the linear approximation of 0(e) at e = 0. 

This is also true if ufff(W) = 0, such as in the quadratic utility case. The case of 

0'(O) = 0 corresponds to a pitchfork bifurcation point like B in Figure 1. However, 
if the utility function is not quadratic and the risky return is not symmetrically 
distributed, then 0'(O) f 0, and the linear approximation is a nontrivial function 

of utility curvature and higher moments of the distribution. This indicates that 

the bifurcation point is transcritical like E in Figure 1. 

Dividing both sides of (14) by 0n implies 

0'(O) 1 u(R)um(R) r,r 3 
0O 2 u"(R) u"(R) ttE{z0} (15) 

Equation (15) expresses the relative change in equity demand as e increases 

in terms of skewness, E{z3}, the risk premium, n, and utility derivatives. Our 

formulas would be unintuitive and cumbersome if we expressed them in terms 

of u(c) and its derivatives. Fortunately, there are some useful utility parameters 
we can use. Define the functions 

r(c) = - 

p(c) 
= 

u"(c) 

T2 U'"(C) _ 1 U'(C) U'"(C) 

Y uf(c) ~2uf/(c)u,f(c) 

The function r(c) is the conventional risk tolerance. The bifurcation point 0o 

equals r(W) 7r, the product of risk tolerance at the deterministic consumption, 

r(W), and the price of risk, n. 

The definition of p(c) implies that (15) can be expressed as 

0o 
= P(W)ttE{z3} (16) 

This motivates our definition of skew tolerance.' 

4 Skew tolerance is obviously related to prudence, as defined in Kimball (1990), but we do not 

pursue those connections here. 

This content downloaded from 128.135.100.108 on Fri, 11 Oct 2013 15:52:27 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


Asymptotic methods for asset market equilibrium analysis 141 

Definition 3 Skew tolerance at c is 

1 u (c) u (c) 
P(c) 

= 
2 u"(c) u"(c) 

Skew tolerance has ambiguous sign since the sign of ul" is ambiguous. If 

there is more upside potential than downside risk, then skewness is positive. 
If uf" > 0, an increase in skewness will cause asset demand to increase as 

riskiness increases. We suspect that investors prefer positively skewed returns, 

holding mean and variance constant. For example, u"' > 0 for the CRRA and 

CARA families of utility functions. We never assume this, but this case provides 
us with some intuition for the results. There are many ways to manipulate the 

expression in (14). We chose our definition of skew tolerance because of the 

expression in (16) and the intuitive role it plays in critical expressions below. 

The linear approximation (13) may not be sufficient. To compute 9"(0), dif 

ferentiate (10) with respect to e at e = 0 to find 

3Hee0"(O) = -OHdeeO'(0) + 3He6e(0f(O))2 + Heee) (17) 

Equation (17) is linear in 0"(O). Since HBe i 0 at (0O,O), 0"(O) exists and is 

uniquely defined by (17). To express 0"(O), we define kurtosis tolerance. 

Definition 4 Kurtosis tolerance at c is 

K\C) 
? ? ? ? 

3 u (c) u (c) u (c) 

Solving (17) at e = 0 shows that 

0"(O) 
0o 

= 7T 
2 

((6p(W)-2) + 4p(W)2E{z3}2 + K(W)E{z4}) (18) 

Equation (18) says that the impact of kurtosis on equity demand is proportional 
to the square of the price of risk and the kurtosis tolerance. 

We could continue this indefinitely if u is locally analytic, an assumption 
satisfied by standard utility functions. Of course, the terms become increasingly 

complex. We end here since it illustrates the main ideas and these results are 

the only ones needed for the applications below. The general procedure is clear. 

Computing the higher-order terms is straightforward since any particular deriva 

tive is the solution to linear equations similar to (17) once we have computed 
lower-order derivatives. 

4.1.3 Samuelson's method 

Samuelson [22] also examined the problem of asset demand with small risks. We 

now illustrate the relationships between our bifurcation approach and Samuel 

son's method. Samuelson's method replaced u(Y) with a polynomial approxi 
mation based at the deterministic consumption, as in 
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u(W +9(ez+e27T)) 
= u(W) +e9zu'(W) 

f2 
+- 

(297T2uf(W) 
+ 

92z2u"(W)) 

+- 
(6z7T292u"(W) 

+ 
93z3u"'(W)) 

+... 

When we use the quadratic approximation in the first-order condition (8) we 

arrive at the equation 0 = 
(7ru'(W) 

+ 
9u"(W)) e2 + 0(e3), which, to 0(e), implies 

0(e) = 
-(u'(W)/u"(W))-k, our bifurcation point. 

However, the Samuelson method differs from ours for higher-order approx 
imations. Samuelson's second-order approximation is computed by using the 

third-order approximation of u(Y) in the first-order condition (8), implying 

0 = 
(iru'(W) + 9u"(W)) e2 + e3]-92E{z3}um(W) (19) 

which is a quadratic equation with solution 

a( , . -u"(W) + yJu"(W)2 
- 

2iTE{z3}eu'"(W)u'(W) 

E{z3}u"'(W)e 

One could arrive at our first-order derivative in equation (14) by differentiating 

(20) with respect to e at e = 0. The two methods are consistent and of similar 

complexity for the first-order approximation in a two-asset problem. However, 
the asymptotic approach we pursue here becomes relatively more efficient as we 

move to higher-order approximations and to more assets. Samuelson's approach 

generally requires solving nonlinear equations, as was the case in equation (19). 
The equations become more difficult to solve, and are impossible to solve exactly 

beyond the fourth order since there is no closed-form solution for polynomials of 

degree five and higher. Our bifurcation method uses linear operations to compute 

asymptotically valid approximations of the function 0(e). Therefore, we can easily 
derive each term and go to an arbitrary order as long as the necessary moments 

and derivatives exist. 

The main reason for pursuing the asymptotic approach is its ability to de 

rive economically interesting results. Equation (20) shows that linear-quadratic 

approximations would not be as good as higher-order approximations since equa 
tion (20) involves the skewness of Z and the third derivative of utility. However, 

Samuelson conjectured that LQ approximations are probably adequate in actual 

economic problems. This paper gives examples where the linear-quadratic ap 

proximation would be unreliable, and higher-order approximations are necessary 
to answer critical questions. 

4.2 Demand with three assets 

We applied the R1 version of the Bifurcation Theorem to the two-asset case. 

We next analyze the three-asset case to show the generality of the method and 
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illustrate the key multivariate details. Consider again our investor model but with 

three assets. The bond yields one dollar per dollar invested and risky asset i yields 

Zi dollars per dollar invested, for / = 1,2. Let 0? denote the amount of wealth 

invested in risky asset /. Final wealth is Y = (W 
- 

0\ 
- 

02)+ 0i^i + 02^2. The 

investor chooses 0? to maximize E {u(Y)}. To apply the Bifurcation Theorem, 
we assume that Z, = 1 + ezi + e27r;. Without loss of generality, we assume that 

E {z?} 
= 0. Let of 

= E 
{z2} be the variance of risky asset ?'s return and on = 

E \z\Zi\ the covariance. We assume that the assets are not perfectly correlated; 

hence, ofo2 ^ (<jy) 
. 

The first-order condition for risky asset / is e? Iu (Y)(e-Kt +Zi)\ =0. The 

asset demand functions 0,(e) are defined implicitly by #(0i,02,e) : R3 -+ R2 

where Hl(0\,02,e) 
= E <u(Y)(e7Ti +z,-)>, / = 1,2. To invoke Theorem 5, we 

first note that He(0\, 02,0) = 02X2 for all (0\, 02). We compute a candidate bifur 

cation point by solving He(0\,02,0) = 0. Direct computation shows 

He(0u02,O) = u(W) 
7Ti 

7T2 
+ u (W)E 

02 

where ? is the variance-covariance matrix of the risky returns (z\,zi). The so 

lution of the bifurcation equation He(0\, 02,0) = 0 is 

0i (0) 
02(O) 

u (W) , ' 

u"(wY 

TTl 

7T2 

We need to verify the nonsingularity of Hq at (0i(O), 02(O),O). Direct compu 
tation shows that /f?e(0!(O),02(O),O) 

= 
u"(W)E for all 0b02. The determinant 

of Hee at (0i(0), 02(0), 0) is u'(W)(o2o2 
- 

(cri2)2), which is nonzero as long as 

assets 1 and 2 are not perfectly correlated. 

These calculations show that all the conditions in Theorem 5 hold for our 

model. Hence, the bifurcation theorem for R2 ensures the existence of analytic 
functions 0\(e) and 02(e) which satisfy //(0!(e),02(e),e) = 0 in some neighbor 
hood of e = 0. This procedure can be applied for an arbitrary number of assets. 

We can also produce higher-order expansions as long as the necessary moments 

and derivatives exist. We next use these ideas to compute asset market equilib 
rium. 

5 Asset market equilibrium with one risky asset 

We now take our portfolio choice analysis and turn it into an equilibrium 

analysis5. We assume a two-period model, period 0 and period 1, with no con 

sumption in period 0. Agents trade assets in period 0 and consume the asset 

payoffs in period 1. One bond yields 1 unit of consumption in period 1; the bond 

5 
Chiappori et al. (1992) used similar methods to prove the existence of sunspot equilibria near 

deterministic steady states in overlapping generations models. We go through the details of our 

application since they are substantially different than the application in Chiappori et al. 
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serves as our numeraire in period 0. Each share of equity has price p in period 
0 and has a random period 1 value of 1 + ez units of consumption where z is a 

random variable with finite moments. We assume E{z} 
= 0 and E{z2} 

= 1. For 

each value of e we have an asset market with two assets; we call that economy 
the e-economy. 

We assume two types of traders. Type i traders have initial endowments of 

Bf units of the bond and 0f shares of equity. The utility of a type i trader is 

U[ (Yi), a concave function, where Y? is the final wealth and consumption of type 
/ traders. The supply of equity is fixed at the endowment 9\+9e2. Without loss 

of generality, we assume 0f + 9 2 = 1; this implies that z denotes aggregate risk 

in the aggregate endowment. Let 0, be the shares of equity and B? the value of 

bonds held by trader i after trading in period 0. The final wealth for trader i is 

Yi = 9i(l +ez) + B?. Each trader of type / chooses 0, to maximize his expected 

utility E{ui(Yi)}9 subject to the budget constraint B? + 0?p 
= 

Bf + 0f/?. His first 

order condition for 0, is E\uxXY[)(\ + ez - 
/?)} 

= 0. Market clearing implies 
9X + 02 = 

9e{ + 9e2 
= l. Define 0 = 9\\ then 02 = 1 - 0. For each e-economy, 

we want to find the equilibrium values of 0 and /?; let 0(e) and p(e) be the 

equilibrium values of 0 and p in the e-economy. The equilibrium values of 0(e) 
and p(e) must satisfy the equilibrium pair of equations 

Hi(0(e),p(e),e) 
= 

E{u'i(Yi)(\ + ez-p(e))} 
= O, i = 1,2 (21) 

which are implied by the agents' first-order conditions. 

Equation (21) implicitly defines (0(e),p(e)). However, the IFT cannot be 

applied to analyze (21) around e = 0. Since the assets are perfect substitutes at 

e = 0, they must trade at the same price; hence, /?(0) 
= 1. However, 0(0) is 

indeterminate because /Y(0,/?,O) 
= 0, for all 0. The indeterminacy of 0 implies 

that He (0,1,0) = 0, ruling out application of the IFT. 

We want to apply the Bifurcation Theorem, but we cannot apply it to 

H(0,p, 0) because Hq(0, 1,0) ^ 0. Intuitively, the Bifurcation Theorem presented 
above requires that both 0 and /? are indeterminate at e = 0. Moreover, we know 

p'(0) if it exists. Implicit differentiation of /Y(0(e),/?(e), e) with respect to e im 

plies 

#?(0,/?, e)0(e) + 
//;(0,/?, e)p (e) + We(0,p, e) = 0. 

For each /, #?(0,/?(O),O) 
= 0 for all 0 since /?(0) 

= 1. Therefore, if p(e) is 

differentiable at e = 0, then 

O^Hl(0,p,O)p\O) 
+ 

H?(0,p,O)=^E{z}-p\O))ui(ci) 

for / = 1,2, where ct = 
Bf + 0\ is consumption in the no-risk case. Since w, (c?) 

is never zero, /? (0) = E {z} 
= 0 must hold if 0(e) and p(e) are differentiable 

at e = 0. Therefore, we have indeterminacy of 0(0) but there is only a single 

possible value for both /?(0) and /? (0). This prevents us from using Theorem 5 

directly since the Jacobian matrix HL , is not a zero matrix. 
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This problem is solved by reformulating the problem in terms of the price 
of risk, not the price of the equity. More precisely, we assume the equity price 

parameterization 

P(e) 
= 1 - e27T(e) (22) 

where n(e) is the risk premium in the e-economy. Since o\ 
= 1, e2 is the variance 

of risk and 7r(e) is the risk premium per unit variance. Since we expect the risk 

premium to depress the price of equity, we use the form in (22). 
We have assumed the parameterization in (22) but we have not proved any 

thing yet. We now need to show that this parameterization is consistent with 

Theorem 5. To check the sufficient conditions in Theorem 5, we reformulate 

equilibrium as the system of equations 

0 = &g\Q, 7T,e) = E ?u?(Yi)(z 
- 

ctt)\ = 0. (23) 

where &g\0, tt, e) = 
e~xHi(0,1 

- 
e2?r, e), / = 1,2. It is clear that (0, tt, e) satisfy 

(23) if and only if they also satisfy (21). 
The parameterization in (22) and the equilibrium characterization in (23) now 

allow us to apply the Bifurcation Theorem. The functions 3@l(0,iT,e) have the 

degeneracy assumed in Theorem 5 since <9@g(0, tt, 0) = 
3@\(0,7r, e) = 0 for all 

(0, tt). Intuitively, at e = 0, any portfolio satisfies the first-order conditions since 

all assets are perfect substititutes and any price of risk, it, is consistent with 

equilibrium since the total amount of risk is zero. The Jacobian matrix 

= f ̂L(0(O),tt(O),o) j< (0(o),tt(o),o) i = r u" -u[ 
' 

' "(M)'e 
[^2e(c9(0),7T(0),0) .^C(0(O),7T(O),O) J U; u2 

has determinant ux u2 + uxu2 < 0. Therefore, all the sufficient conditions of 

Theorem 5 hold, and the Bifurcation Theorem provides a local proof of existence 

and uniqueness of solutions (0(e), 7r(e)) to (23). Theorem 7 summarizes the result. 

Theorem 7 Ifui(c) is locally analytic for c nearB?+0*, i = 1,2, andS??(0,7r,e) 
is locally analytic near a solution (0o, tto) to .9@e(0,7r, 0) = 0, then there is some 

eo > 0 such that for all e G (?eo,eo) there is a unique analytic equilibrium 
selection (0(e), 7r(e)) such that ,9^(0(e), 7r(e), e) = 0. 

The basic approach to using the Bifurcation Theorem is to guess some pa 
rameterization for the unknown functions and then use the Bifurcation Theorem 

to check that it is correct and can produce a locally analytic approximation. 
Some of the choices we made, particularly the construction of (22) and (23), 

may appear arbitrary, but their use is validated by the Bifurcation Theorem. Our 

formulation is economically intuitive. For example, (22) just says that risk pre 
mia are proportional to variance. Therefore, application of these ideas to more 

complex problems is not difficult as long as we remember the intuition behind 

our construction. There are more complex versions of the Bifurcation theorem 

which would lead more directly to (22) and (23); see Zeidler [26]. We prefer the 
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7^6 

Figure 2. Bifurcation of equilibrium correspondance 

approach used here since it is straightforward once one uses economic intuition 

to arrive at (22) and (23). 

Figure 2 displays the geometry of the bifurcation in (23). When e = 0, the 

entire 0 ? n plane constitutes an equilibrium. However, for nonzero e we have a 

locally unique equilibrium. In Figure 2 the curve ABC represents the equilibrium 
manifold. 

We can now proceed to compute asymptotic expressions for (0(e), 7r(e)). Di 

rect computation shows that the bifurcation point (0o, tt0) for (23) is defined by 

3fg\(0?, 7To, e) = 0, i = 1,2, and satisfies the linear equations: 

-w?(c1)7To + w?'(c1)0o 
= 0 (24) 

"#2)710 + U2 (C2)0O = ?2 (C2) 

where c? = 
Bf + 0\. The linear equations in (24) imply the unique candidate 

bifurcation point 

0o = 
-^-, 7To = -^- (25) 
T\ +T2 7? + T2 

where r, is evaluated at c, = 
Bf + 0\, consumption in the deterministic limit. 

These formulas for 0O and 7To are intuitive; the r, terms are the individual risk 

tolerances at e = 0, and the denominator is their sum, which is the social risk 

tolerance. The results are both very intuitive. The equilibrium risk premium is 

the inverse of total risk tolerance. Also, the fraction of equity held by investor 

1 equals his contribution to social risk tolerance. These solutions resemble the 

intuitive results from mean-variance models. 

The solution in (25) just tells us what the limit portfolio is as variance goes 
to zero. We want to know what the equilibrium portfolio is for nonzero vari 

ance. This requires computing the derivatives 0 (0) and tt (0). Further implicit 
differentiations of 3@l yield (0 (0), 7/ (0)) and any other higher-order derivative. 

Theorem 8 The first-order derivatives of the equilibrium correspondence (0(e), 

7r(e)) at e = 0 are 

0/(0) = -Il-Tl^2LZPlEszn (26) 
T\ + T2 T\ + T2 T\ + T2 

k 

A0) = 
-(-^P, 

+ 
^)-^ 

(27) 
\tx +t2 T1+T2 J (n +r2y 
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Therefore, type 1 investors increase their holdings of equity as e increases if(p\ 
? 

p2)E {z3} 
> 0, and the risk premium per unit variance decreases as e increases 

ifE{z3}>0. 

Proof Apply (6). 

theorem 8 gives us our first-order approximation 0o + e0'(O). We need to be 

clear what this tells us. For example, if 0'(O) > 0 then we know that for all 
e > 0 sufficiently close to 0O, 0(e) exceeds 0o, and that 0(e) grows at rate 0'(O). 

We know this because 0(e) is locally analytic, implying that our Taylor series 

approximations are valid for e sufficiently close to e = 0. This could be reversed 
for large e with 0(e) less than 0O. But, for sufficiently small e, equations (26) and 

(27) tell us precisely how 0(e) and tt (e) behave. 

Theorem 8 is economically intuitive. Equation (26) shows that the equity 

holdings of a type 1 investor are greater than f?0 if e is small and positive, 
if skewness, E 

{z3}, is positive, and if his skew tolerance exceeds the skew 

tolerance of type 2 investors, where we evaluate skew tolerance at the e = 0 

allocations. Equation (27) shows that the risk premium will decrease as e in 
creases (and the price of equity relative to bonds will increase) if skewness is 

positive. The magnitude of the change depends on a weighted sum of the skew 

tolerances, where the weights are the limit portfolio holdings. Notice that we 

get these results for any utility function, not just for CRRA utility functions or 

other families that have u"1 > 0. The results in Theorem 8 resemble the style of 

analysis in Jones [12]. Jones examines the impact of changes in endowments on 

equilibrium, whereas we are examining the change in asset market equilibrium 
as we move away from the deterministic case. The problems are economically 
different but the mathematical idea is the same: use implicit function theorems 
or their generalizations to analyze the impact of small changes in parameters on 

equilibrium. 
The derivatives 0 (0) or tt (0) could be zero. This does not mean that 0(e) or 

7r(e) is constant for small e. It just means that the local behavior is governed by 

higher-order terms in the expansion. For example, if E 
{z3} 

= 0, then 0 (0) = 

tt'(0) 
= 0 and the local behavior of 0(0) and ?r(0) is governed by 0"(O) and tt"(0), 

which depend on the kurtosis E 
{z4} and fourth-order properties of u(c). We do 

not pursue these higher-order issues in this paper since Theorem 8 is adequate 
for the analysis below. 

6 Asset market equilibrium with a derivative asset 

The previous section examined a market with only a bond and a stock. In this 

section, we compare markets with different asset spans. In particular, we intro 

duce a new derivative asset into the market and compute asymptotically valid 

expressions for equilibrium. The results allow us to single out important factors 

for these expressions. 

We assume that the derivative pays ey and has price q(e) in the e-economy. 
We also assume that y =/(z), which makes y a derivative security, such as an 
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option. We force the payoff of the derivative to be zero when e = 0; hence, q(0) 
= 

0. This implies no loss of generality since any portion of the asset's return which 

is deterministic given e will be equivalent to the bond, adding nothing to the asset 

span. We assume that the net supply of the derivative is zero since we want to 

model the introduction of a derivative security. For instance, y = max[0, (z 
? 

S)] 

represents a call option, and ey is the call option max[0, ez ? 
eS] with strike 

price eS. This may initially seem odd, but it is a standard option if e = 1. Also, 
if F(z) is the cdf of z then the probability of exercise, F(S), is unaffected by e. 

We decompose y into components that are spanned by the stock and bond, 
and a component orthogonal to the stock and bond. We assume 

y =y+az+v (28) 

where y is the mean of y, a is the covariance with z, the risky component of 

equity, and a nonzero random variable v is the innovation in y. Therefore, 0 = 

E {v} 
= E {z^}. This formulation implicitly assumes that markets are initially 

incomplete since we assume that v is not spanned by 1 and z For example, if 

z is a random variable with only two possible values, then the stock and bond 

span the market and there is no y =f(z) such that v in (28) is not identically 

equal to zero6. 

We compute the equilibrium holdings and prices of both assets. Let 0/ and 

Bi be the equity and bond holdings, and let </>, be the units of y held by trader / 

after trading. The final wealth for trader / is F, = 0,(\ + ez) + Bt; + (?>ley, and his 

budget constraint is 0//? +B?+(j)iq 
- 

Bf + 9\p. When we use the budget constraint 

to eliminate B?, the first-order conditions for 0/ and 0/ are 

E{u?(Yi)(l +ez -p(e))} = 0, / = 1,2 (29) 

E{ui(Yi)(ey-q(e))} 
= 0, i = l,2 

Equilibrium is defined by combining the first-order conditions of type 1 and type 
2 agents with the market clearing conditions; we shall compute the equilibrium 
values for 0,, (pi, p, and q as functions of e in some neighborhood of e = 0. Let 

0 and <?> denote 9\ and <j>\\ hence 02 = 1 - 0 and 02 
= 

?<j>. Similar to the analysis 
of previous section, 0(0) and 0(0) are indeterminate but p(0) 

= 1 and #(0) 
= 0. 

We need to determine an appropriate parameterization for this problem, just 
as we did in the case of equilibrium with one asset. We implicitly differentiate the 

four first-order conditions in (29) with respect to e, and find that differentiability 
of q and p at e = 0 requires [E {y} 

- 
qf(0)]u?((Bf 

+ 9*)) = 0 and [E {z} 
- 

pf(0)]u?((Bf + Of)) 
= 0. Therefore, if q and n are well behaved, ^'(0) 

= y and 

pf(0) 
= E {z} 

= 0. We want to solve for 0, 0, /?,and q as functions of e, at least 

in some neighborhood of e = 0, and we need /?(0) 
= 1, p'(0) 

= E {z} 
= 0 and 

q(0) 
- 

0, qf(0) 
= y. We choose the following parameterization: 

/7(e) 
= 1 - e27r(e), q(e) 

= ey 
- 

e2^(e) (30) 

6 We could add securities which generate random shocks, such as pure gambling. Since investors 

are risk averse, there is no demand for such assets. Therefore, we ignore assets with pure noise 

payoffs. 
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We next check if the parameterization in (30) is consistent with Theorem 5. 

The bifurcation point (0o, 0o, tto, V>o) is computed by solving the system of linear 

equations 

~u\ i r0o i ro '! 
0 ! 0o , = 

0 

0 j 7T0 
" 

U2o\ 
u2 J L ̂ o J L u2ayz 

which has the unique solution 

0o = 
?^ ^0 

= 0, 7T0 = ??, ^ 
= -^_. (31) 

T\ +T2 T\ + T2 Ti + T2 

The existence of solutions for 0(e), 0(e), 7r(e), and ^(e) near the bifurcation point 
is established by applying Theorem 5 at the candidate bifurcation point (31). 

Furthermore, the first-order derivatives (0'(O), 0'(O), 7r'(0), ??j'(0)), the second 

order derivatives (0"(O), </>"((0), 7r"(0), ^"(0)), and other derivatives can be 

obtained by solving linear systems of equations as long as the utility function u 

is analytic at the deterministic consumption. Since the solutions are cumbersome, 
we omit them except for the first-order derivatives. 

The results follow standard intuition. The equilibrium price of the derivative 

security is asymptotically equal to 

q(e) 
= eE {y} 

- 
e2-^- + 0(e3), (32) 

T\ +T2 

which tells us that the derivative y carries a positive risk premium (modelled 
here as a discount in the price) only if oyz > 0, that is, y is positively correlated 

with aggregate risk z. The limit price and holdings of equity are unaffected by 
the presence of the derivative, and trading volume for the derivative is zero in 

the limit. 

We see again that a key step is finding an appropriate parameterization of 

asset prices. There is no precise, generally applicable formula describing how we 

arrived at the parameterization in (30) which allowed us to apply the Bifurcation 

Theorem, but the steps we have followed in the one- and two-asset problems 
are clear. We first compute derivatives of the equilibrium equations and examine 

them to see if some terms in the Taylor series of the unknown functions are fixed. 

For example, we found that q'(0) 
= y and p'(0) 

= 0 must be true if there is to be a 

coherent Taylor expansion. If conventional IFT methods indicate the value of low 

order terms in an expansion, we then focus on the next higher-order term. Since 

q'(0) 
= y and pf(0) 

= 0, we then examined the parameterization in (30) where 

7r(e) and x?(e) became the unknown terms which could not be determined by 

applying the logic of the conventional IFT. We continued this for each unknown 

function until we reach a point where the terms in its expansion could not be 

fixed by the IFT. At that point we can apply the Bifurcation Theorem. 

" 

u[ o2 uxoyz 0 
" " 

2 
' 

Ux Oyz Ux o\ ?Ux " " 2 ' 
?2 Gyz u\ ?~z u2 

L U2 Oy U2 Oyz 0 
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6.1 Trading patterns for the derivative asset 

We next determine the trading patterns of y. Since 0(0) = 0, the value of 0'(O) 
determines the trading patterns for nonzero e. Direct computation produces The 

orem 9. 

Theorem 9 Type 1 investors buy the derivative y if and only if 

(p\ 
- 

p2)Cov(v,z2) >0. 

In general, 

,,i(Y. rXT2(p\ 
- 

p2)Cov(v,z2) 
<P (0) = 

?-3-f n (33) 
(ti+t2)3 E{v2} 

Recall that 0'(O) > 0 means that trader 1 buys and trader 2 sells the derivative 

asset y. If type 1 investors have more skew tolerance and y provides the market 

with a new risk that is positively correlated with the tails of equity returns, then 

type 1 investors buy y and type 2 investors sell it. If Cov(v,z2) > 0, the new 

asset y adds a type of riskiness that appeals to individuals with relatively high 
skew tolerance, and type 1(2) agents will buy y if p\ > p2 (p\ < p2). 

If Cov(v,z2) 
= 0 then we would need to examine (?)"(0) to determine who 

buys the derivative. We do not pursue that here since no financial institution has 

an interest in introducing a derivative with no first-order volume. We continue 

to focus on derivatives where Cov(v, z2) j^0. 

6.2 Change in equity holdings 

The derivative asset y may change investors' holdings of equity. Let 0^(e) and 

0a(e) denote the equilibrium holding of equity by type 1 investors without and 

with the derivative security.7 At e = 0, 0^(e) and 0a(e) will be the same since all 

assets will be equivalent. To compare the equilibria across these market struc 

tures, we compute the series expansion of both 9b(e) and 0a(e), and then use the 

difference in their series expansions to express the difference between the two 

market equilibria. We can do this for any index of market equilibrium. Direct 

computation shows Theorem 10. 

Theorem 10 Let 9b(e) (9a(e)) denote the equilibrium equity demand of type 1 

investors without (with) the derivative y. Then 

aa< x ob, x nr2(p\ 
- 

p2) Cov(v,z2) 2. 
9a(e) 

- 
9?(e) =-3? a e + 0(e?) (34) 

(T1+T2)3 E{u2} 

If v and z are uncorrelated, (34) reduces to zero, implying that the introduction 

of y has only 0(e) effects on the demand for the equity. If a = Cov(v,z) > 0 

then the change in type 1 investors' holding of equity is negatively related to their 

demand for y since (33) and (34) imply that 0za(e) 
- 

0z*(e) 
= - a 0'(O) + 0(e2). 

7 
Loosely speaking, 0b is equilibrium equity holding "before" introduction of y and 6a is holding 

"after" introduction. 
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6.3 Price effects of the derivative asset 

Our computations show that the equilibrium price for equity remains unchanged 
up to 0(e3) in its Taylor expansion. The fourth-order term reveals the dominant 

effect of the derivative y on the price of equity. 

Theorem 11 Let Pa(e) (Pb(e)) denote the equilibrium price of equity with (with 

out) the derivative y. The price difference is 

P"(e) - P?(e) = 
2T'7 

O 
~f E}f2\\4 

+ 0(?) > 0 
(ri+T2)5 E{u2} 

In particular, the equity rises in value and rises more as the derivative is more 

correlated to the tails of equity returns, and as investors differ more in their 

skewness tolerance. 

Theorem 11 shows the elements that affect the impact of the derivative on 

stock price. The price change is always positive, but depends on third-order 

properties of the utility function. The derivative asset y complements equity and 

allows investors to allocate tail risk independent of other risks. This makes equity 
more attractive. 

Also, the magnitude is proportional to the covariance of the derivative's 

innovation v with the extremes of equity returns. If v is uncorrelated with those 

extremes then there is no price change to the order e4. There may be a price 
effect but it would be an order of magnitude smaller asymptotically. 

6.4 Welfare effects of the derivative asset 

We next derive the effect of a derivative on the welfare of each trader. Theory 
tells us that in one-good models such as ours, individual investors may gain or 

lose utility from adding an asset, but someone must gain. Our solutions will add 

some precision to those statements. 

With the derivatives computed by the bifurcation method, we can study the 

welfare effect of the derivative y. Precisely, we shall expand the utility functions 

in terms of e and examine the dominated term. Let U^(e) and U"(e) denote trader 

/'s optimal utility levels without and with y. The utility effect can be expressed 

by [U?(e) 
- 

U^eyi/u^Bf + 0\), a measure of the welfare change in terms of 

a consumption equivalent. The following theorem summarizes the result of our 

perturbation analysis. 

Theorem 12 Let Ux(e) and Ux(e) denote the equilibrium expected utility of type 
1 investors with and without the derivative y. Then 

?/f (e) 
- 

?/*(c) _ r2r2(Pl 
- 

p2)2 (^ (0\ _ 0J\ + J_\ 
E 

{vz2}2? + ^ 
u\ 2(n+r2)6 V VTi t2J 

' 
TiJ E{v2} 

The second trader's welfare change is symmetrically expressed. 
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Again, the result corresponds to basic theory. The key term is A(9\/t\ 
? 

92/r2) 

+TJ-1, which may be positive or negative. The term 9\/t\ 
? 

92/t2 is proportional 
to the amount of equity type one investors sell to type two investors in the limit 

as e goes to zero. If there is no equity trade asymptotically then the dominant 

impact on utility is the improved opportunity for risk-sharing provided by the 

introduction of y. The risk-sharing gain is proportional to rf~x, which is absolute 

risk aversion for type / investors. If 9\/t\ 
? 

9e2/r2 ^ 0, the investor type that 

sells shares also gains from the equity price increase caused by the introduction 

of the derivative asset. So, one type gains from the price increase and the other 

loses, but both gain from new risk-sharing opportunities. One of the investors 

may lose, but not both. 

The results in Theorems 9, 10, 11, and 12 demonstrate the importance of 

higher-order expansions. Linear-quadratic expansions would completely miss all 

of the effects studied in these theorems since p = 0 for linear-quadratic utility 
functions. Approximation methods that only use the first two derivatives of util 

ity functions would incorrectly predict that adding y would have no effect on 

equilibrium. The advantage of the approach used here is that one need not make 

a choice about how many derivatives to use since that decision is automatically 
made by the power series generated by the bifurcation (and the IFT) approach. 
The mechanical computation of the power series expansions of equilibrium prices 
and quantities tells us which power of e contains the asymptotically dominant 

effects, and which derivatives of utility and which moments of returns should be 

used. 

7 Computational considerations 

The analysis above focused on applying the bifurcation method to a simple asset 

market model. The results were obtained only after much computational effort. 

Theorem 12 is a good example of why the computer is necessary. Since the effect 

of the derivative asset y on utility was zero at orders e2 and e3, we had to compute 
the fourth-order Taylor series expansion of utility. Also, equilibrium utility is a 

function of all four variables determined in equilibrium, the two premia and 

the two portfolio variables. These four equilibrium variables are locally analytic 
functions of e. Therefore, Theorem 12 required a fourth-order expansion of a 

four-dimensional function where each argument is a fourth-order Taylor series in 

e. This resulted in thousands of intermediate terms. The final result in Theorem 

12 is compact since almost all of the intermediate terms disappear when they are 

evaluated at e = 0. However, the intermediate terms must be kept until that last 

step. The computations in this paper took only a few minutes using Mathematica 

on a 400 MHz machine, but would be impossible for us to do without a computer. 
This paper used the computer to derive algebraic formulas and theoretical 

asymptotic results. The computational burden was particularly heavy since we 

were interested in general formulas expressing the results in terms of elasticities, 

shares, and prices. The computational costs will rise rapidly as we move to 

larger problems with more types of investors and/or more assets. However, as 
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we gained experience with the simple model we discovered patterns which we 

can incorporate into the code to substantially improve performance and make 

possible examination of more complex models. For example, the definitions of 

risk tolerance and skew tolerance, and the decomposition in (28) substantially 
reduced the complexity and length of the formulas. With Mathematica and these 

simplifications, we can now handle larger problems, such as problems with four 

investor types and four assets. 

The Taylor series expansions for equilibrium price correspondences p(e) and 

portfolio allocations 0(e) could also be used to arrive at numerical approximations 
for specific utility functions and asset return distributions. The bifurcation method 

then reduces to computing the numerical values of all derivatives of the equations 

defining equilibrium up to the fourth order at e = 0, and then executing numerical 

linear operations instead of symbolic operations. Since numerical operations are 

faster and more compact than symbolic operations, computing expansions for 

specific examples would be far faster. The computer could handle much larger 

problems if we specify all utility functions and returns. 

We would like to know how well these formulas do for nontrivial e. In 

general, a power series constructed by the IFT for analytic functions will have 

a positive radius of convergence, but we know nothing about its magnitude in 

general. However, there is a simple diagnostic which can help. Suppose that h(x) 
is implicitly defined by //(*, h(x)) = 0 and that we construct the degree k Taylor 
series approximation h*(x) based at jc = jco- If h*(x) is a good approximation 
to h(x) then //(jc,/?*(jc)) should be nearly zero. Once we have computed h*(x), 

we can evaluate its quality by computing H(x,h*(x)) for various values of jc. 

The behavior of H(x,h*(x)) as jc moves away from jco will indicate where the 

approximation can be trusted. Judd and Guu [14] applied this approach to similar 

approximations of stochastic growth models. We have constructed examples of 

the asset models studied in this paper for which our Taylor series approximations 
for p(e) and 0(e) imply very small Euler equation errors. Roughly, we found that 

the method does well if the disturbance z has compact support, but does poorly 
if z is log Normal, a finding consistent with the fact that making z a log Normal 

random variable makes it unlikely that H(0, e) is analytic. 
More generally, we could compare the results of our approach for large 

e with the numerical approach in Schmedders [23]. If our formulas work, then 

they would produce results faster than Schmedders [23], but our formulas will not 

work for the large e cases where Schmedders' algorith would work. There could 

be a partnership between the two approaches with our Taylor-style expansions 
used to produce an initial guess for Schmedders' algorithm. Further discussion 

and serious examination of these numerical issues must be left for another paper. 
We used Mathematica to compute our results. Space limitations prevent us 

from presenting and explaining the code here. The reader can obtain the code 

by sending e-mail to judd@hoover.stanford.edu, or by going to the webpage 

http://bucky.stanford.edu/ or the Economic Theory webpage for this paper. 
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8 Generalizations 

This paper has examined a few simple problems, but we believe that the same 

tools can be used to examine a large class of models. We briefly discuss those 

claims here. 

This paper assumed a single good, two types of agents, and only one source 

of risk. Space limitations prevent us from presenting an analysis for more general 
cases, but we can outline the general approach. Adding more types of agents and 

more assets but staying with one good is a direct generalization of the methods 

above. The equilibrium in our examples were expressed as first-order conditions 

for each agent with respect to each asset. Adding agents and assets just implies 
a longer list of first-order conditions but the key elements are unchanged: the 

deterministic consumption levels are fixed at the endowment, the price of risk, 

7T, and portfolio allocations, 0, are indeterminate in the deterministic model, 
and we can parameterize 0 so that the Bifurcation theorem applies to a system 
of equations H(ir,0,e) = 0 which include individual first-order conditions and 

market-clearing conditions. 

The generalization to several goods is more complex. Let /? be the price vector 

for goods, 7T the vector of prices of risk for the assets, and 0 the allocation of assets 

across agents. In GEI models with several goods, equilibrium can be expressed as 

the solution to a system of equations //(/?, 7r, 0, e) = 0 where the components of 

H are the agents' first-order conditions over asset and consumption choices plus 

feasibility conditions. The excess demand for assets may not exist at some prices 
because of arbitrage; therefore, H may not be continuous. However, theory tells 

us that equilibrium will generically exist. If we let e parameterize uncertainty 
then a system /Y(/?,7r,0, e) = 0 would represent equilibrium in the e-economy 
and implicitly define equilibrium maps/?(e), 7r(e), and 0(e). At e = 0, the economy 
reduces to a deterministic Arrow-Debreu general equilibrium. There will be trade 

in the goods in the deterministic limit economy, and goods' prices /?(0) will be 

determined by equilibrium conditions. Asset prices in the deterministic limit, 

q(0), will also be determined by p(0). The goods prices and asset prices would 

generically be locally determinate by the standard general equilibrium theory. 
However, the portfolio decisions 0(0) will be indeterminate in the e = 0 economy 
since all assets would be perfect substitutes. If asset prices in general can be 

represented as q = qo 
? 

e2n(e), just as in equation (22) for the two-asset case, 

then the limit prices for risk, tt(0), measured in terms of excess return per unit 

variance, will be indeterminate since the level of risk is zero. 

The geometrical structure of the GEI problem is illustrated in Figure 3. Let 

the axis labeled A denote the price simplex for goods, and the axis labeled (n, 0) 

represent the prices of risk and portfolio allocations of the risky assets. As in 

Figures 1 and 2, the e axis in Figure 3 represents the level of risk. Suppose that the 

arc ABC describes equilibrium values for /?, tt, and 0 as e changes. When e = 0, 
the problem reduces to an Arrow-Debreu model and equilibrium fixes goods' 

prices p at some point, say S, in A, but the price of risk tt and portfolio holdings 

would be indeterminate. Therefore, any point along the line SB would be an 
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M*. 6) 

Figure 3. Bifurcation diagrams for general equilibrium problems 

equilibrium. In order to analyze the arc ABC we need to find B. We analyze the 

Jacobian H(p^j) to find some suitable parameterization for p(e), 7r(e), and 0(e) 
such that the Bifurcation Theorem applies and produces B. The parameterization 

q(e) 
= qo 

- 
e27r(e) corresponds to the robust result that risk premia are related 

to the variance of risk, indicating that the Bifurcation Theorem should continue 

to apply. There may be cases where the bifurcation method used above does not 

apply, but we conjecture that this approach will often succeed since, generically, 

equilibrium does exist for endowment economies with incomplete asset markets. 

The multicommodity case would produce more complex results. For example, 
there could be a second equilibrium arc, such as A/BfC/ which corresponds to 

a second set of equilibrium prices at 8' for goods in the deterministic economy. 
That does not present any essential difficulty as long as the local properties of 

the system of equilibrium equations H(p,TT,0,e) 
= 0 satisfies the bifurcation 

theorem. Other complex possibilities may arise, such as multiple equilibrium 
arcs passing through a bifurcation point B. The bifurcation methods presented in 

this paper cannot handle such a case, but, fortunately, there are more powerful 
tools from bifurcation and singularity theory which could handle some of these 

problems. Presumably, the variety of welfare results in Hart, Elul, and Cass and 

Citanna, would also arise asymptotically in multigood economies. The key point 
is that the situation in Figure 3 is conceptually similar to the structure in Figures 
1 and 2, and basic tools from bifurcation theory should be able to handle many 

multicommodity models. 

9 Conclusion 

We have used bifurcation approximation methods to examine simple asset market 

problems with small noise. The analysis produces a mean-variance-skewness-etc. 

theory of asset demand and asset market equilibrium, and found several inter 

esting results. We found that the addition of derivative asset will increase the 

price of the underlying equity stock. Also, the demand for a derivative asset de 

pends on skewness properties of asset returns and the relative skew tolerance of 

investors. These results indicate that skewness and skew tolerance will be impor 
tant determinants of asset innovation in more general contexts and indicate that 
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results from linear-quadratic or mean-variance models are of limited relevance. 

The approach also shows that, in small noise economies, equilibrium depends on 

the utility properties of traders and the moments of returns, not on the number of 

contingent states. The asymptotic approach provides more intuitive results than 

the usual state-contingent approach. 

The mathematical tools are quite general and can be applied to far more 

complex problems. Zeidler shows that the critical bifurcation theorems hold in 

Banach spaces. For example, partial differential equations that characterize asset 

prices in continuous time can also be approximated by examining bifurcations of 

deterministic cases. The steps in such an application of the bifurcation theorem 

require the solution of linear partial differential equations. 
This paper focussed on qualitative analyses, but the expansions derived here 

could have value as a numerical method for solving specific cases; we leave that 

possibility for another study. This paper focussed on applications of bifurcation 

methods but many of the same points could be made for applications of the IFT. 

Economists are familiar with comparative statics analysis, such as that in Jones 

[12], but that is generally limited to first-order expansions. Higher-order approx 
imations could often be used to improve qualitative and quantitative analysis of 

economic models. 

The necessary mathematics for deriving expansions have been known for a 

long time, but the cumbersome algebra made them impractical until now. Fortu 

nately, the speed of modern computers and the availability of symbolic language 
software now makes bifurcation methods, and similar perturbation methods, a 

practical way to address important economic problems. 
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