
Stabilized Optimization Via
an NCL Algorithm

Ding Ma, Kenneth L. Judd, Dominique Orban
and Michael A. Saunders

Abstract For optimization problems involving many nonlinear inequality con-
straints, we extend the bound-constrained (BCL) and linearly constrained (LCL)
augmented Lagrangian approaches of LANCELOT and MINOS to an algorithm that
solves a sequence of nonlinearly constrained augmented Lagrangian subproblems
whose nonlinear constraints satisfy the LICQ everywhere. The NCL algorithm is
implemented in AMPL and tested on large instances of a tax policy model that could
not be solved directly by the state-of-the-art solvers that we tested, because of sin-
gularity in the Jacobian of the active constraints. Algorithm NCL with IPOPT as
subproblem solver proves to be effective, with IPOPT using second derivatives and
successfully warm starting each subproblem.

Keywords Stabilized optimization · LICQ · Augmented Lagrangian · BCL
NCL · Interior method · Warm start

D. Ma
Management Science and Engineering,
Stanford University, Stanford, CA, USA
e-mail: dingma@stanford.edu

K. L. Judd
Hoover Institution, Stanford University, Stanford, CA, USA
e-mail: judd@stanford.edu

D. Orban
GERAD and Department of Mathematics and Industrial Engineering,
École Polytechnique, Montréal, QC, Canada
e-mail: dominique.orban@gerad.ca

M. A. Saunders (B)
Department of Management Science and Engineering,
Stanford University, Stanford, CA, USA
e-mail: saunders@stanford.edu

© Springer International Publishing AG, part of Springer Nature 2018
M. Al-Baali et al. (eds.), Numerical Analysis and Optimization,
Springer Proceedings in Mathematics & Statistics 235,
https://doi.org/10.1007/978-3-319-90026-1_8

173

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90026-1_8&domain=pdf


Mehiddin Al-Baali • Lucio Grandinetti
Anton Purnama
Editors

Numerical Analysis
and Optimization
NAO-IV, Muscat, Oman, January 2017

123



Editors
Mehiddin Al-Baali
Department of Mathematics
and Statistics

Sultan Qaboos University
Muscat
Oman

Lucio Grandinetti
Dipartimento di Ingegneria Informatica,
Modellistica, Elettronica e Sistemistica

Calabria University
Arcavacata
Italy

Anton Purnama
Department of Mathematics
and Statistics

Sultan Qaboos University
Muscat
Oman

ISSN 2194-1009 ISSN 2194-1017 (electronic)
Springer Proceedings in Mathematics & Statistics
ISBN 978-3-319-90025-4 ISBN 978-3-319-90026-1 (eBook)
https://doi.org/10.1007/978-3-319-90026-1

Library of Congress Control Number: 2018938781

Mathematics Subject Classification (2010): 65-XX, 90-XX, 49-XX, 93-XX, 68Nxx, 97Cxx, 97Nxx,
97Pxx, 97Rxx

© Springer International Publishing AG, part of Springer Nature 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG
part of Springer Nature
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland



174 D. Ma et al.

1 Introduction

We consider constrained optimization problems of the form

NCO minimize
x∈Rn

φ(x)

subject to c(x) ≥ 0, Ax ≥ b, � ≤ x ≤ u,

whereφ(x) is a smooth nonlinear function, c(x) ∈ Rm is a vector of smooth nonlinear
functions, and Ax ≥ b is a placeholder for a set of linear inequality or equality
constraints, with x lying between lower and upper bounds � and u.

In some applications where m � n, there may be more than n constraints that
are essentially active at a solution. The constraints do not satisfy the linear inde-
pendence constraint qualification (LICQ), and general-purpose solvers are likely to
have difficulty converging. Some form of regularization is required. The stabilized
SQP methods of Wright [20] and Gill et al. [9, 10] have been developed specifically
for such problems. We achieve reliability more simply by adapting the augmented
Lagrangian algorithm of the general-purpose optimization solver LANCELOT [4, 5,
15] in the vein of Arreckx and Orban [2] to derive a sequence of regularized sub-
problems denoted in the next section by NCk .

2 BCL, LCL, and NCL Methods

The theory for the large-scale solver LANCELOT is best described in terms of the
general optimization problem

NECB minimize
x∈Rn

φ(x)

subject to c(x) = 0, � ≤ x ≤ u

with nonlinear equality constraints and bounds. We let x∗ denote a local solution
of NECB and (y∗, z∗) denote associated multipliers. LANCELOT treats NECB by
solving a sequence of bound-constrained subproblems of the form

BCk minimize
x

L(x, yk , ρk) = φ(x) − yTkc(x) + 1
2ρk‖c(x)‖2

subject to � ≤ x ≤ u,

where yk is an estimate of the Lagrange multipliers y∗ for the equality constraints.
This was called a bound-constrained Lagrangian (BCL) method by Friedlander and
Saunders [8], in contrast to the linearly constrained Lagrangian methods (LCL) of
Robinson [18] and MINOS [16], whose subproblems LCk contain bounds as in BCk



Stabilized Optimization Via an NCL Algorithm 175

and also linearizations of the equality constraints at the current point xk (including
linear constraints).

In order to treat NCO with a sequence of BCk subproblems, we convert the
nonlinear inequality constraints to equalities to obtain

NCO′ minimize
x, s

φ(x)

subject to c(x) − s = 0, Ax ≥ b, � ≤ x ≤ u, s ≥ 0

with corresponding subproblems (including linear constraints)

BCk
′ minimize

x, s
L(x, yk , ρk) = φ(x) − yTk(c(x) − s) + 1

2ρk‖c(x) − s‖2
subject to Ax ≥ b, � ≤ x ≤ u, s ≥ 0.

We now introduce variables r = −(c(x) − s) into BCk
′ to obtain the nonlinearly

constrained Lagrangian (NCL) subproblem

NCk minimize
x, r

φ(x) + yTkr + 1
2ρk‖r‖2

subject to c(x) + r ≥ 0, Ax ≥ b, � ≤ x ≤ u,

in which r serves to make the nonlinear constraints independent. (If NCO includes an
equality ci(x) = 0, NCk would contain ci(x) + ri = 0.) Assuming existence of finite
multipliers and feasibility, for ρk > 0 and larger than a certain finite value, the NCL
subproblems should cause yk to approach y∗ and most of the solution (x∗

k , r
∗
k , y

∗
k , z

∗
k )

of NCk to approach (x∗, y∗, z∗), with r∗
k approaching zero.

Problem NCk is analogous to Friedlander and Orban’s formulation for convex
quadratic programs [7, Eq. (3.2)]. See also Arreckx and Orban [2], where the moti-
vation is the same as here, achieving reliability when the nonlinear constraints do
not satisfy LICQ.

Note that for general problems NECB, the BCL and LCL subproblems contain
linear constraints (bounds only, or linearized constraints and bounds). Our NCL
formulation retains nonlinear constraints in theNCk subproblems, but simplifies them
by ensuring that they satisfy LICQ. On large problems, the additional variables r ∈
Rm inNCk maybe detrimental to active-set solvers likeMINOS or SNOPT [11] because
they increase the number of degrees of freedom (superbasic variables). Fortunately,
they are easily accommodated by interior methods, as our numerical results show
for IPOPT [12, 19]. We expect the same to be true for KNITRO [3, 14]. These solvers
are most effective when second derivatives are available, as they are for our AMPL

model.



176 D. Ma et al.

2.1 The BCL Algorithm

The LANCELOT BCL method is summarized in Algorithm BCL. Each subproblem
BCk is solved with a specified optimality tolerance ωk , generating an iterate x∗

k and
the associated Lagrangian gradient z∗

k ≡ ∇L(x∗
k , yk , ρk). If ‖c(x∗

k )‖ is sufficiently
small, the iteration is regarded as “successful” and an update to yk is computed from
x∗
k . Otherwise, yk is not altered but ρk is increased.
Keyproperties are that the subproblems are solved inexactly, the penalty parameter

is increased only finitely often, and the multiplier estimates yk need not be assumed
bounded. Under certain conditions, all iterations are eventually successful, the ρk ’s
remain constant, the iterates converge superlinearly, and the algorithm terminates in
a finite number of iterations [4].

Algorithm 1 BCL (Bound-Constrained Lagrangian Method for NECB)
1: procedure BCL(x0, y0, z0)
2: Set penalty parameter ρ1 > 0, scale factor τ > 1, and constants α, β > 0 with α < 1.
3: Set positive convergence tolerances η∗, ω∗ � 1 and infeasibility tolerance η1 > η∗.
4: k ← 0, converged ← false
5: repeat
6: k ← k + 1
7: Choose optimality tolerance ωk > 0 such that limk→∞ ωk ≤ ω∗.
8: Find (x∗

k , z
∗
k ) that solves BCk to within ωk .

9: if ‖c(x∗
k )‖ ≤ max(η∗, ηk ) then

10: y∗
k ← yk − ρkc(x∗

k )

11: xk ← x∗
k , yk ← y∗

k , zk ← z∗k update solution estimates
12: if (xk , yk , zk ) solves NECB to within ω∗, converged ← true
13: ρk+1 ← ρk keep ρk

14: ηk+1 ← ηk/(1 + ρ
β

k+1) decrease ηk
15: else
16: ρk+1 ← τρk increase ρk
17: ηk+1 ← η0/(1 + ρα

k+1) may increase or decrease ηk
18: end if
19: until converged
20: x∗ ← xk , y∗ ← yk , z∗ ← zk
21: end procedure

Note that at step 8 of Algorithm BCL, the inexact minimization would typically
use the initial guess (x∗

k , z
∗
k ). However, other initial points are possible. At step 12,

we say that (xk , yk , zk) solves NECB to within ω∗ if the largest dual infeasibility is
smaller than ω∗.



Stabilized Optimization Via an NCL Algorithm 177

Algorithm 2 NCL (Nonlinearly Constrained Lagrangian Method for NCO)
1: procedure NCL(x0, r0, y0, z0)
2: Set penalty parameter ρ1 > 0, scale factor τ > 1, and constants α, β > 0 with α < 1.
3: Set positive convergence tolerances η∗, ω∗ � 1 and infeasibility tolerance η1 > η∗.
4: k ← 0, converged ← false
5: repeat
6: k ← k + 1
7: Choose optimality tolerance ωk > 0 such that limk→∞ ωk ≤ ω∗.
8: Find (x∗

k , r
∗
k , y

∗
k , z

∗
k ) that solves NCk to within ωk .

9: if ‖r∗k ‖ ≤ max(η∗, ηk ) then
10: y∗

k ← yk + ρk r∗k
11: xk ← x∗

k , rk ← r∗k , yk ← y∗
k , zk ← z∗k update solution estimates

12: if (xk , yk , zk ) solves NCO to within ω∗, converged ← true
13: ρk+1 ← ρk keep ρk

14: ηk+1 ← ηk/(1 + ρ
β

k+1) decrease ηk
15: else
16: ρk+1 ← τρk increase ρk
17: ηk+1 ← η0/(1 + ρα

k+1) may increase or decrease ηk
18: end if
19: until converged
20: x∗ ← xk , r∗ ← rk , y∗ ← yk , z∗ ← zk
21: end procedure

2.2 The NCL Algorithm

To derive a stabilized algorithm for problem NCO, we modify Algorithm BCL by
introducing r and replacing the subproblems BCk by NCk . The resulting method is
summarized in Algorithm NCL. The update to yk becomes y∗

k ← yk − ρk(c(x∗
k ) −

s∗k) = yk + ρkr∗
k , the value satisfied by an optimal y∗

k for subproblem NCk . Step 8 of
Algorithm NCL would typically use (x∗

k , r
∗
k , y

∗
k , z

∗
k ) as initial guess, and that is what

we use in our implementation below.

3 An Application: Optimal Tax Policy

Some challenging test cases arise from the tax policy models described in [13]. With
x = (c, y), they take the form

TAX maximize
c, y

∑
i λiU i(ci, yi)

subject to Ui(ci, yi) −Ui(cj, yj) ≥ 0 for all i, j
λT (y − c) ≥ 0

c, y ≥ 0,



178 D. Ma et al.

where ci and yi are the consumption and income of taxpayer i, and λ is a vector of
positive weights. The utility functions Ui(ci, yi) are each of the form

U (c, y) = (c − α)1−1/γ

1 − 1/γ
− ψ

(y/w)1/η+1

1/η + 1
,

where w is the wage rate and α, γ , ψ , and η are taxpayer heterogeneities. More
precisely, the utility functions are of the form

Ui,j,k,g,h(cp,q,r,s,t, yp,q,r,s,t) = (cp,q,r,s,t − αk)
1−1/γh

1 − 1/γh
− ψg

(yp,q,r,s,t/wi)
1/ηj+1

1/ηj + 1
,

where (i, j, k, g, h) and (p, q, r, s, t) run over na wage types, nb elasticities of
labor supply, nc basic need types, nd levels of distaste for work, and ne elastici-
ties of demand for consumption, with na, nb, nc, nd , ne determining the size of
the problem, namely m = T (T − 1) nonlinear constraints, n = 2T variables, with
T := na × nb × nc × nd × ne.

Table1 summarizes results for a 4D example (ne = 1 and γ1 = 1). The first term
of U (c, y) becomes log(c − α), the limit as γ → 1. Problem NCO and Algorithm
NCL were formulated in the AMPL modeling language [6]. The solvers SNOPT [11]
and IPOPT [19] were unable to solve NCO itself, but Algorithm NCL was successful
with IPOPT solving the subproblems NCk . We use a default configuration of IPOPT
with MUMPS [1] as symmetric indefinite solver to compute search directions. We set
the optimality tolerance for IPOPT toωk = ω∗ = 10−6 throughout and specifiedwarm
starts for k ≥ 2 using options warm_start_init_point=yes and mu_init=1e-4. These
options greatly improved the performance of IPOPT on each subproblem compared
to cold starts, for which mu_init=0.1. It is helpful that only the objective function of
NCk changes with k.

Table 1 NCL results on a 4D example with na, nb, nc, nd = 11, 3, 3, 2, giving m = 39006, n =
395. Itns refers to IPOPT’s primal-dual interior point method, and time is seconds on an Apple
iMac with 2.93 GHz Intel Core i7

k ρk ηk ‖r∗k ‖∞ φ(x∗
k ) Itns Time

1 102 10−2 3.1e − 03 −2.1478532e + 01 125 42.8

2 102 10−3 1.3e − 03 −2.1277587e + 01 18 6.5

3 103 10−3 6.6e − 04 −2.1177152e + 01 27 9.1

4 103 10−4 5.5e − 04 −2.1110210e + 01 31 10.8

5 104 10−4 2.9e − 04 −2.1066664e + 01 57 24.3

6 105 10−4 6.5e − 05 −2.1027152e + 01 75 26.8

7 105 10−5 5.2e − 05 −2.1018896e + 01 130 60.9

8 106 10−5 9.3e − 06 −2.1015295e + 01 159 81.8

9 106 10−6 2.0e − 06 −2.1014808e + 01 139 70.0

10 107 10−6 2.1e − 07 −2.1014800e + 01 177 97.6



Stabilized Optimization Via an NCL Algorithm 179

For this example, problem NCO hasm = 39,006 nonlinear inequality constraints
and one linear constraint in n = 395 variables x = (c, y), and nonnegativity bounds.
SubproblemNCk has 39,007 constraints and39,402variableswhen r is included. For-
tunately, r does not affect the complexity of each IPOPT iteration, but greatly improves
stability. In contrast, active-set methods like MINOS and SNOPT are very inefficient
on the NCk subproblems because the large number of inequality constraints leads
to thousands of minor iterations, and the presence of r (with no bounds) leads to
thousands of superbasic variables. About 3.2n constraints were within 10−6 of being
active.

Table2 summarizes results for a 5D example. The NCk subproblems have m =
32,220 nonlinear constraints and n = 360 variables, leading to 32,581 variables
including r. Again the options warm_start_init_point=yes and mu_init=1e-4 for k ≥
2 led to good performance by IPOPT on each subproblem. About 3n constraints were
within 10−6 of being active.

Table 2 NCL results on a 5D example with na, nb, nc, nd , ne = 5, 3, 3, 2, 2, giving m = 32220,
n = 360

k ρk ηk ‖r∗k ‖∞ φ(x∗
k ) Itns Time

1 102 10−2 7.0e − 03 −4.2038075e + 02 95 41.1

2 102 10−3 4.1e − 03 −4.2002898e + 02 17 7.2

3 103 10−3 1.3e − 03 −4.1986069e + 02 20 8.1

4 104 10−3 4.4e − 04 −4.1972958e + 02 48 25.0

5 104 10−4 2.2e − 04 −4.1968646e + 02 43 20.5

6 105 10−4 9.8e − 05 −4.1967560e + 02 64 32.9

7 105 10−5 6.6e − 05 −4.1967177e + 02 57 26.8

8 106 10−5 4.2e − 06 −4.1967150e + 02 87 46.2

9 106 10−6 9.4e − 07 −4.1967138e + 02 96 53.6

Table 3 NCL results on a 5D example with na, nb, nc, ne, ne = 21, 3, 3, 2, 2, givingm = 570780,
n = 1512

k ρk ηk ‖r∗k ‖∞ φ(x∗
k ) mu_init Itns Time

1 102 10−2 5.1e − 03 −1.7656816e + 03 10−1 825 7763.3

2 102 10−3 2.4e − 03 −1.7648480e + 03 10−4 66 472.8

3 103 10−3 1.3e − 03 −1.7644006e + 03 10−4 106 771.3

4 104 10−3 3.8e − 04 −1.7639491e + 03 10−5 132 1347.0

5 104 10−4 3.2e − 04 −1.7637742e + 03 10−5 229 2450.9

6 105 10−4 8.6e − 05 −1.7636804e + 03 10−6 104 1096.9

7 105 10−5 4.9e − 05 −1.7636469e + 03 10−6 143 1633.4

8 106 10−5 1.5e − 05 −1.7636252e + 03 10−7 71 786.1

9 107 10−5 2.8e − 06 −1.7636196e + 03 10−7 67 725.7

10 107 10−6 5.1e − 07 −1.7636187e + 03 10−8 18 171.0



180 D. Ma et al.

For much larger problems of this type, we found that it was helpful to reduce
mu_init more often, as illustrated in Table3. The NCk subproblems here have m =
570, 780 nonlinear constraints and n = 1512 variables, leading to 572,292 variables
including r. Note that the number of NCL iterations is stable (k ≤ 10), and IPOPT

performs well on each subproblem with decreasing mu_init. This time about 6.6n
constraints were within 10−6 of being active.

Note that the LANCELOT approach allows early subproblems to be solved less
accurately [4]. It may save time to setωk = ηk (say) rather thanωk = ω∗ throughout.

4 Conclusions

This work has been illuminating in several ways as we sought to improve our ability
to solve examples of problem TAX.

• Small examples of the tax model solve efficiently with MINOS and SNOPT, but
eventually fail to converge as the problem size increases.

• IPOPT also solves small examples efficiently, but eventually starts requesting addi-
tional memory for the MUMPS sparse linear solver. The solver may freeze, or the
iterations may diverge.

• The NCk subproblems are not suitable for MINOS or SNOPT because of the
large number of variables (x, r) and the resulting number of superbasic variables
(although warm starts are natural).

• It is often said that interior methods cannot be warm started. Nevertheless, IPOPT
has several runtime options that have proved to be extremely helpful for imple-
menting Algorithm NCL. For the results obtained here, it has been sufficient to
say that warm starts are wanted for k > 1, and that the IPOPT barrier parameter
should be initialized at decreasing values for later k (where only the objective of
subproblem NCk changes with k).

• The numerical examples of Sect. 3 had 3n, 3n, and 6.6n constraints essentially
active at the solution, yet were solved successfully. They suggest that the NCL
approach with an interior method as subproblem solver can overcome LICQ dif-
ficulties on problems that could not be solved directly.

Funding
This work was supported by the National Institute of General Medical Sciences of
the National Institutes of Health [award U01GM102098] (DM and MAS) and an
NSERC Discovery Grant (DO).

Acknowledgements We are extremely grateful to the developers of AMPL and IPOPT for making
the development and evaluation of AlgorithmNCL possible.We are especially grateful toMehiddin
Al-Baali and other organizers of the NAO-IV conference Numerical Analysis and Optimization at
SultanQaboosUniversity,Muscat,Oman,which brought the authors andAMPLdevelopers together
in January 2017. We also thank the reviewer for final helpful suggestions.



Stabilized Optimization Via an NCL Algorithm 181

Appendix A ampl Models, Data, and Scripts

AlgorithmNCLhas been implemented in the AMPLmodeling language [6] and tested
on problem TAX. The following sections list each relevant file. The files are available
from [17].

A.1 Tax Model

File pTax5Dncl.mod codes subproblem NCk for problem TAX with five parame-
tersw,η,α,ψ , γ , usingμ := 1/η. Note that forU (c, y) in the objective and constraint
functions, the first term (c − α)1−1/γ /(1 − 1/γ ) is replaced by a piecewise-smooth
function that is defined for all values of c and α (see [13]).

Primal regularization 1
2δ‖(c, y)‖2 with δ = 10−8 is added to the objective function

to promote uniqueness of the minimizer. The vector r is called R to avoid a clash
with subscript r.

1 # pTax5Dncl.mod
2

3 # Define parameters for agents (taxpayers)
4 param na; # number of types in wage
5 param nb; # number of types in eta
6 param nc; # number of types in alpha
7 param nd; # number of types in psi
8 param ne; # number of types in gamma
9 set A := 1..na; # set of wages

10 set B := 1..nb; # set of eta
11 set C := 1..nc; # set of alpha
12 set D := 1..nd; # set of psi
13 set E := 1..ne; # set of gamma
14 set T = {A,B,C,D,E}; # set of agents
15

16 # Define wages for agents (taxpayers)
17 param wmin; # minimum wage level
18 param wmax; # maximum wage level
19 param w {A}; # i, wage vector
20 param mu{B}; # j, mu = 1/eta# mu vector
21 param mu1{B}; # mu1[j] = mu[j] + 1
22 param alpha{C}; # k, ak vector for utility
23 param psi{D}; # g
24 param gamma{E}; # h
25 param lambda{A,B,C,D,E}; # distribution density
26 param epsilon;
27 param primreg default 1e-8; # Small primal
28 regularization
29

30 var y{(i,j,k,g,h) in T} >= 0.1; # consumption for
31 tax payer
32 (i,j,k,g,h)



182 D. Ma et al.

33 var y{(i,j,k,g,h) in T} >= 0.1; # income for
34 tax payer
35 (i,j,k,g,h)
36 var R{(i,j,k,g,h) in T, (p,q,r,s,t) in T:
37 !(i=p and j=q and k=r and g=s and h=t)}
38 >= -1e+20, <= 1e+20;
39

40 param kmax default 20; # limit on
41 NCL itns
42 param rhok default 1e+2; # augmented
43 Lagrangian penalty
44 parameter
45 param rhofac default 10.0; # increase
46 factor
47 param rhomax default 1e+8; # biggest rhok
48 param etak default 1e-2; # opttol for
49 augmented
50 Lagrangian loop
51 param etafac default 0.1; # reduction factor for
52 opttol
53 param etamin default 1e-8; # smallest etak
54 param rmax default 0; # max r (for printing)
55

56 param rmin default 0; # min r (for printing)
57

58 param rnorm default 0; # ||r||_inf
59 param rtol default 1e-6; # quit if biggest
60 |r_i| <= rtol
61

62 param nT default 1; # nT = na*nb
63 *nc*nd*ne
64 param m default 1; # nT*(nT-1)
65 = no. of nonlinear
66 constraints
67 param n default 1; # 2*nT
68 = no. of nonlinear
69 variables
70

71 param ck{(i,j,k,g,h) in T} default 0;
72 # current variable c
73 param yk{(i,j,k,g,h) in T} default 0;
74 # current variable y
75 param rk{(i,j,k,g,h) in T, (p,q,r,s,t) in T:
76 # current variable r = - (c(x) - s)
77 !(i=p and j=q and k=r and g=s and h=t)} default 0;
78 param dk{(i,j,k,g,h) in T, (p,q,r,s,t) in T:
79 # current dual variables (y_k)
80 !(i=p and j=q and k=r and g=s and h=t)} default 0;
81

82 minimize f:
83 sum{(i,j,k,g,h) in T}



Stabilized Optimization Via an NCL Algorithm 183

84 (
85 (if c[i,j,k,g,h] - alpha[k] >= epsilon then
86 - lambda[i,j,k,g,h] *
87 ((c[i,j,k,g,h] - alpha[k])
88 ^(1-1/gamma[h]) / (1-1/gamma[h])
89 - psi[g]*(y[i,j,k,g,h]/w[i])
90 ^mu1[j] / mu1[j])
91 else
92 - lambda[i,j,k,g,h] *
93 (- 0.5/gamma[h] * epsilon ^(-1/gamma[h]-1)
94 * (c[i,j,k,g,h] - alpha[k])^2
95 + ( 1+1/gamma[h])* epsilon ^(-1/gamma[h] )
96 * (c[i,j,k,g,h] - alpha[k])
97 + (1/(1-1/gamma[h]) - 1 - 0.5/gamma[h])
98 * epsilon ^(1-1/gamma[h])
99 - psi[g]*(y[i,j,k,g,h]/w[i])

100 ^mu1[j] / mu1[j])
101 )
102 + 0.5 * primreg * (c[i,j,k,g,h]^2
103 + y[i,j,k,g,h]^2)
104 )
105 + sum{(i,j,k,g,h) in T, (p,q,r,s,t) in
106 T: !(i=p and j=q and k=r and g=s and h=t)}
107 (dk[i,j,k,g,h,p,q,r,s,t]
108 * R[i,j,k,g,h,p,q,r,s,t]
109 + 0.5 * rhok
110 * R[i,j,k,g,h,p,q,r,s,t]^2);
111

112 subject to
113

114 Incentive {(i,j,k,g,h) in T, (p,q,r,s,t) in T:
115 !(i=p and j=q and k=r and g=s and h=t)}:
116 (if c[i,j,k,g,h] - alpha[k] >= epsilon then
117 (c[i,j,k,g,h] - alpha[k])
118 ^(1-1/gamma[h]) / (1-1/gamma[h])
119 - psi[g]*(y[i,j,k,g,h]/w[i])
120 ^mu1[j] / mu1[j]
121 else
122 - 0.5/gamma[h] *epsilon^(-1/gamma[h]-1)
123 *(c[i,j,k,g,h] - alpha[k])^2
124 + (1+1/gamma[h])*epsilon^(-1/gamma[h] )
125 *(c[i,j,k,g,h] - alpha[k])
126 + (1/(1-1/gamma[h]) - 1 - 0.5/gamma[h])
127 *epsilon ^(1-1/gamma[h])
128 - psi[g]*(y[i,j,k,g,h]/w[i])^mu1[j]
129 / mu1[j]
130 )
131 - (if c[p,q,r,s,t] - alpha[k] >= epsilon then
132 (c[p,q,r,s,t] - alpha[k])^(1-1/gamma[h])
133 / (1-1/gamma[h])
134 - psi[g]*(y[p,q,r,s,t]/w[i])^mu1[j] / mu1[j]



184 D. Ma et al.

135 else
136 - 0.5/gamma[h] *epsilon^(-1/gamma[h]-1)
137 *(c[p,q,r,s,t] - alpha[k])^2
138 + (1+1/gamma[h])*epsilon^(-1/gamma[h] )
139 *(c[p,q,r,s,t] - alpha[k])
140 + (1/(1-1/gamma[h]) - 1 - 0.5/gamma[h])
141 *epsilon ^(1-1/gamma[h])
142 - psi[g]*(y[p,q,r,s,t]/w[i])^mu1[j] / mu1[j]
143 )
144 + R[i,j,k,g,h,p,q,r,s,t] >= 0;
145

146 Technology:
147 sum{(i,j,k,g,h) in T} lambda[i,j,k,g,h]
148 *(y[i,j,k,g,h] - c[i,j,k,g,h]) >= 0;

A.2 Tax Model Data

File pTax5Dncl.dat provides data for a specific problem.

1 # pTax5Dncl.dat
2

3 data;
4

5 let na := 5;
6 let nb := 3;
7 let nc := 3;
8 let nd := 2;
9 let ne := 2;

10

11 # Set up wage dimension intervals
12 let wmin := 2;
13 let wmax := 4;
14 let {i in A} w[i] := wmin + ((wmax-wmin)
15 /(na-1))*(i-1);
16

17 data;
18

19 param mu :=
20 1 0.5
21 2 1
22 3 2 ;
23

24 # Define mu1
25 let {j in B} mu1[j] := mu[j] + 1;
26

27 data;
28

29 param alpha :=



Stabilized Optimization Via an NCL Algorithm 185

30 1 0
31 2 1
32 3 1.5;
33

34 param psi :=
35 1 1
36 2 1.5;
37

38 param gamma :=
39 1 2
40 2 3;
41

42 # Set up 5 dimensional distribution
43 let {(i,j,k,g,h) in T} lambda[i,j,k,g,h] := 1;
44

45 # Choose a reasonable epsilon
46 let epsilon := 0.1;

A.3 Initial Values

File pTax5Dinitial.run solves a simplified model to compute starting values
for Algorithm NCL. The nonlinear inequality constraints are removed, and y = c is
enforced. This model solves easily with MINOS or SNOPT on all cases tried. Solution
values are output to file p5Dinitial.dat.

1 # pTax5Dinitial.run
2

3 # Define parameters for agents (taxpayers)
4 param na := 5; # number of types in wage
5 param nb := 3; # number of types in eta
6 param nc := 3; # number of types in alpha
7 param nd := 2; # number of types in psi
8 param ne := 2; # number of types in gamma
9 set A := 1..na; # set of wages

10 set B := 1..nb; # set of eta
11 set C := 1..nc; # set of alpha
12 set D := 1..nd; # set of psi
13 set E := 1..ne; # set of gamma
14 set T = {A,B,C,D,E}; # set of agents
15

16 # Define wages for agents (taxpayers)
17 param wmin := 2; # minimum wage level
18 param wmax := 4; # maximum wage level
19 param w {i in A} := wmin + ((wmax-wmin)
20 /(na-1))*(i-1); # wage vector
21

22 # Choose a reasonable epsilon



186 D. Ma et al.

23 param epsilon := 0.1;
24

25 # mu vector
26 param mu {B}; # mu = 1/eta
27 param mu1{B}; # mu1[j] = mu[j] + 1
28 param alpha {C};
29 param gamma {E};
30 param psi {D};
31

32 var c {(i,j,k,g,h) in T} >= 0.1;
33 var y {(i,j,k,g,h) in T} >= 0.1;
34

35 maximize f: sum{(i,j,k,g,h) in T}
36 if c[i,j,k,g,h] - alpha[k] >= epsilon then
37 (c[i,j,k,g,h] - alpha[k])^(1-1/gamma[h])
38 / (1-1/gamma[h])
39 - psi[g] * (y[i,j,k,g,h]/w[i])^mu1[j] / mu1[j]
40 else
41 - 0.5/gamma[h] *epsilon ^(-1/gamma[h]-1)
42 *(c[i,j,k,g,h] - alpha[k])^2
43 + (1+1/gamma[h])*epsilon ^(-1/gamma[h])
44 *(c[i,j,k,g,h] - alpha[k])
45 + (1/(1-1/gamma[h]) -1 - 0.5/gamma[h])
46 *epsilon ^(1-1/gamma[h])
47 - psi[g] * (y[i,j,k,g,h]/w[i])^mu1[j] / mu1[j];
48

49 subject to
50 Budget {(i,j,k,g,h) in T}: y[i,j,k,g,h]
51 - c[i,j,k,g,h] = 0;
52

53 let {(i,j,k,g,h) in T} y[i,j,k,g,h] := i+1;
54 let {(i,j,k,g,h) in T} c[i,j,k,g,h] := i+1;
55

56 data;
57

58 param mu :=
59 1 0.5
60 2 1
61 3 2 ;
62

63 # Define mu1
64 let {j in B} mu1[j] := mu[j] + 1;
65

66 data;
67

68 param alpha :=
69 1 0
70 2 1
71 3 1.5;
72

73 param psi :=



Stabilized Optimization Via an NCL Algorithm 187

74 1 1
75 2 1.5;
76

77 param gamma :=
78 1 2
79 2 3;
80

81 option solver snopt;
82 option show_stats 1;
83

84 option snopt_options ’ \
85 summary_file=6 \
86 print_file=9 \
87 scale=no \
88 print_level=0 \
89 major_iterations=2000\
90 iterations=50000 \
91 optimality_tol=1e-7 \
92 *penalty=100.0 \
93 superbasics_limit=3000\
94 solution=yes \
95 *verify_level=3 \
96 ’;
97

98

99 display na ,nb ,nc ,nd ,ne;
100 solve;
101 display na ,nb ,nc ,nd ,ne;
102 display y,c >p5Dinitial.dat;
103 close p5Dinitial.dat;

A.4 NCL Implementation

File pTax5Dnclipopt.run uses files
pTax5Dinitial.run
pTax5Dncl.mod
pTax5Dncl.dat
pTax5Dinitial.dat

to implement Algorithm NCL. Subproblems NCk are solved in a loop until ‖r∗
k ‖∞ ≤

rtol = 1e-6, or ηk has been reduced to parameter etamin = 1e-8, or ρk

has been increased to parameter rhomax = 1e+8. The loop variable k is called
K to avoid a clash with subscript k in the model file. The definitions of etak and
rhok inside the loop are simpler than (but similar to) the settings of ηk and ρk in
Algorithm 2.



188 D. Ma et al.

Optimality tolerance ωk = ω∗ = 10−6 is used throughout to ensure that the solu-
tion of the final subproblem NCk will be close to a solution of the original problem
if ‖r∗

k ‖∞ is small enough for the final k (‖r∗
k ‖∞ ≤ rtol = 1e-6).

IPOPT is used to solve each subproblem NCk , with runtime options set to imple-
ment increasingly warm starts.

1 # pTax5Dnclipopt.run
2

3 reset; model pTax5Dinitial.run;
4 reset; model pTax5Dncl.mod;
5 data pTax5Dncl.dat;
6 data; var include p5Dinitial.dat;
7

8 model;
9 option solver ipopt;

10 option show_stats 1;
11

12 option ipopt_options ’\
13 dual_inf_tol=1e-6 \
14 max_iter=5000 \
15 ’;
16

17 option opt2 $ipopt_options ’ warm_start_init_point
18 =yes’;
19

20 # NCL method.
21 # kmax , rhok , rhofac , rhomax , etak , etafac ,
22 etamin , rtol
23 # are defined in the .mod file.
24

25 printf "NCLipopt log for pTax5D\n" > 5DNCLipopt.log;
26 display na , nb , nc , nd , ne , primreg > 5DNCLipopt.log;
27 printf " k rhok etak rnorm
28 Obj\n" > 5DNCLipopt.log;
29

30 for {K in 1..kmax}
31 { display na , nb , nc , nd , ne , primreg , K, kmax ,
32 rhok , etak;
33 if K == 2 then {option ipopt_options
34 $opt2 ’ mu_init=1e-4’};
35 if K == 4 then {option ipopt_options
36 $opt2 ’ mu_init=1e-5’};
37 if K == 6 then {option ipopt_options
38 $opt2 ’ mu_init=1e-6’};
39 if K == 8 then {option ipopt_options
40 $opt2 ’ mu_init=1e-7’};
41 if K ==10 then {option ipopt_options
42 $opt2 ’ mu_init=1e-8’};
43



Stabilized Optimization Via an NCL Algorithm 189

44 display $ipopt_options;
45 solve;
46

47 let rmax := max({(i,j,k,g,h) in T, (p,q,r,s,t)
48 in T:
49 !(i=p and j=q and k=r and g=s and h=t)}
50 R[i,j,k,g,h,p,q,r,s,t]);
51 let rmin := min({(i,j,k,g,h) in T, (p,q,r,s,t)
52 in T:
53 !(i=p and j=q and k=r and g=s and h=t)}
54 R[i,j,k,g,h,p,q,r,s,t]);
55 display na , nb , nc , nd , ne , primreg , K, rhok ,
56 etak , kmax;
57 display K, kmax , rmax , rmin;
58 let rnorm := max(abs(rmax), abs(rmin));
59 # ||r||_inf
60

61 printf "%4i %9.1e %9.1e %9.1e %15.7e\n",
62 K, rhok , etak , rnorm , f >> 5DNCLipopt.log;
63 close 5DNCLipopt.log;
64

65 if rnorm <= rtol then
66 { printf "Stopping: rnorm is small\n";
67 display K, rnorm; break; }
68

69 if rnorm <= etak then # update dual estimate dk;
70 save new solution
71 {let {(i,j,k,g,h) in T, (p,q,r,s,t) in T:
72 !(i=p and j=q and k=r and g=s and h=t)}
73 dk[i,j,k,g,h,p,q,r,s,t] :=
74 dk[i,j,k,g,h,p,q,r,s,t] + rhok
75 *R[i,j,k,g,h,p,q,r,s,t];
76 let {(i,j,k,g,h) in T} ck[i,j,k,g,h] :=
77 c[i,j,k,g,h];
78 let {(i,j,k,g,h) in T} yk[i,j,k,g,h] :=
79 y[i,j,k,g,h];
80 display K, etak;
81 if etak == etamin then { printf "Stopping:
82 etak = etamin\n"; break; }
83 let etak := max(etak*etafac , etamin);
84 display etak;
85 }
86 else # keep previous solution; increase rhok
87 { let {(i,j,k,g,h) in T} c[i,j,k,g,h] :=
88 ck[i,j,k,g,h];
89 let {(i,j,k,g,h) in T} y[i,j,k,g,h] :=
90 yk[i,j,k,g,h];
91 display K, rhok;
92 if rhok == rhomax then { printf "Stopping:
93 rhok = rhomax\n"; break; }
94 let rhok := min(rhok*rhofac , rhomax);



190 D. Ma et al.

95 display rhok;
96 }
97 }
98

99 display c,y; display na , nb , nc , nd , ne , primreg ,
100 rhok , etak , rnorm;
101

102 # Count how many constraint are close to being active.
103 data;
104 let nT := na*nb*nc*nd*ne; let m := nT*(nT-1);
105 let n := 2*nT;
106 let etak := 1.0001e-10;
107 printf "\n m = %8i\n n = %8i\n", m, n >>
108 5DNCLipopt.log;
109 printf "\n Constraints within tol of being
110 active\n\n" >> 5DNCLipopt.log;
111 printf " tol count count/n\n" >>
112 5DNCLipopt.log;
113

114 for {K in 1..10}
115 { let kmax := card{(i,j,k,g,h) in T, (p,q,r,s,t) in T:
116 !(i=p and j=q and k=r and g=s
117 and h=t)
118 and Incentive[i,j,k,g,h,p,q,r,s,t].
119 slack <= etak};
120 printf "%9.1e %8i %8.1f\n", etak , kmax ,
121 kmax/n >> 5DNCLipopt.log;
122 let etak := etak*10.0;
123 }
124 printf "Created 5DNCLipopt.log\n";

References

1. Amestoy, Patrick R., Duff, Iain S., L’Excellent, Jean-Yves, Koster, Jacko: A fully asynchronous
multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl. 23(1),
15–41 (2001)

2. Arreckx, S., Orban D.: A regularized factorization-free method for equality-constrained opti-
mization. Technical report GERAD G-2016-65. GERAD, Montréal, QC, Canada (2016)

3. Byrd, Richard H., Nocedal, Jorge, Waltz, Richard A.: Knitro: an integrated package for non-
linear optimization. In: Di Pillo, G., Roma, M. (eds.) Large-Scale Nonlinear Optimization, pp.
35–59. Springer, US, Boston, MA (2006)

4. Conn,A.R.,Gould,N.I.M., Toint, PhL:Aglobally convergent augmentedLagrangian algorithm
for optimization with general constraints and simple bounds. SIAM J. Numer. Anal. 28, 545–
572 (1991)

5. Conn, A.R., Gould, N.I.M., Toint, PhL.: LANCELOT: a fortran package for large-scale nonlin-
ear optimization (release A). Lecture Notes in Computational Mathematics, vol. 17. Springer,
Berlin, Heidelberg, New York, London, Paris and Tokyo (1992)

6. Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL: A Modeling Language for Mathematical
Programming, 2nd edn. Pacific Grove, Brooks/Cole (2002)



Stabilized Optimization Via an NCL Algorithm 191

7. Friedlander, M.P., Orban, D.: A primal-dual regularized interior-point method for convex
quadratic programs. Math. Prog. Comp. 4(1), 71–107 (2012)

8. Friedlander, M.P., Saunders, M.A.: A globally convergent linearly constrained Lagrangian
method for nonlinear optimization. SIAM J. Optim. 15(3), 863–897 (2005)

9. Gill, P.E., Kungurtsev, V., Robinson, D.P.: A stabilized SQPmethod: global convergence. IMA
J. Numer. Anal. 37, 407–443 (2017)

10. Gill, P.E., Kungurtsev, V., Robinson, D.P.: A stabilized SQP method: superlinear convergence.
Math. Program. Ser. A 163, 369–410 (2017)

11. Gill, P.E., Murray, W., Saunders, M.A.: SNOPT: an SQP algorithm for large-scale constrained
optimization. SIAM Rev. 47(1), 99–131 (2005). SIGEST article

12. IPOPT open source NLP solver. https://projects.coin-or.org/Ipopt
13. Judd, K.L.,Ma, D., Saunders,M.A., Su, C.-L.: Optimal income taxationwithmultidimensional

taxpayer types. Working paper. Hoover Institution, Stanford University (2017)
14. KNITRO optimization software. https://www.artelys.com/tools/knitro_doc/2_userGuide.html
15. LANCELOT optimization software. http://www.numerical.rl.ac.uk/lancelot/blurb.html
16. Murtagh, B.A., Saunders, M.A.: A projected Lagrangian algorithm and its implementation for

sparse nonlinear constraints. Math. Program. Study 16, 84–117 (1982)
17. NCL: http://stanford.edu/group/SOL/multiscale/models/NCL/
18. Robinson, S.M.: A quadratically-convergent algorithm for general nonlinear programming

problems. Math. Program. 3, 145–156 (1972)
19. Wächter, A., Biegler, L.T.: On the implementation of a primal-dual interior point filter line

search algorithm for large-scale nonlinear programming. Math. Program. 106(1) (2006)
20. Wright, S.J.: Superlinear convergence of a stabilized SQP method to a degenerate solution.

Comput. Optim. Appl. 11, 253–275 (1998)

https://projects.coin-or.org/Ipopt
https://www.artelys.com/tools/knitro_doc/2_userGuide.html
http://www.numerical.rl.ac.uk/lancelot/blurb.html
http://stanford.edu/group/SOL/multiscale/models/NCL/

	Preface
	In Memory of Roger Fletcher and Michael Powell Compilation of Notes from Former Students and Colleagues
	Contents
	Contributors
	Quasi-Newton Based Preconditioning and Damped Quasi-Newton Schemes for Nonlinear Conjugate Gradient Methods
	1 Introduction
	1.1 Preconditioned Nonlinear Conjugate Gradient (PNCG) Method

	2 Quasi-Newton Updates for Preconditioning
	3 Preconditioners Based on the BFGS Update: First Proposal
	4 Preconditioners Based on the BFGS Update: Second Proposal
	5 Damped Strategies for NCG Preconditioning
	References

	Solving Minimax Problems: Local Smoothing Versus Global Smoothing
	1 Introduction
	2 Global Smoothing Methods
	3 Local Smoothing Method
	3.1 Reformulation of Minimax Problems
	3.2 Local Smoothing of the Maximum Function
	3.3 Minimization Algorithm

	4 Comparison of Smoothing Methods
	4.1 Results for Convex Problems
	4.2 Results for Nonconvex Problems
	4.3 Results for Large-Scale Problems

	5 Conclusions
	References

	A Competitive Error in Variables Approach and Algorithms for Finding Positive Definite Solutions of Linear Systems of Matrix Equations
	1 Introduction
	2 Problem Formulation
	3 Mathematical Solution
	3.1 Full Column Rank Data Matrix
	3.2 Rank Deficient Data Matrix
	3.3 Particular Solution

	4 Computational Complexity
	4.1 Full Column Rank Data Matrix
	4.2 Rank Deficient Data Matrix

	5 Numerical Results
	5.1 Full Column Rank Data Matrix
	5.2 Rank Deficient Data Matrix
	5.3 A Real Example

	6 Concluding Remarks
	References

	Sparse Direct Solution on Parallel Computers
	1 Introduction
	1.1 NLAFET Workpackage Overview

	2 Direct Solution of Sparse Equations
	3 Task 3.2 Direct Methods for (Near-)Symmetric Systems
	3.1 Tree-Based Factorization

	4 Parallelism in Sparse Direct Methods
	4.1 Partitioning
	4.2 Tree-Level Parallelism
	4.3 Node Parallelism
	4.4 Inter-node Parallelism

	5 Experiments on Symmetric Positive Definite Systems
	5.1 Tree Pruning Strategy

	6 Symmetric Indefinite Matrices
	6.1 Threshold Partial Pivoting
	6.2 A Posteriori Threshold Pivoting
	6.3 Numerical Pivoting in the Indefinite Case

	7 Task 3.3 Direct Methods for Highly Unsymmetric Systems
	7.1 Markowitz Threshold Pivoting
	7.2 Parallel Implementation of Threshold  Markowitz Pivoting
	7.3 Preliminary Results

	8 Task 3.4 Hybrid Direct-Iterative Methods
	9 Concluding Remarks
	References

	Revisiting Expression Representations for Nonlinear AMPL Models
	1 Introduction
	2 Representations of Expression Graphs
	3 Gradient Computations
	4 Alternative Implementations of derprop
	5 Funneling Defined Variables
	6 Detecting and Extracting Quadratic Forms
	7 Hessians and Hessian-vector Products
	8 Implementations of Hessian-vector Products
	9 Comparative Timings
	10 Concluding Remarks
	References

	On the Consistency of Runge–Kutta Methods Up to Order Three Applied  to the Optimal Control of Scalar Conservation Laws
	1 Introduction
	2 Preliminaries
	2.1 The State Equation and Its Adjoints
	2.2 Discrete Schemes

	3 Consistency of the Runge–Kutta Time Stepping
	4 Problems of Optimal Control and Order of Convergence for the Adjoint Scheme
	5 Numerical Experiments
	5.1 Regularization Term
	5.2 The Algorithm
	5.3 Examples

	References

	A Time-Delay Neural Network Model for Unconstrained Nonconvex Optimization
	1 Introduction
	2 Analysis for General Neural Network 3
	3 A First-Order Time-Delay Neural Network
	4 Simulation
	5 Concluding Remarks
	References

	Stabilized Optimization Via  an NCL Algorithm
	1 Introduction
	2 BCL, LCL, and NCL Methods
	2.1 The BCL Algorithm
	2.2 The NCL Algorithm

	3 An Application: Optimal Tax Policy
	4 Conclusions
	References

	Combinatorial Optimization Problems  in Engineering Applications
	1 Introduction
	2 Semidefinite Relaxations by Matrix Splitting (SDRMS)
	3 Index Assignment and Modulation Design in Communications Engineering
	3.1 Bounds for the Index Assignment Problem
	3.2 Automatic Repeat Requests and Modulation Diversity

	4 Semidefinite Bounds for Binary and Spherical Codes
	4.1 A Fundamental Question from Binary Codes
	4.2 The Kissing Number Problem

	5 Two Exactly Solved Combinatorial Optimization Problems
	5.1 A Three-Dimensional Quadratic Assignment Problem
	5.2 The Directional Sensor Problem

	References

	Optimal Error Estimates for Semidiscrete Galerkin Approximations to Multi-dimensional Sobolev Equations with Burgers' Type Nonlinearity
	1 Introduction
	2 Preliminaries and Weak Formulation
	3 A Priori Estimates for the Exact Solution
	4 The Semidiscrete Scheme
	5 Error Estimates for the Approximation Solution
	6 Numerical Experiments
	References

	Optimal Power Flow Analysis in Power Dispatch for Distribution Networks
	1 From Centralized to Distributed Generation
	2 The Bottleneck of Transmission Networks
	3 A Procedure for the Optimal Management of Medium-Voltage AC Networks with Distributed Generation and Storage Devices
	4 Fast Estimation of Equivalent Capability for Active Distribution Networks
	5 Conclusions
	References

	Equilibria and Weighted Complementarity Problems
	1 Introduction
	2 Background and Motivation
	2.1 Complementarity Problems Over IRn+
	2.2 Weighted Complementarity Problems over IRn+
	2.3 The Fisher Equilibrium Problem
	2.4 The Quadratic Programming and Weighted Centering Problem
	2.5 The Arrow–Debreu Competitive Market Equilibrium and Self-dual wCPs

	3 Two Interior-Point Methods for Solving Monotone Linear wCPs
	3.1 A Long-Step Path-Following Method
	3.2 A Predictor–Corrector Method

	4 Sufficient Weighted Complementarity Problems
	4.1 Associated Optimization Problems
	4.2 Sufficiency
	4.3 Properties of the Sufficient Weighted Linear Complementarity Problem
	4.4 A Corrector–Predictor Algorithm for Solving Sufficient wCP's

	5 A Smoothing Algorithm for wCP
	References

	A Mathematical Approach to Living  on Sinking Ground
	1 Introduction
	2 Mathematical Model for a Homogeneous Dike
	3 First-Order Optimality Conditions With Respect To tk
	4 First-Order Optimality Conditions With Respect To uk
	5 Objective Value at a Stationary Point
	6 Properties of calL(x) and calR(x)
	7 The Unhealthy Case
	References

	NAOIV-2017 Conference Participants
	Invited Speakers
	Organizing Committee
	Liaison Committee of SQU, Oman
	International Programme Committee
	Student Committee
	Participants



