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Agenda

The purpose of this talk is two-fold:

Introduce a new general-purpose estimation
method for structural models, the empirical
projection method.

Demonstrate the method on several
asset-pricing models.
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Structural Models

A structural model is a model given in terms of
Euler equations.

These are conditional expectations,

Et(F (xt , xt+1)) = 0.

that depend on some parameters.

Stock example: The price Pt of a risky asset that
pays a random dividend Dt .

Asset prices Pt must satisfy an equation of the form

Et(Pt − mt+1(Pt+1 + Dt+1)) = 0,

where mt+1 is a function of some other variables,
such as aggregate consumption, Ct .
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Comparing Structural Models to the Data

We want to compare structural models to the data.

Unfortunately, we can’t directly measure conditional
expectations, only unconditional ones.

There are two standard solutions to this problem:

Parametric approaches.

GMM.

I propose a third.
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Parametric Approaches

Parametric approaches involve:

Completely specifying the underlying
distribution of the variables in the model.

This permits solving the conditional moment
equation in terms of the other variables.

So for example if we specified the distributions of
Dt and Ct , we could compute Pt as a function of Ct

and Dt .

Parameters are then chosen to either match specific
moments, or maximize a likelihood.
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Parametric Approaches: Pros and Cons

Parametric approaches has one advantage:

The model makes definite predictions. For example,
the stock model predicts what the actual stock
price, which we can compare with the data. It
predicts various moments, etc.

And one big disadvantage:

The answer depends on the choice of distributions.
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GMM

GMM bypasses the need to specify distributional
assumptions by using instrumental variables
estimation.

Choose several variables, I it , known as instruments.
Since the instruments are known at time t, we have

Et(F ) = 0,

which implies
Et(F )I it = 0,

so
0 = E (Et(F )I it ) = E (FI it ).
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GMM, cont’d

In GMM, parameters are chosen to minimize∑
i

E (FI it )2

or something like it.
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GMM: Pros and Cons

GMM has one big advantage:

We can let the data tell us how variables are
distributed. For example, we don’t need to assume
anything about how Dt and Ct are distributed.

GMM has one big disadvantage:

It doesn’t make any specific predictions. For
example, we can’t say what the model predicts for
Pt .

Instead, with GMM we must evaluate models
indirectly. You pick too many instruments. The
model is then rejected if

E (FI it ) = 0,

fails to hold for the extra instruments.

Walt Pohl Solving Asset Pricing Models . . . 9/26



GMM: Pros and Cons

GMM has one big advantage:

We can let the data tell us how variables are
distributed.

For example, we don’t need to assume
anything about how Dt and Ct are distributed.

GMM has one big disadvantage:

It doesn’t make any specific predictions. For
example, we can’t say what the model predicts for
Pt .

Instead, with GMM we must evaluate models
indirectly. You pick too many instruments. The
model is then rejected if

E (FI it ) = 0,

fails to hold for the extra instruments.

Walt Pohl Solving Asset Pricing Models . . . 9/26



GMM: Pros and Cons

GMM has one big advantage:

We can let the data tell us how variables are
distributed. For example, we don’t need to assume
anything about how Dt and Ct are distributed.

GMM has one big disadvantage:

It doesn’t make any specific predictions. For
example, we can’t say what the model predicts for
Pt .

Instead, with GMM we must evaluate models
indirectly. You pick too many instruments. The
model is then rejected if

E (FI it ) = 0,

fails to hold for the extra instruments.

Walt Pohl Solving Asset Pricing Models . . . 9/26



GMM: Pros and Cons

GMM has one big advantage:

We can let the data tell us how variables are
distributed. For example, we don’t need to assume
anything about how Dt and Ct are distributed.

GMM has one big disadvantage:

It doesn’t make any specific predictions. For
example, we can’t say what the model predicts for
Pt .

Instead, with GMM we must evaluate models
indirectly. You pick too many instruments. The
model is then rejected if

E (FI it ) = 0,

fails to hold for the extra instruments.

Walt Pohl Solving Asset Pricing Models . . . 9/26



GMM: Pros and Cons

GMM has one big advantage:

We can let the data tell us how variables are
distributed. For example, we don’t need to assume
anything about how Dt and Ct are distributed.

GMM has one big disadvantage:

It doesn’t make any specific predictions. For
example, we can’t say what the model predicts for
Pt .

Instead, with GMM we must evaluate models
indirectly. You pick too many instruments. The
model is then rejected if

E (FI it ) = 0,

fails to hold for the extra instruments.

Walt Pohl Solving Asset Pricing Models . . . 9/26



GMM: Pros and Cons

GMM has one big advantage:

We can let the data tell us how variables are
distributed. For example, we don’t need to assume
anything about how Dt and Ct are distributed.

GMM has one big disadvantage:

It doesn’t make any specific predictions. For
example, we can’t say what the model predicts for
Pt .

Instead, with GMM we must evaluate models
indirectly. You pick too many instruments. The
model is then rejected if

E (FI it ) = 0,

fails to hold for the extra instruments.

Walt Pohl Solving Asset Pricing Models . . . 9/26



GMM: Pros and Cons

GMM has one big advantage:

We can let the data tell us how variables are
distributed. For example, we don’t need to assume
anything about how Dt and Ct are distributed.

GMM has one big disadvantage:

It doesn’t make any specific predictions. For
example, we can’t say what the model predicts for
Pt .

Instead, with GMM we must evaluate models
indirectly. You pick too many instruments. The
model is then rejected if

E (FI it ) = 0,

fails to hold for the extra instruments.
Walt Pohl Solving Asset Pricing Models . . . 9/26



A New Method

I introduce a new method, which shares the
advantages of both methods:

It’s non-parametric. No distributional
assumptions necessary.

It makes definite predictions about the
variables in the model.

The method is an empirically-based version of
projection methods.
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Projection Methods

In the stock example, the price is some unknown
function of the other variables,

Pt = P(Ct ,Dt).

We can’t find this function exactly, but we can
approximate it,

P(Ct ,Dt) =
N∑
i=1

aiP
i(Ct ,Dt)
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Projection Methods, cont’d

We can’t choose ai so that the conditional moment
equation holds exactly,

Et(F ) = 0,

so instead what we do is choose N linear projection
operators, Li , such that

LiEt(F ) = 0

holds instead.

This gives N equations in N unknowns.
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Galerkin method

In the Galerkin method, we pick some weighing
function, W , and let

Lig =

∫
g(x)P i(x)W (x)dx .

The choice of W is arbitrary. I exploit this.
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Empirical Galerkin method

What if W is the pdf of the time 0 distribution of
the random variables?

Then

LiEt(F ) = E (Et(F )P i)

= E (FP i).

But I can compute this without knowing the
distribution of x!
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Empirical Galerkin method, cont’d

Just compute

N∑
t=1

F (xt , xt+1)P i(xt)

from the data, for each i .

Then choose the ai so that each of the above
equations are zero.
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What Can I Do Now?

Given parameters, you can compute the ai .

Given the ai you have an approximation,

P =
∑

aiP
i .

You can use this to compute a time series of P
predicted by the model. Then you can compute
moments, test goodness-of-fit, etc.
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Application to Asset Pricing

I apply this to several standard asset pricing models:

CRRA – people are impatient, and hate risk.

Internal habit – people also get used to a
certain level of income, and hate it when it
goes down.

External habit – people compare their level of
income to the average level of income.

I take several estimates from the literature, and see
how they do in replicating the time series of
risk-free rates and S&P 500 price-dividend ratios.
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Application to Asset Pricing, cont’d

Use polynomials in degree 3 of the following
function as a basis:

For CRRA: log consumption growth rate and
dividend/consumption ratio.

For internal habit: current and lagged log
consumption growth rate, and log
dividend/consumption ratio.

For external habit: log consumption growth
rate and dividend/consumption ratio, and log
St – the surplus consumption ratio of
Campbell-Cochrane.

All data is Shiller annual dataset.
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Use polynomials in degree 3 of the following
function as a basis:

For CRRA: log consumption growth rate and
dividend/consumption ratio.

For internal habit: current and lagged log
consumption growth rate, and log
dividend/consumption ratio.

For external habit: log consumption growth
rate and dividend/consumption ratio, and log
St – the surplus consumption ratio of
Campbell-Cochrane.

All data is Shiller annual dataset.
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Sources of Estimates

I take model parameter estimates from the
literature:

Hansen-Singleton (1982) – CRRA

Ferson-Constanides (1991) – internal habit

Campbell-Cochrane (1999) – external habit
(calibrated)

Tallarini-Zhang (2005) – external habit
(estimated)

Walt Pohl Solving Asset Pricing Models . . . 19/26



Table: CRRA Estimates
Data Hansen and Singleton (1982)

β NA 0.9751
γ NA 0.9001
E(R) 0.0752 0.0472
σ(R) 0.1660 0.0542
E(log(P/D)) 3.2105 3.5572
σ(log(P/D)) 0.3573 0.1496
E(R f ) 0.0450 0.0439
σ(R f ) 0.0243 0.0114
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Figure: CRRA Predictions: Risky Asset
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Table: One-lag Habit Estimates

Data Ferson-Constanides (1991)
β NA 1.0250
γ NA 2.5800
h NA 0.1200
E(R) 0.0752 0.0308
σ(R) 0.1660 0.0821
E(log(P/D)) 3.2105 4.6178
σ(log(P/D)) 0.3573 0.2072
E(R f ) 0.0450 0.0296
σ(R f ) 0.0243 0.0515

Walt Pohl Solving Asset Pricing Models . . . 22/26



Figure: Comparison of one-lag habit estimates
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Table: External Habit Estimates
Data Campbell-Cochrane (1999) Tallarini-Zhang (2005)

β NA 0.8900 1.0100
γ NA 2.0000 6.0000
φ NA 0.8700 0.9000
E(R) 0.0752 0.1719 0.1223
σ(R) 0.1660 0.0994 0.1725
E(log(P/D)) 3.2105 1.8948 2.3441
σ(log(P/D)) 0.3573 0.0748 0.1066
E(R f ) 0.0450 0.1660 0.1017
σ(R f ) 0.0243 0.0403 0.0998
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Figure: Time Series of External Habit Price Predictions
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Conclusion

I introduce a statistical method to solve models
non-parametrically.

It is a GMM estimator, but turned to a
different purpose. Ordinary GMM takes data
and gives you parameter estimates. Here we
take parameter estimates, and produce
predictions of the prices.

This allows us to evaluate the failures of
models along different dimensions, rather than
simply accepting or rejecting.
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