
Introduction What kind of problems? How do you use it? How does it work? How well does it perform? Conclusion

econsim: Software for a Big Data Approach
to Optimal Policy Problems with

Heterogeneity

Christian Baker Jeremy Bejarano Richard W. Evans
Kenneth L. Judd Kerk L. Phillips

July 2013

Baker, Bejarano, Evans, Judd, Phillips econsim



Introduction What kind of problems? How do you use it? How does it work? How well does it perform? Conclusion

econsim Overview

Reusable Python Package: econsim is a Python
package used to solve optimal policy problems given a
heterogeneous population.
Non-Continuous, Non-Convex: econsim is designed
specifically to handle constrained optimization problems
with discontinuities and non-convexity.

Baker, Bejarano, Evans, Judd, Phillips econsim



Introduction What kind of problems? How do you use it? How does it work? How well does it perform? Conclusion

econsim Overview

Convenient User Interface: It provides a convenient user
interface for defining the household problem and allows for
an easy way to define and alter the distributions involved in
the social planner’s problem.
Built To Scale: econsim uses MPI and technology for
managing large amounts of data and is suited to scale to
large supercomputer clusters.

Baker, Bejarano, Evans, Judd, Phillips econsim



Introduction What kind of problems? How do you use it? How does it work? How well does it perform? Conclusion

High Performance Computing Features

econsim is a parallel library that uses big data technology. Its
challenges deal with the computation of many separate
optimization problems and the management of a large amount
of data.

econsim is parallelized using MPI (Message Passing
Interface)—the de facto standard for distributed memory
programming.
econsim is designed to scale. We currently are using the
10,000 core supercomputer at BYU’s Fulton
Supercomputing Lab.

Baker, Bejarano, Evans, Judd, Phillips econsim



Introduction What kind of problems? How do you use it? How does it work? How well does it perform? Conclusion

High Performance Computing Features

The key feature of the econsim method is the reuse of the
individual responses. These are saved in a large database file.
Then, a new distribution over type space may be substituted
and the efficient policies can be computed relatively quickly.

This database file can get large (100s of GBs). To manage
data of this size, we use HDF5.
From the HDF Group’s website, “HDF5 is a unique
technology suite that makes possible the management of
extremely large and complex data collections.”

Baker, Bejarano, Evans, Judd, Phillips econsim



Introduction What kind of problems? How do you use it? How does it work? How well does it perform? Conclusion

Points of talk

What kinds of problems?
How do you use it?
How does it work?
How well does it perform?

Baker, Bejarano, Evans, Judd, Phillips econsim



Introduction What kind of problems? How do you use it? How does it work? How well does it perform? Conclusion

General family of models

Type space: heterogeneous individuals of type θ ∈ Θ

with distribution over types Γ(θ)

Policy space: policies over type or other τ ∈ T

Individual optimization: c
(
θ, τ
)

Policy objective:

max
τ

U
(

c∗
(
θ, τ
)
, Γ(θ)

)
s.t. R

(
c∗
(
θ, τ
)
, Γ(θ)

)
≥ R̄

Big data approach
Nice for large dimensional Θ

Essential when τ creates nonconvex optimization
Baker, Bejarano, Evans, Judd, Phillips econsim



Introduction What kind of problems? How do you use it? How does it work? How well does it perform? Conclusion

Examples of Usages

Sales Tax Type-space: Income, Elasticities
Policy-space: Tax rate on each good
Consumption decision

Income Tax with Brackets Type-space: Income, Elasticities
Policy-space: Income tax rate in each bracket
Labor decision

Insurance Type-space: Health, Income
Policy-space: Premium, Deductible, Copay
Decision on Carefullness (# Insured, given costs)

Politics Type-space: Political Leanings
Policy-space: Platform (for or against on a variety
of issues)
Policitician chooses platform

Baker, Bejarano, Evans, Judd, Phillips econsim



Introduction What kind of problems? How do you use it? How does it work? How well does it perform? Conclusion

Our sales tax model: policy maker

Policy maker chooses τ to maximize total welfare subject
to revenue constraint

max
τ

U
(

Γ(θ), τ
)

=

∫
θ

Γ(θ)u
(

c∗
(
θ, τ
))

dθ

s.t. R
(

Γ(θ), τ
)

=

∫
θ

Γ(θ)r(c∗(θ, τ))dθ ≥ R̄

Expansion of the problem
Solution is a point in policy space τ∗

What if we wanted to know τ∗ for all possible R̄?

Baker, Bejarano, Evans, Judd, Phillips econsim



Introduction What kind of problems? How do you use it? How does it work? How well does it perform? Conclusion

Examples of Results

Baker, Bejarano, Evans, Judd, Phillips econsim



Introduction What kind of problems? How do you use it? How does it work? How well does it perform? Conclusion

Examples of Results

Baker, Bejarano, Evans, Judd, Phillips econsim



Introduction What kind of problems? How do you use it? How does it work? How well does it perform? Conclusion

Examples of Results

Baker, Bejarano, Evans, Judd, Phillips econsim



Introduction What kind of problems? How do you use it? How does it work? How well does it perform? Conclusion

Examples of Results

Baker, Bejarano, Evans, Judd, Phillips econsim



Introduction What kind of problems? How do you use it? How does it work? How well does it perform? Conclusion

econsim library

econsim is a Python library that we developed to solve models
of the form described here. econsim requires only three
things.

Define the type-space and policy-space.
Provide the model file that will define the optimization
routine. It takes in a point in type-space and policy-space
and returns individual utility and revenue generated.
Provide a distribution over the type-space.

Baker, Bejarano, Evans, Judd, Phillips econsim



Introduction What kind of problems? How do you use it? How does it work? How well does it perform? Conclusion

econsim nuts and bolts

Baker, Bejarano, Evans, Judd, Phillips econsim



Introduction What kind of problems? How do you use it? How does it work? How well does it perform? Conclusion

Overview of Implementation Details

List of the most important implementation details that we will
cover here.

Big Data with HDF5
Quasi-Monte Carlo Integration and Equidistributed
Sequences (three benefits from this: coverage, refinement
management, and parallelization ease)
Multiobjective Programming: Linesweep to find Pareto
efficient policies

Baker, Bejarano, Evans, Judd, Phillips econsim



Introduction What kind of problems? How do you use it? How does it work? How well does it perform? Conclusion

Big Data with HDF5

What is HDF5 and why is it important for us?
HDF5 is important for two reasons:

1 It allows for efficient storage of high dimensional data that
is to be accessed contiguously. (As opposed to your typical
relational database.)

2 It has the ability to do parallel I/O. When dealing with
extremely large files (TBs in size), I/O will be bottlenecked
by the read and write speeds of the disk on which the data
is stored.

Baker, Bejarano, Evans, Judd, Phillips econsim



Introduction What kind of problems? How do you use it? How does it work? How well does it perform? Conclusion

Quasi-Monte Carlo Integration: Coverage

Quasi-Monte Carlo integration is used to integrate over the type
space for each point in policy space given the type space
distribution.

Same as Monte Carlo Integration, but uses equidistributed
sequences instead of pseudorandom numbers.
Faster rate of convergence for large N: for s dimensions,
O
(
(log N)s

N

)
as opposed to O

(
1√
N

)
.

Baker, Bejarano, Evans, Judd, Phillips econsim



Introduction What kind of problems? How do you use it? How does it work? How well does it perform? Conclusion

Quasi-Monte Carlo Integration: Coverage

Equdistributed Sequences are deterministic sequences of real
numbers where the proportion of terms falling in a subinterval is
proportional to the length of that interval.

Example: Two-dimensional Baker Sequence on interval
[0,1]. For p1,p2 any rational, distinct numbers, the nth item
in the sequence is given by(

nep1 −
⌊
nep1

⌋
,nep2 −

⌊
nep2

⌋)

Baker, Bejarano, Evans, Judd, Phillips econsim



Introduction What kind of problems? How do you use it? How does it work? How well does it perform? Conclusion

Quasi-Monte Carlo Integration: Coverage

Baker, Bejarano, Evans, Judd, Phillips econsim



Introduction What kind of problems? How do you use it? How does it work? How well does it perform? Conclusion

Equidistributed Sequences: Refinement
Management

Adding resolution requires us to re-index our database of
responses. Recomputing points defeats the purpose of the
database.

Difficult: This is difficult when we are trying to generalize
the management process, especially if we would like our
program to allow arbitrary numbers of dimensions in type-
and policy-space.
Expensive: This is costly when the database is TBs large.

Baker, Bejarano, Evans, Judd, Phillips econsim



Introduction What kind of problems? How do you use it? How does it work? How well does it perform? Conclusion

Equidistributed Sequences: Refinement
Management

Adding more resolution to a populated grid can lead to
indexing issues.
Consider this grid and imagine that we computed a
household’s response to a policy at each intersection.

Baker, Bejarano, Evans, Judd, Phillips econsim



Introduction What kind of problems? How do you use it? How does it work? How well does it perform? Conclusion

Equidistributed Sequences: Refinement
Management

Suppose to the left we have a 5x5 grid of responses.
If we wanted more resolution later, we might want to
enhance the grid to something like the 9x9 grid to the right.

Baker, Bejarano, Evans, Judd, Phillips econsim



Introduction What kind of problems? How do you use it? How does it work? How well does it perform? Conclusion

Equidistributed Sequences: Refinement
Management

Using equidistributed sequences to cover the policy- and
type-space makes generalizing each space to an arbitrary
number of dimensions easy. Each database will always
have the same shape: Nt × Np × 2.
Each particular point in type space or policy space can be
recovered by its index. For example, in 2 dimension on the
space [0,1]× [0,1],

>>> equidistributed(432, dim=2, type=’weyl’)
[0.9402589451771064, 0.24594886975489771]

Baker, Bejarano, Evans, Judd, Phillips econsim



Introduction What kind of problems? How do you use it? How does it work? How well does it perform? Conclusion

Equidistributed Sequences: Parallelization

In addition to the difficulty in resizing the response database
while maintaining generality of the spaces, parallelization
becomes difficult as it must choose multiple dimensions over
which to slice the space.

Baker, Bejarano, Evans, Judd, Phillips econsim



Introduction What kind of problems? How do you use it? How does it work? How well does it perform? Conclusion

Equidistributed Sequences: Parallelization

Divide the data among p processors.
Example 1: Consider an N × 1 vector of data. This is easy to

divide up.
Example 2: Consider an N ×M matrix of data. You can either

divide along one dimension if that dimension is
large enough, or you can divide into blocks.

Example 3: Consider a higher dimensional array with a more
complex shape: Nη × Nw × Ng1 × Ng2 × Ng3 .

Baker, Bejarano, Evans, Judd, Phillips econsim



Introduction What kind of problems? How do you use it? How does it work? How well does it perform? Conclusion

Equidistributed Sequences: Parallelization

The problem is that, when the dimensionality grows, this
database could be very large yet still have some dimensions
that are relatively coarse. This would require us to automate
the decision of how to slice up this array.
Example 3: Consider a higher dimensional array with a more

complex shape: Nη × Nw × Ng1 × Ng2 × Ng3 .

Baker, Bejarano, Evans, Judd, Phillips econsim



Introduction What kind of problems? How do you use it? How does it work? How well does it perform? Conclusion

Equidistributed Sequences: Parallelization

Solution: If we use equidistributed sequences, we can
maintain the generality (arbitrary number of dimensions in
either space) and keep the shape of the data square like in
Example 2,

Ntype × Npolicies.

Example 2: Consider an N ×M matrix of data. You can either
divide along one dimension if that dimension is
large enough, or you can divide into blocks.

Baker, Bejarano, Evans, Judd, Phillips econsim



Introduction What kind of problems? How do you use it? How does it work? How well does it perform? Conclusion

Performance: Total

Figure : Scalability of creating and refining a typical database.

Baker, Bejarano, Evans, Judd, Phillips econsim



Performance: Linesweep

Figure : Scalability of sorting (parallel quicksort).



Introduction What kind of problems? How do you use it? How does it work? How well does it perform? Conclusion

Performance: Linesweep

Figure : Scalability of sorting (parallel quicksort).

Baker, Bejarano, Evans, Judd, Phillips econsim



Introduction What kind of problems? How do you use it? How does it work? How well does it perform? Conclusion

Conclusion

We describe big data solution method for big theory
Essential for big heterogeneity and nonconvex or
discontinuous constrained optimization

Reusable Python Package for optimal policy problems
given a heterogeneous population
Scalable parallelization in computation and data access
Collaboration

Baker, Bejarano, Evans, Judd, Phillips econsim


	Introduction
	What kind of problems?
	How do you use it?
	How does it work?
	How well does it perform?
	Conclusion

