Computing Supergame Equilibria with Supergametools

Benjamin Tengelsen

Carnegie Mellon University

Computation in CA 2013 Special thanks to Sevin Yeltekin

- Brief review of Ken's Monday morning talk
- Closer look at the algorithms
- Software demo (lots of examples)

About Me

- First/second year Econ PhD student at Carnegie Mellon
- Interested in macro, labor markets, online markets
	- Search, Union/firm strategy, Unemployment
	- "Fiscal multipliers in a search model for unemployment."
	- "Welfare cost of business cycles with unemployment."
- Fan of Python, parallel computing

Nash Carter Tengelsen

Review of Ken's talk

- Single vs. repeated games
- Monotone function over compact space \rightarrow largest fixed point
- Two methods: inner/outer approximation

A Look at the Algorithms: Inner approximation

 $\overline{}$ Since $\overline{}$ will concern approximation to $\overline{}$

Inner approximations

Monotone Inner Hyperplane Approximation

Input: Points $Z = \{z_1, \dots, z_M\}$ such that $W = co(Z)$. Step 1 Find extremal points of $B(W)$: For each search subgradient $h_\ell \in H$, $\ell = 1, ..., L$. (1) For each $a \in A$, solve the linear program

$$
c_{\ell}(a) = \max_{w} h_{\ell} \cdot [(1 - \delta)\Pi(a) + \delta w]
$$

\n(i) $w \in W$
\n(ii) $(1 - \delta)\Pi^{i}(a) + \delta w_{i} \ge$
\n $(1 - \delta)\Pi^{*}_{i}(a_{-i}) + \delta \underline{w}_{i}, i = 1, ..., N$
\n(1)

Let $w_{\ell}(a)$ be a w value which solves [\(1\)](#page-6-0).

Monotone Inner Hyperplane Approximation cont'd

(2) Find best action profile $a \in A$ and continuation value:

$$
a_{\ell}^{*} = \arg \max \{ c_{\ell}(a) | a \in A \}
$$

$$
z_{\ell}^{+} = (1 - \delta) \Pi(a_{\ell}^{*}) + \delta w_{\ell}(a_{\ell}^{*})
$$

Step 2 Collect set of vertices $Z^+ = \{z^+_{\ell}\}$ $\mathcal{L}^+_\ell | \ell = 1, ..., L \}$, and define $W^+ = co(Z^+).$

Outer approximation

ó the plane six + tiy = sixi + tiyi is tangent to W at (xi,yi), and

A convex set and supporting hyperplanes

Outer vs. Inner Approximations

- Easily paralellizable
- Maximization operation is a linear program

Outer vs. Inner Approximations

- Computations actually constitute a proof that something is in or out of equilibrium payoff set - not just an approximation.
- Any point within the inner approximation is an equilibrium
- No point outside of outer approximation can be an equilibrium
- Can show certain equilibrium payoffs/actions are not possible
	- E.g., that joint profit maximization is not possible

Error Bounds

- Difference between inner and outer approximations is approximation error
- Difference is small in many examples, often decreases as number of search gradients increase

Supergametools

- Open source python library (bitbucket)
- Serial/parallel commands for inner/outer approximation
- Easy to use:
	- payoff matrices as inputs
	- inner/outer approximations as outputs
- Limitations
	- 2-player games only
	- repeated static games only
	- very young in development phase

Example 0: Battle of the Sexes

- Husband and wife are meeting in town for a date
- Traveling separately. Neither remembers where to meet.
- Three options: Opera, Football, Sushi

Example 0: Battle of the Sexes

- Wife (husb.) chooses row (column)
- (wife, husb)

Example 1a: Cournot Game (two firms)

• Inverse demand function:

$$
P = \max\{6 - q_1 - q_2, 0\}
$$

• Profit function:

$$
\Pi_j(q_j) = P \cdot q_j - c_j
$$

• Objective:

$$
\max_{q_j} E_0 \left[\sum_{t=0}^{\infty} \beta^t q_{j_t} (P - c_j) \right]
$$

• Action space: $(0, 6)$ interval discretely spaced with 15 points

Example 1a: Cournot Game (two firms)

- Suppose gov. imposes a tax on firms, increases c_i
- How does that change the equilibria set?

Speedup from Parallelization

Table: Run time for Cournot game: Outerbound ($\varepsilon = .01$)

*Based on single executions on a basic 2-core MacBook Pro (2.8 GHz).

Example 1b: Bertrand Game (two firms)

- Inverse demand function: $P = 20 Q/5$
- Price function: $P = \min\{p_1, p_2\}$
- Lowest price captures the whole market. $\implies p_1 = p_2$.
- Action space: $(0, 10)$ interval discretely spaced with 15 points

Speedup from Parallelization

Table: Serial Run time for Bertrand game: Outerbound, ($\varepsilon = .001$)

*Based on single executions on a basic 2-core MacBook Pro (2.8 GHz).

Example 2: Union/Firm Game

- Espinosa and Rhee (1989)
- Union sets wage, $W \in [0, 1]$
- Firm chooses number of workers, $L \in [0, 1]$
- Capital is fixed: $K=\frac{1}{2}$ 2
- Production technology:

$$
Q = L^{\alpha} K^{1-\alpha}
$$

Example 2: Union/Firm Game

• Profit function for firm:

$$
\Pi(L, W) = PQ - WL - RK
$$

• Inverse demand function:

$$
P = 1 - q/10
$$

• Union utility function:

$$
U(L) = W \cdot L
$$

Example 2: Union/Firm Game

- What if production becomes more capital intensive?
- What if we impose a minimum wage?

$$
P = \max\{1 - q/10, .3\}
$$

Future work

- A few challenges
	- Complete action space is not always known
	- Most repeated games are dynamic
- • How to determine quality of results