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`Geek weeks' – or `nerd weeks'?

geek - An enthusiast of a particular topic or field. Geeks are 
“collection” oriented, gathering facts and mementos related to 
their subject of interest.  
They are obsessed with the newest, coolest, trendiest things that 
their subject has to offer.

nerd - A studious intellectual, although again of a particular topic 
or field. Nerds are “achievement” oriented, and focus their efforts 
on acquiring knowledge and skill over trivia and memorabilia.

Source: http://slackprop.wordpress.com/2013/06/03/on-geek-versus-nerd/



`Geek' → `Nerd weeks'
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Outline

I)  From Full Grids to Sparse Grids

II)  Adaptive Sparse Grids 
     

III) Time Iteration & Adaptive Sparse Grids & HPC
      →  Implementation, testing           
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Where are Sparse grids used?
Sparse grid methods date back to Smolyak(1963)

So far, methods applied to:

-High-dimensional integration 

-Interpolation

-Solution of PDEs

        
More fields of application: regressions, data mining, likelihood 
estimations, option pricing, data compression, DSGE models in 
Economics...

   

e.g. Gerstner & Griebel (1998), Bungartz et al. (2003),...

e.g. Barthelmann et al. (2000), Klimke & Wohlmut (2005),...

e.g. Zenger (1991), Griebel (1998),...

For a review, see, e.g. Bungartz & Griebel (2004)

e.g. Kubler & Kruger (2004), Winschel & Kraetzig (2010)
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Our motivation

I. From full grids to sparse grids

i) Want to compute high-dimensional time iteration 
problems e.g. Int. real business cycle model: 

“Tv = v”   |Tv
i
 – v

i+1
 | < ε

Problem: curse of dimensionality 
      Nd points in ordinary discretization schemes 
 
ii)   Want to overcome curse of dimensionality 
iii)  Want locality & adaptivity of interpolation scheme
      (ability to handle singularities, kinks,...)

iv) Technically: access HPC systems (MPI, OpenMP) 

(see, e.g. Wouter et al. (2011), Malin et al. (2011))
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Some definitions & notation

- We will focus on the domain  Ω = [0,1]d

     
d: dimensionality;  other domains: rescale

- introduce multi-indices:   
   grid level:

   spatial position:

- Discrete, full grid        on Ω with mesh size

- Grid      consists of points:
  
    Where                                                         and  

I. From full grids to sparse grids

(see, e.g. Zenger (1991), Bungartz & Griebel (2004), Garcke (2012), Pflüger (2010),...)
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Interpolation on a Full Grid I

-Consider a d-dimensional function

-In numerical simulations: 
 f might be given only algorithmically – expensive to evaluate! 
 But: need to be able to evaluate f at arbitrary points using a numeircal code

-Construct an interpolant u of f 

-With suitable (e.g. linear) basis functions 
 and coefficients  
   
- For simplicity: focus first on case where 

I. From full grids to sparse grids
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Interpolation on a Full Grid II

-Sparse grids depend on a hierarchical decomposition of the   
 underlying approximation space.

-Hierarchical basis based on hat functions

-Used to generate a family of basis functions 
 having support                                by dilation and translation

I. From full grids to sparse grids
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Interpolation on a Full Grid III

I. From full grids to sparse grids

Hierarchical increment spaces:

with the index set

The corresponding function space:

The 1d-interpolant:

Note: all basis functions of W
k
 mutually disjoint!

Fig.: 1-d basis functions 
and the corresponding grid points up 
level l = 3  in the hierarchical basis.
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Interpolation on a Full Grid

Extension to multi-d by a tensor-product construction:

Multi-d basis:

Index set:

Hierarchical increments:

Multi-d interpolant:

I. From full grids to sparse grids

Fig.: Basis functions of the 
subspace W

2,1
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The curse of dimensionality 
or: why reality bites...

Interpolant consists of                    grid points 

For sufficiently smooth f and its interpolant u, we obtain 
an asymptotic error decay of 
                                                    where

But at the cost of 

function evaluations → “curse of dimensionality”

Hard to handle more than 4 dimensions numerically
 
       e.g. d=10, n = 4, 15 points/d, 5.8 x 1011 degrees of freedom   
 

I. From full grids to sparse grids
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Breaking the curse of dimensionality I

Question: “can we construct discrete approximation spaces that 
are better in the sense that the same number of invested grid 
points leads to a higher order of accuracy?”  YES √

Under certain smoothness conditions – the second mixed derivatives 
have to be bounded, this can be done a priori.

                                                      where

These functions belong to a so-called Sobolev space 

                                                                                          where

Under this prerequisite, the hierarchical coefficients rapidly decay

I. From full grids to sparse grids
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Breaking the curse of dimensionality II
-Strategy of constructing sparse grid: leave out those subspaces  
from full grid that only contribute little to the overall interpolant.
 
-Optimization w.r.t. number of degrees of freedom (grid points) 
and the approximation accuracy leads to the sparse grid space of 
level n.

Note: This result is optimal for the          Norm and the         Norm. 

Interpolant: 

# grid points:                                 =                     <<

Accuracy of the interpolant:                                vs. 

I. From full grids to sparse grids
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Sparse grid construction in 2D

Fig.: Two-dimensional subspaces W
l
 up to l=3 (h

3
 = 1/8) in each dimension.

The optimal a priori selection of subspaces in shown in black (left) and the 
Corresponding sparse grid of level n = 3 (right). 
For the full grid, the gray subspaces have to be used as well.

I. From full grids to sparse grids
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Degrees of Freedom

I. From full grids to sparse grids

Tab.: Number of grid points for several types of sparse grids of level n = 4.
Left: Full grid; middle: classical sparse grid with no points at the boundaries; 
right column: Clenshaw-Curtis grid.



Hierarchical surplus – nested structure

Coefficients of interpolant termed
“hierarchical surpluses”.

Can easily be determined due 
to nested property of the hierarchical
grid.

They correct the interpolant of level l-1 at       to the actual value 
of                  

I. From full grids to sparse grids

Fig.: Interpolant u of f of level 2.

Nested structure: go from one level or refinement to the next
      Evaluate function only at points that are unique to the new level.
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Treatment of non-zero boundaries

I. From full grids to sparse grids

Want to be able to handle
non-zero boundaries:
 

If we add naively points at 
boundaries, 3d support nodes
will be added.

Numerically cheapest way:
Modify basis functions and 
interpolate towards boundary.
Various choices possible!

Fig.: Example of modified 1d-basis functions 
According to Pflüger (2010), which are 
extrapolating towards the boundary (left). 
They are constant on level 1 and “folded-up” 
if adjacent to the boundary on all other levels. 
Right: “Clenshaw-Curtis” basis.
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Adaptive grids in general
-Ordinary sparse grids: a priori selection of grid points, optimal 
under certain smoothness conditions.

-Real-world applications: often do not fulfill these prerequisits
(functions of interest often show kinks, finite discontinuities, 
steep gradients...)

      Sparse grid methods outlined so far may fail to converge
      (can capture local behaviour only to some limited extend)

-Effective strategy to achieve this: ADAPTIVITY

      refine sparse grid at points around discontinuities.

      spend less points in the region of smooth variation.

II. Adaptive sparse  grids 
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Sketch of adaptive refinement
II. Adaptive sparse  grids 

-Surpluses quickly decay to zero 
 as the level of interpolation 
 increases assuming a smooth fct.

-Use hierarchical surplus 
 as error indicator.

-Automatically detect 
 “discontinuity regions” and 
 adaptively refine the points in this 
 region.

-Each grid point has 2d neighbours

-Add neighbour points, i.e. locally 
 refine interpolation level from l to l+1

-Criterion: e.g.  

See, e.g. Ma & Zabaras (2008), Pflüger (2010), Bungartz (2003),..

top panel: tree-like structure of sparse grid.
lower panel: locally refined sparse grid in 2D. 
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Adaptive Sparse Grid Algorithm

a) construction of interpolant level by level

b) First calculate hierarchical surplus for each point.

c) Check wether refinement criterion is satisfied

d) if so, generate 2d neighbouring points. 

e) evaluate the surplus for each new point in parallel.

f) stop refinement 
    either nothing to refine, or max. level reached (if discontinuity is strong)

II. Adaptive sparse  grids 
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Test in 1d

Fig.: Blue: Full grid;red: adaptive sparse grid.

Error both for full grid and 
adapt. sparse grid of O(10-2).

Error measure:
     1000 random points from [0,1]d

Test function:

Full grid: 1023 points 
Adaptive sparse grid: 109 points.

(See Genz (1984) for test functions)

II. Adaptive sparse  grids 
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Test in 2d
Test function:

Error:         O(10-2)

Full grid:
→ O(109) points

Sparse grid:
→ 311'297 points

Adaptive sparse grid:
→ 4'411 points

Fig.: 2d test function and its corresponding grid points
after 15 refinement steps.

II. Adaptive sparse  grids 
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Movie

Fig.: Evolution of the adaptive sparse grid with a threshold for refinement of 10-2 .
The refinement levels displayed are L = 1, 5, 10, 15.

II. Adaptive sparse  grids 
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Convergence

Fig.: Comparison of the interpolation error for conventional and adaptive
Sparse grid interpolation (two different adaptive sparse
grid choices - blue: Clenshaw-curtis vs. green: classical sparse grid choice).

II. Adaptive sparse  grids 
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Time iteration algorithm
III. Time Iteration & Adaptive Sparse Grids & HPC

We want to solve “time iteratation” problems, e.g. the  
International Real Business Cycle model (e.g.  Den Haan et al. (2011), Malin et al. (2011))  

Time iteration algorithm
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“To pull a bigger wagon, it is easier 
to add more oxen than to grow a 

gigantic ox” (Skjellum et al. 1999)

III. Time Iteration & Adaptive Sparse Grids & HPC
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“To pull a bigger wagon, it is easier 
to add more oxen than to grow a 

gigantic ox” (Skjellum et al. 1999)

Fig.: Left: Piz Daint (CSCS)~40k Cores, right: UZH Schrödinger Cluster , ~5k Cores available
→ ACCESS ON BOTH MACHINES GRANTED

III. Time Iteration & Adaptive Sparse Grids & HPC
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Parallel time iteration algorithm
-Our implementation:  
 Hybrid parallel  (MPI & OpenMP). 

-newly generated points are 
 distributed via MPI

Nonlinear equations locally 
solved on each node/MPI 
process by a 
combination of 
IPOPT & PARDISO 
(Waechter & Biegler (2006), Schenk et al. (2008)).

In parallel: `messy' !

→ grid 1 needs to be 
    visible on all MPI processes. 
→ we have to ensure some 
     sort of `load balancing'. 

III. Time Iteration & Adaptive Sparse Grids & HPC
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Scaling & Performance

Fig.: Left panel: strong scaling of the code. Right: Efficiency.
Problem: one timestep of a 10d IRBC model with fixed sparse grid (level 3). 

III. Time Iteration & Adaptive Sparse Grids & HPC
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Scaling & Performance II

Fig.: Number of grid points grow ~O(d) with increasing dimensionality.
Test: one timestep, adaptive sparse grid with refinement criterion O(10 -3).      
                  

III. Time Iteration & Adaptive Sparse Grids & HPC
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Conclusion & Outlook

● Method perfectly suited to solve high dimensional 
dynamic models!

 
● First time adaptive sparse grids are applied to economical 

problems/dynamic programming

● Finalize IRBC project in order to introduce method.

● Pull bigger wagon (solve models that contain features 
which favour adaptivity).
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A I: Hierarchical integration
High-dimensional integration easy with sparse grids, e.g. compute expectations
Let's assume uniform probability density:

The one-dimensional integral can now be computed analytically

Note that this result is independent of the location of the interpolant to dilation
And translation properties of the hierarchical basis functions.
→ Multi-d integrals are therefore again products of 1-d integrals.

We denote

  

 (Ma & Zabras (2008))



A II: Model ingredients
-Want to demonstrate in a first step capabilities of code.

-International Real Business Cycle model 

Model: 
→ N countries (differ in productivity 'a' & capital stock 'k')

→ dimensionality of simulation (dim = 2N)

→ Model: N+1 equilibrium conditions at each grid point; solved by DP

N equations: 

1 equation:

→ We solve the nonlinear equations locally on each node/MPI process 
     by a combination of IPOPT & PARDISO (Waechter & Biegler (2006), Schenk et al. (2008)).

(e.g.  Den Haan et al. (2011), Malin et al. (2011))
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AIII: Model ingredients II

Current grid points

Interpolant

Solution of system of Eqs.
At the current iteration
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