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Computing Equilibria of Repeated And Dynamic Games

Introduction

e Repeated and dynamic games have been used to model
dynamic interactions in:
e Industrial organization,
e Principal-agent contracts,

e Social insurance problems,

Political economy games,

e Macroeconomic policy-making.
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Introduction

e These problems are difficult to analyze unless severe
simplifying assumptions are made:

e Equilibrium selection
e Functional form (cost, technology, preferences)

o Size of discounting
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Goal

e Examine entire set of pure-strategy equilibrium values in
repeated and dynamic games

e Propose a general algorithm for computation that can handle
e large state spaces,
e flexible functional forms,
e any discounting,

o flexible informational assumptions.
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Approach
e Computational method based on Abreu-Pearce-Stacchetti
(APS) (1986,1990) set-valued techniques for repeated games.

e APS show that set of equilibrium payoffs a fixed point of an
operator similar to Bellman operator in DP.

e APS method not directly implementable on a computer.
Requires approximation of arbitrary sets.

e Our method allows for

e parsimonious representation of sets/correspondences on a
computer

e preserves monotonicity of underlying operator.
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Contributions

e Develop a general algorithm that

e computes pure-strategy equilibrium value sets of repeated and
dynamic games,

e provides upper and lower bounds for equilibrium values and
hence computational error bounds,

e computes equilibrium strategies.

e Based on: Judd-Yeltekin-Conklin (2003), Sleet and
Yeltekin(2003), Yeltekin-Judd (2011)
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REPEATED GAMES
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Stage Game
e A, — player i's action space, i =1,--- | N
o A= xN A; - action profiles

e II;(a) — Player i payoff, i = 1,--- | N

Maximal and minimal payoffs

10, = Ialéig ;(a), II; = max IL;(a)
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Supergame G*°

e Action space: A%

hy: t-period history: {as}.Z§ with a5 € A

e Set of t-period histories: Hy
o Preferences:
0o 1-9 oo st
wi(a ) = B E()Et:15 Hi(at).
e Strategies: {0;}7°, with 0, : Hy — A;.

Subgame Perfect Equilibrium Payoffs
VEew =< (I, 10
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Example 1: Prisoner's Dilemma

e Static game: player 1 (2) chooses row (column)

Left | Right
Up (4,4 0,6
Down | 6, 0 | 2, 2

e Static Nash equilibrium

e (Down, Right) with payoff (2, 2)

e Suppose § is close to 1

e G* includes (Up, Left) forever with payoff (4,4)

e Rational if all believe a deviation causes permanent reversion

to (Down, Right)

e This is just one of many equilibria.
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Static Equilibrium

e Static game

bi1, c11

b12, c12

bo1, ca1

bao, 22

bij (cij) is player 1's (2's) return if player 1 (2) plays i (j).
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Recursive Formulation

e Each SPE payoff vector is supported by

e profile of actions consistent with Nash today

e continuation payoffs that are SPE payoffs

e Each stage of subgame perfect equilibrium of G*° is a static
equilibrium to some one-shot game A, augmented by values
from 6V*:

0"b11 + duqy, 0%ern + dwiy | 6%big + duga, 6 ci2 + dwig
0%ba1 + dug1, 0%co1 + dway | 0"bag + duge, 6% co2 + dwag

0F=1-9¢
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Steps: Computing the Equilibrium Value Set

@ Define an operator that maps today’s equilibrium values to
tomorrow's.

® Show operator is monotone and equilibrium payoff set is its
largest fixed point. [Requires some work. We use Tarski's FP
theorem.]

© Define approximation for operator and sets that
e Represent sets parsimoniously on computer

e Preserve monotonicity of operator

O Define appropriately chosen initial set, apply operator until
convergence.
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Step 1: Operator

B*: P —P.
o let WeP.

B*(W) = U(a,u){(1 = §)II(a) + dw}

subject to:
weWw

and for each Vi € N, Va € A;
(1 =0)I(a) + dw; > (1 —6)I;(a,a—;) + dw,; }
where w, = min{w;|w € W}.
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Step 2: Self-generation

A set W is self-generating if :

W C B*(W)

An extension of the arguments in APS establishes the following:

e Any self-generating set is contained within V*,

o V" itself is self-generating.
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Step 2: Factorization

b € B*(W) if there is an action profile a and continuation payoff
wEeW, st

e b is value of playing a today and receiving continuation value
w 1

e for each i, player ¢ will choose to play a;

e punishment value drawn from set W.

16 /44



Computing Equilibria of Repeated And Dynamic Games

Step 2: Properties of B*

e Monotonicity: B* is monotone in the set inclusion ordering:
If Wi C Ws, then B*(Wl) C B*(WQ)

e Compactness: B* preserves compactness.

e Implications:
1) V* is the maximal fixed point of the mapping B*;

2) V* can be obtained by repeatedly applying B* to any set that
contains V*.
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Step 3: Approximation

e VV* is not necessarily a convex set

e We need to approximate both V* and the correspondence
B*(W)

e As a first step, use public randomization to convexify the
equilibrium value set.
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Step 3: Public randomization

e Public lottery with support contained in W.
e Public lottery specifies continuation values for the next period
o Lottery determines Nash equilibrium for next period.
e Strategies now condition on histories of actions and lottery
outcomes.
e Modified operator:
B(W) = B(co(W)) = co(B*(co(W))),
where W = co(W)
e V equilibrium value set of supergame with public

randomization.

e B is monotone and V is the largest fixed point of B.
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Step B: Approximations

e Modified operator B preserves monotonicity and compactness.

e Produces a sequence of convex sets that converge to
equilibrium.

e Two approximations:
e outer approximation

e inner approximation
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Piecewise-Linear Inner Approximation

e Suppose we have M points Z = {(z1,y1), ..., (xar, yar) } on
the boundary of a convex set W.

e The convex hull of Z, co(Z), is contained in W and has a
piecewise linear boundary.

e Since co(Z) C W, we will call co(Z) the inner approximation
to W generated by Z.
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Inner approximation

Inner approximations
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Piecewise-Linear QOuter Approximation

e Suppose we have

e M points Z = {(x1,41), ..., (Tas,ynr)} on the boundary of W,
and

e corresponding set of subgradients, R = {(s1,t1), ..., (Sar,tar) 1
e Therefore,

o the plane s;z + t;y = s;x; + t;y; is tangent to W at (z;,v;),
and

e the vector (s;,t;) with base at (z;,y;) points away from .
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Outer approximation

SX + ty = ;% + ty;

A convex set and supporting hyperplanes
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Key Properties of Approximations

Definition
Let BY(W) be an inner approximation of B(W) and B®(W) be an
outer approximation of B(W); that is B/(W) C B(W) C BO(W).

Lemma

Next, for any BY(W) and BC(W), (i) W C W' implies
BI(W) € BI(W"), and (ii) W C W' implies B®(W) C BO(W").

25 /44



Computing Equilibria of Repeated And Dynamic Games

Step 4: Initial Guesses and Convergence

Proposition

Suppose BY(-) is an outer monotone approximation of B(-). Then
the maximal fixed point of BC contains V. More precisely, if
W 2 BO(W) 2DV, then B(W) 2 B°(BO(W))D---D V.

Lemma
W2 BO(W)DV.
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Step 4: Initial Guesses and Convergence

Proposition

Suppose B!(-) is an inner monotone approximation of B(-). Then
the maximal fixed point of B! is contained in V. More precisely, if
W C BY(W) CV, then B5(W) C BI(BI(W))C---CV.

Lemma
W C BI(W)CV.
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Fixed Point

These results together with the monotonicity of the B operator,
implies the following theorem.

Theorem

Let V' be the equilibrium value set. Then (i) if Wy DOV then
BO(Wy) 2 BO(BO(Wy)) 2 -+~ DV, and (ii) if Wy C B (W)
then B (Wy) c BI(BI(Wy)) C --- C V. Furthermore, any fixed
point of B! is contained in the maximal fixed point of B, which in
turn is contained in the maximal fixed point of BO.
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Monotone Inner Hyperplane Approximation

Input: Points Z = {z1,---, zp} such that W = co(2).
Step 1 Find extremal points of B(W):

For each search subgradient hy ¢ H, £ =1, .., L.
(1) For each a € A, solve the linear program

ce(a) = maxy he - [(1—96)II(a)+ dw)
(i) weWw
(i) (1 —0)II(a)+ dw; >

(1— &I (a_i) + dw,, i=1,.,N
(1)

Let we(a) be a w value which solves (1).
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Monotone Inner Hyperplane Approximation cont'd

(2) Find best action profile a € A and continuation value:

a; = argmax{c(a)la € A}
2 (1= 6)I(azg) + dwe(az)

Step 2 Collect set of vertices Z+ = {2} |¢ =1,..., L}, and define
W =co(ZT).
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The Outer Approximation, Hyperplane Algorithm

Outer approximation: Same as inner approximation except record

normals and continuation values zj
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Outer vs. Inner Approximations

e Any point within the inner approximation is an equilibrium

e Can construct an equilibrium strategy from V.

e There exist multiple such strategies
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The Outer Approximation, Hyperplane Algorithm

e No point outside of outer approximation can be an equilibrium

e Can demonstrate certain equilibrium payoffs and actions are
not possible

e E.g., can prove that joint profit maximization is not possible
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Error Bounds

e Difference between inner and outer approximations is
approximation error

e Computations actually constitute a proof that something is in
or out of equilibrium payoff set - not just an approximation.

e Difference is small in many examples.
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ErrorBounds
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Convergence: Repeated Prisoner’s Dilemma

Payoff to Player 2

o 8 6 4 2 0 2 4 & 8 1
Payoff to Player 1
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Hyperplanes: Repeated Prisoner’'s Dilemma
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Example 2: Repeated Cournot Duopoly

Firm ¢ sales: ¢;

Firm 7 unit cost: ¢; = 0.6

Demand: p = max{6 — ¢1 — ¢2,0}

Profit: 11;(q1,92) = ¢i(p — i)

Nash Eqm. Payoff of Stage Game: (3.24,3.24)

Shared Monopoly Payoff : (3.64,3.64)
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Repeated Cournot

D
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c=(0.6,0.6)

Payoff to Player 2
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-
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¢=(0.6,0)

3 4 5 6
Payoff to Player 1
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Example 2: Repeated Cournot Duopoly

e Set of eqm payoffs quite large.

e Shared monopoly profits (4 and %) are achievable (for
5 =0.8)

e When costs are positive, threats far worse than reversion to
Nash.
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Strategies: Repeated Cournot
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Strategies: Repeated Cournot

Actions, promises, and threats on the boundary of V, ¢=0.6

{

(v2(6) al0)

(w3(£), walf)

()

(g1, o)

2
8
10
27
46
60

397
311
3.64
0.29
0.00
475

3.30
3.57
3.64
6.76
0.00
0.00

3.7
3.1
3.64
0.36
0.77
6.71

3.5
3.59
3.64
6.65
0.7
0.32

L7
13
13
0.0
51
51

09
13
13
30
51
21

48
3.6
3.6
0.0

-3.0
-3.0

24
3.6
3.6
11

-3.0
-13
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Example 2: Repeated Cournot Duopoly

e Unlike APS's imperfect monitoring example, eqm. paths are
not bang-bang.

e Continuation of worst eqm is not worst. Movement towards
cooperation?

e Shared Monopoly: Markov and stationary.

e Low profits today for Firm ¢ are supported by higher
continuation values.
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Next Meeting

Dynamic Games

Using algorithm to find endogenous state spaces.

Extensions to planner+continuum of agents.

Examples from applications in 10 , Macro.
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