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Appendix A: Nonlinear regression model and nonlinear

approximation methods

In this section, we extend the approximation approaches that we developed in Sec-
tions 4.2 and 4.3 to the case of the nonlinear regression model

y =Ψ(k�a;b)+ ε� (A.1)

where b ∈ R
n+1, k ≡ (k0� � � � �kT−1) ∈ R

T , a ≡ (a0� � � � � aT−1) ∈ R
T , and Ψ(k�a;β) ≡

(Ψ(k0� a0;β)� � � � �Ψ(kT−1� aT−1;β))� ∈ R
T .1 We first consider a nonlinear LS (NLLS)

problem and then formulate the corresponding LAD problem.
The NLLS problem is

min
b

‖y −Ψ(k�a;b)‖2
2 = min

b
[y −Ψ(k�a;b)]�[y −Ψ(k�a;b)]� (A.2)

The typical NLLS estimation method linearizes (A.2) around a given initial guess b by
using a first-order Taylor expansion of Ψ(k�a;b) and makes a step �b toward a solution

b̂� b+�b� (A.3)

Using the linearity of the differential operator, we can derive an explicit expression for
the step �b. This step is given by a solution to the system of normal equations

J �J �b = J ��y� (A.4)
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1The regression model with the exponentiated polynomial Ψ(kt�at ;b)= exp(b0 +b1 lnkt +b2 lnat +· · ·),
used in Marcet’s (1988) simulation-based PEA, is a particular case of (A.1).

Copyright © 2011 Kenneth L. Judd, Lilia Maliar, and Serguei Maliar. Licensed under the Creative Commons
Attribution-NonCommercial License 3.0. Available at http://www.qeconomics.org.
DOI: 10.3982/QE14

mailto:kennethjudd@mac.com
mailto:maliarl@stanford.edu
mailto:maliars@stanford.edu
http://creativecommons.org/licenses/by-nc/3.0/
http://www.qeconomics.org/
http://dx.doi.org/10.3982/QE14
http://creativecommons.org/licenses/by-nc/3.0/


2 Judd, Maliar, and Maliar Supplementary Material

where J is a Jacobian matrix of Ψ ,

J ≡
⎛⎝ ∂Ψ(k0�a0;b)

∂b0
· · · ∂Ψ(k0�a0;b)

∂bn· · · · · · · · ·
∂Ψ(kT−1�aT−1;b)

∂b0
· · · ∂Ψ(kT−1�aT−1;b)

∂bn

⎞⎠ �

and

�y ≡ (y0 −Ψ(k0� a0;b)� � � � � yT−1 −Ψ(kT−1� aT−1;b))��
Typically, the NLLS estimation method does not give an accurate solution b̂ in a single
step �b, and must instead iterate on the step (A.3) until convergence.2

A direct way to compute the step �b from (A.4) is to invert the matrix J �J , which
yields the well known Gauss–Newton method

�b = (J �J )−1 J ��y� (A.5)

This formula (A.5) has a striking resemblance to the OLS formula b̂ = (X�X)−1X�y,
namely, X , y, and b in the OLS formula are replaced in (A.5) by J , �y, and �b, respec-
tively. If J �J is ill-conditioned, as is often the case in applications, the Gauss–Newton
method experiences the same difficulties in computing (J �J )−1 and �b that the OLS
method does in computing (X�X)−1 and b.

To deal with the ill-conditioned matrix J �J in the Gauss–Newton method (A.5),
we can employ the LS approaches similar to those developed for the linear regression
model in Sections 4.2.1 and 4.2.2 of the paper. Specifically, we can compute an inverse of
the ill-conditioned matrix J �J by using LS methods based on SVD or QR factorization
of J . We can also use the Tikhonov type of regularization, which leads to the Levenberg–
Marquardt method

�b(η)= (J �J +ηIn+1)
−1 J ��y� (A.6)

where η≥ 0 is a regularization parameter.3

Furthermore, we can replace the ill-conditioned NLLS problem (A.2) with a nonlin-
ear LAD (NLLAD) problem

min
b

‖y −Ψ(k�a;b)‖1 = min
b

1�
T |y −Ψ(k�a;b)|� (A.7)

As in the NLLS case, we can proceed by linearizing the nonlinear problem (A.7) around
a given initial guess b. The linearized version of the NLLAD problem (A.7) is

min
�b

1�
T |�y − J �b|� (A.8)

The problem (A.8) can be formulated as a linear-programming problem: specifically, we
can set up the primal and dual problems, as well as regularized primal and dual prob-
lems, analogous to those considered in Sections 4.3.1 and 4.3.2 of the paper.

2Instead of the first-order Taylor expansion of Ψ(k�θ;b), we can consider a second-order Taylor expan-
sion, which leads to Newton’s class of nonlinear optimization methods in which the step �b depends on a
Hessian matrix; see Judd (1992, pp. 103–117) for a review.

3This method was proposed independently by Levenberg (1944) and Marquardt (1963).
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Example. Let us formulate a regularized primal problem for (A.8) that is parallel to
(34)–(37) in the paper. Fix some initial ϕ+ and ϕ− (which determine initial b(η) =
ϕ+ −ϕ−), and solve for �ϕ+ and �ϕ− from the linear-programming problem

min
υ+�υ−��ϕ+��ϕ− 1�

T υ
+ + 1�

T υ
− +η1�

n �ϕ
+ +η1�

n �ϕ
− (A.9)

s.t. υ+ − υ− + J�ϕ+ − J�ϕ+ = �y� (A.10)

υ+ ≥ 0� υ− ≥ 0� (A.11)

�ϕ+ ≥ 0� �ϕ− ≥ 0� (A.12)

Compute ϕ̂+ � ϕ+ + �ϕ+ and ϕ̂− � ϕ− + �ϕ−, and restore the regularized NLLAD es-
timator b̂(η) � (ϕ+ + �ϕ+) − (ϕ− + �ϕ−). As in the case of NLLS methods, we do not
typically obtain an accurate solution b̂ in a single step, but must instead solve the prob-
lem (A.9)–(A.12) iteratively until convergence.

To set up a regularized dual problem for (A.8), which is analogous to (38)–(41) in the
paper, we must replace X and y with J and �y, respectively.

Notice that the NLLS and NLLAD regularization methods described in this section
penalize all coefficients equally, including an intercept. Prior to applying these methods,
we need to appropriately normalize the explanatory variables and to set the penalty on
the intercept to zero.

Appendix B: Multidimensional deterministic integration methods

In this section, we describe deterministic integration methods suitable for evaluating
multidimesional integrals of the form

∫
RN G(ε)w(ε)dε, where ε≡ (ε1� � � � � εN)� ∈ R

N fol-
lows a multivariate Normal distribution ε ∼ N (μ�Σ), where μ ≡ (μ1� � � � �μN)� ∈ R

N is
a vector of means and Σ ∈ R

N×N is a variance–covariance matrix, and w(ε) is a density
function of the multivariate Normal distribution,

w(ε) = (2π)−N/2 det(Σ)−1/2 exp
[
−1

2
(ε−μ)�Σ−1(ε−μ)

]
� (B.1)

with det(Σ) denoting the determinant of Σ.4

B.1 Cholesky decomposition

The existing deterministic integration formulas are constructed under the assumption
of uncorrelated random variables with zero mean and unit variance. If the random
variables ε1� � � � � εN are correlated, we must rewrite the integral in terms of uncorre-
lated variables prior to numerical integration. Given that Σ is symmetric and positive-
definite, it has a Cholesky decomposition, Σ = ΩΩ�, where Ω is a lower triangular

4Such integration methods are used in Step 2 of GSSA to compute conditional expectation of the form
Et{Gt(εt+1)} = ∫

RN Gt(ε)w(ε)dε in each simulated point t, in particular, for the representative–agent model
(2)–(4), Gt(εt+1) is the integrand in (7).
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matrix with strictly positive diagonal entries. The Cholesky decomposition of Σ allows
us to transform correlated variables ε into uncorrelated ν with the linear change of vari-
ables

ν = Ω−1(ε−μ)√
2

� (B.2)

Note that dε = (
√

2)N det(Ω)dν. Using (B.2), and taking into account that Σ−1 =
(Ω−1)�Ω−1 and that det(Σ) = [det(Ω)]2, we obtain∫

RN
G(ε)w(ε)dε = π−N/2

∫
RN

G(
√

2Ων +μ)exp(−ν�ν)dν� (B.3)

Deterministic integration methods approximate the integral (B.3) by a weighted sum
of the integrand G evaluated in a finite set of nodes

∫
RN

G(ε)w(ε)dε ≈ π−N/2
J∑

j=1

ωjG(
√

2Ωνj +μ)� (B.4)

where {νj}j=1�����J and {ωj}j=1�����J are integration nodes and integration weights, respec-
tively. In the remaining section, we assume μ = 0N , where 0N is an N × 1 vector whose
entries are equal to 0.

B.2 Gauss–Hermite quadrature

In a one-dimensional integration case, N = 1, the integral (B.4) can be computed using
the Gauss–Hermite quadrature method. To be specific, we have

∫
R

G(ε)w(ε)dε ≈ π−1/2
J∑

j=1

ωjG(
√

2Ωνj)� (B.5)

where {νj}j=1�����J and {ωj}j=1�����J can be found using a table of Gauss–Hermite quadra-
ture nodes and weights (see, e.g., Judd (1998, p. 262)).

We can extend the one-dimensional Gauss–Hermite quadrature rule to the multidi-
mensional case by way of a tensor-product rule∫

RN
G(ε)w(ε)dε

(B.6)

≈ π−N/2
J1∑

j1=1

· · ·
JN∑

jN=1

ω1
j1

· · ·ωN
jN

·G(√
2Ω · (ν1

j1
� � � � � νNjN

)�)
�

where {ωh
jh

}jh=1�����Jh and {νhjh}jh=1�����Jh are, respectively, weights and nodes in a dimen-
sion h derived from the one-dimensional Gauss–Hermite quadrature rule (note that, in
general, the number of nodes in one dimension Jh can differ across dimensions). The
total number of nodes is given by the product J1J2 · · · JN . Assuming that Jh = J for all
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dimensions, the total number of nodes JN grows exponentially with the dimensional-
ity N .

B.3 Monomial rules

Monomial integration rules are nonproduct: they construct a relatively small set of
nodes distributed in some way within a multidimensional hypercube. The computa-
tional expense of monomial rules grows only polynomially with the dimensionality of
the problem, which makes them feasible for problems with large dimensionality.

We describe two monomial formulas for approximating the multidimensional inte-
gral (B.3). Monomial formulas are provided for the case of uncorrelated variables, for
example, in Stroud (1971, pp. 315–329) and Judd (1998, p. 275). Here, we adapt them to
the case of correlated random variables using the change of variables (B.2).

The first formula, denoted by M1, has 2N nodes,

∫
RN

G(ε)w(ε)dε ≈ 1
2N

N∑
h=1

G(±Rιh)� (B.7)

where R ≡ √
NΩ, and ιh ∈ R

N is a vector whose hth element is equal to 1 and the re-
maining elements are equal to 0, that is, ιh ≡ (0� � � � �1� � � � �0)�.

The second formula, denoted by M2, has 2N2 + 1 nodes,∫
RN

G(ε)w(ε)dε ≈ 2
2 +N

G(0� � � � �0)

+ 4 −N

2(2 +N)2

N∑
h=1

[G(Rιh)+G(−Rιh)] (B.8)

+ 1
(N + 2)2

N−1∑
h=1

N∑
s=h+1

G(±Dιh ±Dιs)�

where R≡ √
2 +NΩ and D ≡

√
2+N

2 Ω.

B.4 An example of integration formulas for N = 2

In this section, we illustrate the integration formulas described above using a two-
dimensional example, N = 2. We assume that the variables ε1 and ε2 are uncorrelated,
have zero mean, and have unit variance. The integral (B.3) is then given by

E{G(ε)} = 1
π

∫
R2

G(
√

2ν1�
√

2ν2)exp[−(ν1)2 − (ν2)2]dν1 dν2� (B.9)

(a) The Gauss–Hermite product rule (B.6) with three nodes in each dimension, Q(3),

uses one-dimensional nodes and weights given by νh1 = 0, νh2 =
√

3
2 , νh3 = −

√
3
2 , and ωh

1 =
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2
√
π

3 , ωh
2 = ωh

3 =
√
π

6 for each h= 1�2:

E{G(ε)} = 1
π

3∑
j1=1

3∑
j2=1

ω1
j1
ω2

j2
G

(√
2ν1

j1
�
√

2ν2
j2

)
= 4

9
G(0�0)+ 1

9
G(0�

√
3)+ 1

9
G(0�−√

3)

+ 1
9
G(

√
3�0)+ 1

36
G(

√
3�−√

3)+ 1
36

G(
√

3�−√
3)

+ 1
9
G(−√

3�0)+ 1
36

G(−√
3�

√
3)+ 1

36
G(−√

3�−√
3)�

(b) The Gauss–Hermite product rule (B.6) with one node in each dimension, Q(1),
uses a node νh1 = 0 and a weight ωh

1 = √
π for each h= 1�2:

E{G(ε)} = 1
π

1∑
j1=1

1∑
j2=1

ω1
j1
ω2

j2
G

(√
2ν1

j1
�
√

2ν2
j2

) =G(0�0)�

(c) The monomial formula M1, given by (B.7), has four nodes:

E{G(ε)} = 1
4
[G(

√
2�0)+G(−√

2�0)+G(0�
√

2)+G(0�−√
2)]�

(d) The monomial formula M2, given by (B.8), has nine nodes:

E{G(ε)} = 1
2
G(0�0)+ 1

16
[G(2�0)+G(−2�0)+G(0�2)+G(0�−2)]

+ 1
16

[G(
√

2�
√

2)+G(
√

2�−√
2)+G(−√

2�
√

2)+G(−√
2�

√
2)]�

Appendix C: Multicountry model

In this section, we provide a formal description of the multicountry model studied in
Section 6.6 of the paper. A world economy consists of a finite number of countries N .
Each country h ∈ {1� � � � �N} is populated by a representative consumer. A social planner
solves the maximization problem

max
{cht �kht+1}h=1�����N

t=0�����∞
E0

N∑
h=1

λh

[ ∞∑
t=0

βtuh(cht )

]
(C.1)

subject to the aggregate resource constraint

N∑
h=1

cht +
N∑

h=1

kh
t+1 =

N∑
h=1

kh
t (1 − δ)+

N∑
h=1

aht Afh(kh
t ) (C.2)
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and to the process for the countries’ productivity levels

lnaht+1 = ρ lnaht + εht+1� h= 1� � � � �N� (C.3)

where initial condition {kh
0 � a

h
0 }h=1�����N is given exogenously, and the productivity shocks

follow a multivariate Normal distribution (ε1
t+1� � � � � ε

N
t+1)

� ∼ N (0N�Σ) with 0N ∈ R
N be-

ing a vector of zero means and Σ ∈ R
N×N being a variance–covariance matrix. We as-

sume that shocks of different countries are given by εht+1 = ςht+1 + ςt+1 and h = 1� � � � �N ,

where ςht+1 ∼ N (0�σ2) is a country-specific component and ςt+1 ∼ N (0�σ2) is a world-
wide component. The resulting variance–covariance matrix is

Σ=
⎛⎝2σ2 · · · σ2

· · · · · · · · ·
σ2 · · · 2σ2

⎞⎠ �

In the problem (C.1)–(C.3), Et denotes conditional expectation; cht , kh
t , aht , and λh are

a country h’s consumption, capital, productivity level, and welfare weight, respectively;
β ∈ (0�1) is the discount factor; δ ∈ (0�1] is the depreciation rate; A is a normalizing
constant in the production function; and ρ ∈ (−1�1) is the autocorrelation coefficient.
The utility and production functions uh and f h, respectively, are strictly increasing, con-
tinuously differentiable, and concave. We assume that all countries have identical pref-
erences and technology, that is, uh = u and fh = f for all h. Under these assumptions,
the planner assigns equal weights λh = 1, and, therefore, equal consumption to all coun-
tries, cht = ct for all h= 1� � � � �N .

The solution to the model (C.1)–(C.3) satisfies N Euler equations

kh
t+1 =Et

{
β
u′(ct+1)

u′(ct)
[1 − δ+ aht+1Af ′(kh

t+1)]kh
t+1

}
� h= 1� � � � �N� (C.4)

where u′ and f ′ are the first derivatives of u and f , respectively.
We approximate the planner’s solution in the form of N capital policy functions

(45). Note that our approximating functions Ψh({kh
t � a

h
t }h=1�����N ;bh), h = 1� � � � �N , are

country-specific. Therefore, we treat countries as completely heterogeneous even if they
are identical in fundamentals and have identical optimal policy functions. This allows us
to assess costs associated with computing solutions to models with heterogeneous pref-
erences and technology.

GSSA, described in Section 2 for the representative–agent model, can be readily
adapted to the case of the multicountry model. In the initialization step of Stage 1, we
choose an initial guess for the matrix of the coefficients B ≡ [b1� � � � � bN ] ∈ R

(n+1)×N in
the assumed approximating functions Ψh({kh

t � a
h
t }h=1�����N ;bh), h = 1� � � � �N . In Step 1,

at iteration p, we use a matrix B(p) to simulate the model T periods forward to ob-

tain {kh
t+1}h=1�����N

t=0�����T and calculate the average consumption {ct}Tt=0 using the resource

constraint (C.2). In Step 2, we calculate the conditional expectation in (C.4) using a se-
lected integration method to obtain {yht }h=1�����N

t=0�����T−1. In Step 4, we run N regressions yht =
Ψh({kh

t � a
h
t }h=1�����N ;bh) + εht to obtain a new matrix of the coefficients B̂ = [b̂1� � � � � b̂N ];

as in the representative–agent case, we assume that Ψh is linear in bh, which leads
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to a linear regression model yh = Xbh + εh, where yh ≡ (yh0 � � � � � y
h
T−1)

� ∈ R
T , εh ≡

(εh0 � � � � � ε
h
T−1)

� ∈ R
T , and X ∈ R

T×(n+1) is a matrix of explanatory variables constructed
with the basis functions of the state variables. Finally, in Step 4, we update the coeffi-
cients B using fixed-point iteration, B(p+1) = (1 − ξ)B(p) + ξB̂. In Stage 2, we evaluate
the Euler equation errors on a simulation of T test = 10�200 observations using a high-
quality integration method: for N ≤ 20, we use the monomial rule M2 and for N > 20,
we use the monomial rule M1. To solve the model, we assume u(ct) = ln ct , f (kt) = kα

t

with α = 0�36, β = 0�99, δ = 0�025, ρ = 0�95, and σ = 0�01.
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