Parallel GSSA

Yongyang Cai, Hoover Institution

July 31, 2013

Outline

- \blacktriangleright Review of GSSA
- \blacktriangleright Analysis before parallelization
	- \blacktriangleright computational complexity

K ロ ▶ K 레 ▶ K 레 ▶ K 레 ≯ K 게 회 게 이 및 사 이 의 O

- \blacktriangleright memory requirement
- \blacktriangleright Parallelization
	- \blacktriangleright in integration step
	- \blacktriangleright in fitting step
- \blacktriangleright Parallelization results

Model for Illustration

 \triangleright *N*-country optimization problem

$$
\max_{\left\{c_{t}^{h}, k_{t+1}^{h}\right\}_{t=0,\ldots,\infty}^{h=1,\ldots,h}} E_{0} \sum_{h=1}^{N} \lambda^{h} \left[\sum_{t=0}^{\infty} \beta^{t} u^{h} \left(c_{t}^{h} \right) \right]
$$
(1)

 \triangleright subject to the aggregate resource constraint,

$$
\sum_{h=1}^{N} c_t^h + \sum_{h=1}^{N} k_{t+1}^h = \sum_{h=1}^{N} k_t^h (1 - \delta) + \sum_{h=1}^{N} \theta_t^h A f^h \left(k_t^h \right), \qquad (2)
$$

 \blacktriangleright the countries' productivity levels,

$$
\ln \theta_{t+1}^h = \rho \ln \theta_t^h + \epsilon_t^h, \qquad h = 1, ..., N,
$$
\n(3)

where $\epsilon_{t}^{1},\,...,\,\epsilon_{t}^{N}$ are correllated normal random variables

Euler Equations

\blacktriangleright Euler Equations:

$$
u_c^h(c_t^h) = E_t \left\{ \beta u_c^h(c_{t+1}^h) \left[1 - \delta + \theta_{t+1}^h A f_k^h(k_{t+1}^h) \right] \right\}, \quad h = 1, ..., N,
$$
\n(4)

 \blacktriangleright this implies

$$
k_{t+1} = E\left\{F\left(\theta_{t+1}\right) \mid \left(k_t, \theta_t\right)\right\} \approx \widehat{K}\left(k_t, \theta_t; b\right), \tag{5}
$$

where

$$
F(\theta_{t+1}) \equiv \beta \frac{u_c (c_{t+1})}{u_c (c_t)} [1 - \delta + \theta_{t+1} A f_k (k_{t+1})] k_{t+1}
$$

- **F** Randomness: θ_{t+1} , and c_{t+1} when it is dependent on θ_{t+1} if we do not use the one-node MC method
- \triangleright KKT conditions also implies

$$
u_c^h\left(c_t^h\right)\lambda^h=\mu_t\tag{6}
$$

for any $h=1,...,N$, where μ_t is the Lagrange multiplier of the aggregate resource constraint at time t.

GSSA Algorithm

- \blacktriangleright Initialization:
	- Given the initial state (k_0, θ_0) . Simulate a path of θ_t for $t = 1, ..., T - 1$, denoted by $\{\vartheta_t\}_{t=0}$, T_{-1}
	- ► Choose a functional form $\hat{K}(x_t; b^h)$, where $x_t = (k_t, \vartheta_t)$.
	- \blacktriangleright Choose an initial guess on the coefficients vectors $b^1,...,b^N$.
- Step 1. Simulation step. Use $k_{t+1}^h = K(x_t; b^h)$ to generate $\{k_t\}_{t=0}$ τ
- \triangleright Step 2. Integration step.
	- **Compute the intratemporal choice** c_t **and** c_{t+1}
	- **Compute** $y_t = E \{ F(\theta_{t+1}) | x_t \}$
- Step 3. Fitting step. Compute b^h such that $\hat{K}(x_t; b^h)$ approximates (x_t, y_t^h) , for each country h

KORA (FRAGE) A EL VIGO

► update b^h : $b^h = (1 - \xi) b^h + \xi \widehat{b}^h$

Approximation

 \blacktriangleright Approximation: Choose a functional form

$$
k_{t+1}^h = \widehat{K}\left(x_t; b^h\right),
$$

for each country h.

 \blacktriangleright basis approximation:

$$
k_{t+1}^h = \sum_{i=1}^m b_i^h \psi_i(x_t),
$$

 \blacktriangleright degree-n complete polynomial approximation:

$$
k_{t+1}^h = \sum_{|\alpha| \leq n} b_{\alpha}^h x_t^{\alpha},
$$

 \blacktriangleright Minimization of approximation errors

$$
\widehat{b}^h = \arg\min_{b^h} \sum_{t=1}^T \left\| y_t^h - \widehat{K} \left(x_t; b^h \right) \right\|.
$$

Integration

 \blacktriangleright Quadrature with J nodes

$$
y_t = E_t \left\{ F \left(\theta_{t+1} \right) \mid x_t \right\} \approx \sum_{j=1}^J \omega_j F \left(\theta_{t+1,j} \right)
$$

 \blacktriangleright To compute c_t ,

$$
\sum_{h=1}^{N} c_t^h + \sum_{h=1}^{N} k_{t+1}^h = \sum_{h=1}^{N} k_t^h (1 - \delta) + \sum_{h=1}^{N} \vartheta_t^h A f^h (k_t^h),
$$

$$
u_c^h (c_t^h) \lambda^h = \mu_t, \quad h = 1, ..., N
$$

- \triangleright $N + 1$ unknown variables, $N + 1$ equations
- \blacktriangleright In general, we may need an equation solver to find the solution of the system
- \triangleright For this specific example, it exists an explicit formula

Integration

Similar for computing $c_{t+1,j}$ for $j = 1, ..., J$:

$$
\sum_{h=1}^{N} c_{t+1,j}^{h} + \sum_{h=1}^{N} k_{t+2,j}^{h} = \sum_{h=1}^{N} k_{t+1}^{h} (1 - \delta) + \sum_{h=1}^{N} \theta_{t+1,j}^{h} A f^{h} (k_{t+1}^{h}),
$$

$$
u_{c}^{h} (c_{t+1,j}^{h}) \lambda^{h} = \mu_{t+1,j}, \quad h = 1, ..., N
$$

where $k_{t+2,j}^{h} = \widehat{K} (k_{t+1}, \theta_{t+1,j}; b^{h})$

RLS fitting

 \blacktriangleright Regularized least square fitting (RLS-Tikhonov):

$$
\widehat{b}^h = \left(X'X + \eta I \right)^{-1} X' y^h
$$

where

$$
X = \left(\begin{array}{ccc} \psi_1(x_1) & \cdots & \psi_m(x_1) \\ \vdots & \ddots & \vdots \\ \psi_1(x_T) & \cdots & \psi_m(x_T) \end{array}\right), \quad y^h = \left(\begin{array}{c} y_1^h \\ \vdots \\ y_T^h \end{array}\right)
$$

Computational Complexity

- \triangleright Before designing a parallel algorithm, do a complexity analysis at first
- \triangleright No need to think about parallelization on fast steps
- Simulation step: Use $k_{t+1}^h = K(x_t; b^h)$ for $h = 1, ..., N$ to generate $\{k_t\}_{t=0,\ldots,T}$.
	- Assume that we use degree-n complete polynomials.
	- \triangleright Number of coefficients of degree-n complete polynomials for N countries: $m = \begin{pmatrix} 2N + n \\ n \end{pmatrix}$ n \setminus

- \triangleright computational cost: $O(TNm)$
	- When $N = 100$, $n = 2$, $T = 30,000$, it is 61 Gflops

Cost of Integration Step

Integration step:

- **Compute the intratemporal choice** c_t **and** $c_{t+1,j}$ **for** $j = 1, ..., J$
	- **Fast for the illustration model, computational cost:** $O(N(J+1))$
	- \triangleright may be time-consuming for a general model using an equation solver
	- \blacktriangleright f(N): cost of computing c_t
- \blacktriangleright Compute $y_t = \sum_{j=1}^J \omega_j F(\theta_{t+1,j})$
	- \triangleright computational cost: $O(f(N)(J+1)MN)$
	- \blacktriangleright *M*: the cost for computing one $F^h(\theta_{t+1,j})$ for given c_t , $c_{t+1,j}$ and $\theta_{t+1,j}$
	- \triangleright For the illustration model using one Gaussian quadrature node for integration $(J = 1)$: it is very fast.

A O A Y A P A P A P A SHOP

Cost of Fitting Step

Fitting step: compute $\widehat{b}^h = (X'X + \eta I)^{-1} X' y^h$ for $h = 1, ..., N$

- ▶ Compute $A = X'X$, computational cost: $O(m^2T)$: When $N = 100$, $n = 2$, $T = 30,000$, it is 8 Teraflops.
- \blacktriangleright Naive way:
	- ► compute $B = (A + \eta I)^{-1}$, computational cost: $O(m^3)$
	- \blacktriangleright compute $C = BX'$, computational cost: $O(m^2T)$
	- \blacktriangleright compute Cy^h for $h = 1, ..., N$, computational cost: $O(mTN)$
- \blacktriangleright Less-computational-cost way:
	- ► Compute $z^h = X'y^h$ for $h = 1, ..., N$, computational cost: $O(mTN)$
	- Cholsky factorization: $A + \eta I = R'R$, computational cost: $O(m^3)$
		- ► but much faster than computation of $(A + \eta I)^{-1}$
		- \triangleright e.g., in Matlab, 14 seconds to compute inverse of a positive definite matrix, but only 1 second for computing its cholesky factorization.
	- Solve $R'(\hat{z}^h = z^h)$ for $h = 1, ..., N$, computational cost: $O(m^2N)$
	- Solve $R\hat{b}^h = \hat{z}^h$ for $h = 1, ..., N$, computational cost: $O(m^2N)$

 \triangleright $N \lt \lt m$ for nonlinear polynomial approximation, and $m \lt T$

Large Memory is Required

- \blacktriangleright To store X, it needs 8Tm bytes
- \blacktriangleright To store $A = X'X$, it needs $8m^2$ bytes
- If we use quadratic approximation,

- \blacktriangleright My laptop: 8 GB
- \triangleright One beagle node: Shared memory 32 GB (users can use up to about 31 GB)

KORK EX KEY KEY YOUR

Parallelization in Integration Step

- For each $t = 1, ..., T$,
	- **Example 1** compute the intratemporal choice c_t and $c_{t+1,j}$ for $j = 1, ..., J$, and then $y_t = \sum_{j=1}^{J} \omega_j F(\theta_{t+1,j})$

- \blacktriangleright Parallelization across t
- Parallelization across computation of c_t and $c_{t+1,j}$ for $j = 1, ..., J$

Parallelization in Fitting Step

- Sompute $A = X'X$ in parallel
	- ▶ One example of naive parallelization: compute $X'X_1$, ..., $X'X_m$ in parallel

K ロ ▶ K 레 ▶ K 레 ▶ K 레 ≯ K 게 회 게 이 및 사 이 의 O

- **Compute Cholesky factorization of** $A + \eta I = R'R$ in parallel
- Sompute $X'y^h$ for $h = 1, ..., N$ in parallel

Parallelization in Simulation Step

\n- Use
$$
k_{t+1}^h = \hat{K}(x_t; b^h)
$$
 for $h = 1, ..., N$ to generate $\{k_t\}_{t=0, ..., T}$.
\n- Parallelization across h
\n

More Parallelization

 \blacktriangleright The most time-consuming part of fitting step:

- compute $A = X'X$
- ighthropoles the Cholesky factorization $A + \eta I = R'R$
- \blacktriangleright Independent between
	- \triangleright computing A and the Cholesky factorization in the fitting step
	- **•** computing y^h for $h = 1, ..., N$ in the integration step
- \blacktriangleright Parallelization:
	- \triangleright One cluster computes A and the Cholesky factorization in parallel, another computes y^h for $h = 1, ..., N$ in parallel
	- If y^h is very time-consuming to be computed even in parallel, then the naive way that computes $\mathcal{C} = (A + \eta I)^{-1} \mathcal{X}'$ explicitly may be good
	- If computation of A and the Cholesky factorization is more time-consuming than computation of y^h , then the another cluster keeps computing $X'y^h$ for $h = 1, ..., N$ in parallel

A DIA K PIA A BIA A BIA A Q A CA

Parallelization Results

- \triangleright Use OpenMP for parallelization over one beagle node (a 24-core computer)
- \triangleright Solve the illustration model using one-node Gaussian quadrature method
- \triangleright Use quadratic polynomial approximation, one GSSA iteration

Parallelization Results

 \triangleright Use linear and quadratic polynomial approximation, iterates until convergence

K □ ▶ K @ ▶ K 할 X K 할 X | 할 X 1 9 Q Q *

Under Development

- ▶ Combine MPI and OpenMP
- \triangleright Solve a general model using an equation solver

K ロ ▶ K 레 ▶ K 레 ▶ K 레 ≯ K 게 회 게 이 및 사 이 의 O

 \blacktriangleright Parallelization to overcome the memory limit