
Parallel GSSA

Yongyang Cai, Hoover Institution

July 31, 2013

Outline

I Review of GSSA
I Analysis before parallelization

I computational complexity
I memory requirement

I Parallelization
I in integration step
I in fitting step

I Parallelization results

Model for Illustration

I N-country optimization problem

max
{ch

t ,kh
t+1}h=1,...,N

t=0,...,∞

E0

N∑
h=1

λh

[∞∑
t=0

βtuh (ch
t
)]

(1)

I subject to the aggregate resource constraint,

N∑
h=1

ch
t +

N∑
h=1

kh
t+1 =

N∑
h=1

kh
t (1− δ) +

N∑
h=1

θh
t Af h

(
kh
t

)
, (2)

I the countries’ productivity levels,

ln θh
t+1 = ρ ln θh

t + εht , h = 1, ...,N, (3)

where ε1t , ..., εNt are correllated normal random variables

Euler Equations
I Euler Equations:

uh
c
(
ch
t
)
= Et

{
βuh

c
(
ch
t+1
) [

1− δ + θh
t+1Af h

k
(
kh
t+1
)]}

, h = 1, ...,N,
(4)

I this implies

kt+1 = E {F (θt+1) | (kt , θt)} ≈ K̂ (kt , θt ; b) , (5)

where

F (θt+1) ≡ β
uc (ct+1)

uc (ct)
[1− δ + θt+1Afk (kt+1)] kt+1

I Randomness: θt+1 , and ct+1 when it is dependent on θt+1 if we do
not use the one-node MC method

I KKT conditions also implies

uh
c
(
ch
t
)
λh = µt (6)

for any h = 1, ...,N, where µt is the Lagrange multiplier of the
aggregate resource constraint at time t.

GSSA Algorithm

I Initialization:
I Given the initial state (k0, θ0). Simulate a path of θt for

t = 1, ...,T − 1, denoted by {ϑt}t=0,...,T−1
I Choose a functional form K̂

(
xt ; bh), where xt = (kt , ϑt).

I Choose an initial guess on the coefficients vectors b1, ..., bN .

I Step 1. Simulation step. Use kh
t+1 = K̂

(
xt ; bh

)
to generate

{kt}t=0,...,T
I Step 2. Integration step.

I Compute the intratemporal choice ct and ct+1
I Compute yt = E {F (θt+1) | xt}

I Step 3. Fitting step. Compute b̂h such that K̂
(
xt ; bh

)
approximates(

xt , yh
t
)
, for each country h

I update bh: bh = (1− ξ) bh + ξb̂h

Approximation

I Approximation: Choose a functional form

kh
t+1 = K̂

(
xt ; bh) ,

for each country h.
I basis approximation:

kh
t+1 =

m∑
i=1

bh
i ψi (xt),

I degree-n complete polynomial approximation:

kh
t+1 =

∑
|α|≤n

bh
αxαt ,

I Minimization of approximation errors

b̂h = argmin
bh

T∑
t=1

∥∥∥yh
t − K̂

(
xt ; bh)∥∥∥ .

Integration

I Quadrature with J nodes

yt = Et {F (θt+1) | xt} ≈
J∑

j=1

ωjF (θt+1,j)

I To compute ct ,

N∑
h=1

ch
t +

N∑
h=1

kh
t+1 =

N∑
h=1

kh
t (1− δ) +

N∑
h=1

ϑh
t Af h (kh

t
)
,

uh
c
(
ch
t
)
λh = µt , h = 1, ...,N

I N + 1 unknown variables, N + 1 equations
I In general, we may need an equation solver to find the solution of

the system
I For this specific example, it exists an explicit formula

Integration

I Similar for computing ct+1,j for j = 1, ..., J:

N∑
h=1

ch
t+1,j +

N∑
h=1

kh
t+2,j =

N∑
h=1

kh
t+1 (1− δ) +

N∑
h=1

θh
t+1,jAf h (kh

t+1
)
,

uh
c
(
ch
t+1,j

)
λh = µt+1,j , h = 1, ...,N

where kh
t+2,j = K̂

(
kt+1, θt+1,j ; bh

)

RLS fitting

I Regularized least square fitting (RLS-Tikhonov):

b̂h = (X ′X + ηI)−1 X ′yh

where

X =

 ψ1(x1) · · · ψm(x1)
...

. . .
...

ψ1(xT) · · · ψm(xT)

 , yh =

 yh
1
...

yh
T



Computational Complexity

I Before designing a parallel algorithm, do a complexity analysis at first
I No need to think about parallelization on fast steps
I Simulation step: Use kh

t+1 = K̂
(
xt ; bh

)
for h = 1, ...,N to generate

{kt}t=0,...,T .
I Assume that we use degree-n complete polynomials.
I Number of coefficients of degree-n complete polynomials for N

countries: m =

(
2N + n

n

)
I computational cost: O (TNm)

I When N = 100, n = 2, T = 30, 000, it is 61 Gflops

Cost of Integration Step

Integration step:
I Compute the intratemporal choice ct and ct+1,j for j = 1, ..., J

I fast for the illustration model, computational cost: O(N(J + 1))
I may be time-consuming for a general model using an equation solver
I f (N): cost of computing ct

I Compute yt =
∑J

j=1 ωjF (θt+1,j)

I computational cost: O(f (N)(J + 1)MN)
I M: the cost for computing one F h (θt+1,j) for given ct , ct+1,j and
θt+1,j

I For the illustration model using one Gaussian quadrature node for
integration (J = 1): it is very fast.

Cost of Fitting Step

Fitting step: compute b̂h = (X ′X + ηI)−1 X ′yh for h = 1, ...,N
I Compute A = X ′X , computational cost: O

(
m2T

)
: When N = 100,

n = 2, T = 30, 000, it is 8 Teraflops.
I Naive way:

I compute B = (A + ηI)−1 , computational cost: O
(
m3)

I compute C = BX ′ , computational cost: O
(
m2T

)
I compute Cyh for h = 1, ...,N, computational cost: O (mTN)

I Less-computational-cost way:
I Compute zh = X ′yh for h = 1, ...,N, computational cost: O(mTN)
I Cholsky factorization: A + ηI = R ′R, computational cost: O

(
m3)

I but much faster than computation of (A + ηI)−1

I e.g., in Matlab, 14 seconds to compute inverse of a positive definite
matrix, but only 1 second for computing its cholesky factorization.

I Solve R ′ẑh = zh for h = 1, ...,N, computational cost: O
(
m2N

)
I Solve Rb̂h = ẑh for h = 1, ...,N, computational cost: O

(
m2N

)
I N << m for nonlinear polynomial approximation, and m < T

Large Memory is Required

I To store X , it needs 8Tm bytes
I To store A = X ′X , it needs 8m2 bytes
I If we use quadratic approximation,

N T m Store X Store A
50 10,000 5,151 0.4 GB 0.2 GB
80 20,000 13,041 2.1 GB 1.4 GB
100 30,000 20301 4.9 GB 3.3 GB
200 100,000 80601 64 GB 52 GB

I My laptop: 8 GB
I One beagle node: Shared memory 32 GB (users can use up to about

31 GB)

Parallelization in Integration Step

I For each t = 1, ...,T ,
I compute the intratemporal choice ct and ct+1,j for j = 1, ..., J, and

then yt =
∑J

j=1 ωjF (θt+1,j)

I Parallelization across t
I Parallelization across computation of ct and ct+1,j for j = 1, ..., J

Parallelization in Fitting Step

I Compute A = X ′X in parallel
I One example of naive parallelization: compute X ′X1, ..., X ′Xm in

parallel

I Compute Cholesky factorization of A + ηI = R ′R in parallel
I Compute X ′yh for h = 1, ...,N in parallel

Parallelization in Simulation Step

I Use kh
t+1 = K̂

(
xt ; bh

)
for h = 1, ...,N to generate {kt}t=0,...,T .

I Parallelization across h

More Parallelization

I The most time-consuming part of fitting step:
I compute A = X ′X
I the Cholesky factorization A + ηI = R ′R

I Independent between
I computing A and the Cholesky factorization in the fitting step
I computing yh for h = 1, ...,N in the integration step

I Parallelization:
I One cluster computes A and the Cholesky factorization in parallel,

another computes yh for h = 1, ...,N in parallel
I If yh is very time-consuming to be computed even in parallel, then

the naive way that computes C = (A + ηI)−1X ′ explicitly may be
good

I If computation of A and the Cholesky factorization is more
time-consuming than computation of yh, then the another cluster
keeps computing X ′yh for h = 1, ...,N in parallel

Parallelization Results

I Use OpenMP for parallelization over one beagle node (a 24-core
computer)

I Solve the illustration model using one-node Gaussian quadrature
method

I Use quadratic polynomial approximation, one GSSA iteration

N T one beagle core one beagle node
50 10,000 99 seconds 12 seconds
80 20,000 21 minutes 2 minutes
100 30,000 73 minutes 6 minutes

Parallelization Results

I Use linear and quadratic polynomial approximation, iterates until
convergence

N T n one beagle core one beagle node
50 10,000 1 77 seconds 20 seconds

2 26 minutes 3 minutes
80 20,000 1 57 seconds 17 seconds

2 - 1.5 hours
100 30,000 1 101 seconds 31 seconds

2 - 5.8 hours

Under Development

I Combine MPI and OpenMP
I Solve a general model using an equation solver
I Parallelization to overcome the memory limit

