Parallel GSSA

Yongyang Cai, Hoover Institution

July 31, 2013

Outline

Review of GSSA

Analysis before parallelization

v

v

» computational complexity
> memory requirement

Parallelization

v

> in integration step
> in fitting step

Parallelization results

v

Model for Illustration

» N-country optimization problem

N [eS)
max E AP Btul (cf (1)
{Ct'7kt'+1}f::: YYYYY N 0; |JZO (t)

,,,,,

> subject to the aggregate resource constraint,

N N N N
S+ Y K=Y K-8+ oA (), ()
h=1 h=1 h=1 h=1
> the countries’ productivity levels,
N6, = pln6f + €, h=1,..,N, (3)

where €, ..., €V are correllated normal random variables

Euler Equations

» Euler Equations:

ul (e = B {Bul (cf1) [1 — 0+ 001 AR (K{)]}, h=1,..N,

c

> this implies
key1 = E{F (0ei1) | (ke,06)} ~ K (ke, 0; b) (5)
where

F(0es1) = /3% [1— 0+ Oes1 Af (kes1)] kest

» Randomness: 6:,1 , and c;11 when it is dependent on 6,1 if we do
not use the one-node MC method

» KKT conditions also implies
ug (/) A" = e (6)

forany h=1,..., N, where u; is the Lagrange multiplier of the
aggregate resource constraint at time t.

GSSA Algorithm

> Initialization:
> Given the initial state (ko, o). Simulate a path of 6, for
t=1,..., T — 1, denoted by {19t}t:0,m,T—1
» Choose a functional form K (xt; bh), where x; = (ke, 9¢).
» Choose an initial guess on the coefficients vectors b', ..., b"V.
» Step 1. Simulation step. Use kfﬂ =K (Xt; bh) to generate
{kt}tzo,...,T
> Step 2. Integration step.
» Compute the intratemporal choice ¢; and ¢t11
» Compute y: = E{F (0¢s1) | xe}
» Step 3. Fitting step. Compute b" such that K (Xt; bh) approximates

(Xt,y,_f’), for each country h

» update b": b" = (1 —¢)b" + ggh

Approximation
» Approximation: Choose a functional form
kiia = (Xt' b"),

for each country h.

> basis approximation:

t+1 = Zb ’w: Xt)

> degree-n complete polynomial approximation:

2 : h_«o
kt+1 baXt)

lal<n

» Minimization of approximation errors

- K (xt; bh)H .

Integration

» Quadrature with J nodes

Et {F(9t+1 ‘ Xt} ~ ij 9t+1,j

j=1

» To compute ¢,

N N
th —|—Zkt+1—Zkth(l—d)—i—Zﬂ?Afh(k:’),
h=1

h=1
U? (C:))\h:ﬂftv h= 1,...,N

» N + 1 unknown variables, N + 1 equations

> In general, we may need an equation solver to find the solution of
the system

» For this specific example, it exists an explicit formula

Integration

» Similar for computing c;1,j for j =1,..., J:

Z Crr1, T Z ki'inj = Z k1 (1= 0) + Z 071 A" (k)

h h B
uf (Ct+1,j) AN =1, h=1,..,N

where kJ'\, ; = K (kes1,0e1i b")

RLS fitting

» Regularized least square fitting (RLS-Tikhonov):

b= (X'X)"t X'yh
where

Yi(x) o Ym(x)
X = : : h

nlxr) o Gmxr)

Computational Complexity

> Before designing a parallel algorithm, do a complexity analysis at first
» No need to think about parallelization on fast steps

» Simulation step: Use k,f’H =K (xt; bh) for h=1,..., N to generate
{kf}tzo,...,T'
» Assume that we use degree-n complete polynomials.
» Number of coefficients of degree-n complete polynomials for N
2N +n
")
> computational cost: O (TNm)

» When N =100, n =2, T = 30,000, it is 61 Gflops

countries: m = (

Cost of Integration Step

Integration step:
» Compute the intratemporal choice ¢; and ¢¢q1j for j=1,...,J

> fast for the illustration model, computational cost: O(N(J + 1))
» may be time-consuming for a general model using an equation solver
> f(N): cost of computing ¢;

J
> Compute y; = > ;3 wjiF (0r41,)
» computational cost: O(f(N)(J + 1)MN)
» M: the cost for computing one F" (6:,1) for given ct, ct11; and
Oci1,j

> For the illustration model using one Gaussian quadrature node for
integration (J = 1): it is very fast.

Cost of Fitting Step

Fitting step: compute b = (X'X +nl) > X'y" for h=1,...,N
» Compute A = X’X, computational cost: O (m2 T): When N = 100,
n=2, T =230,000, it is 8 Teraflops.
» Naive way:

» compute B = (A+nl)~! , computational cost: O (m?)
» compute C = BX' , computational cost: O (m2 T)
» compute Cy" for h=1,..., N, computational cost: O (mTN)

» Less-computational-cost way:

» Compute z" = X'y" for h=1, ..., N, computational cost: O(mTN)
» Cholsky factorization: A+ nl = R'R, computational cost: O (m?)

> but much faster than computation of (A +nl)~!
> e.g., in Matlab, 14 seconds to compute inverse of a positive definite
matrix, but only 1 second for computing its cholesky factorization.

> Solve R'’z" = z" for h =1, ..., N, computational cost: O (m*N)
» Solve Rb" = 2" for h=1,..., N, computational cost: O (m*N)

» N << m for nonlinear polynomial approximation, and m < T

Large Memory is Required

v

To store X, it needs 8 Tm bytes
To store A = X'X, it needs 8m? bytes

If we use quadratic approximation,

v

v

| N] T | m [Store X | Store A |
50 10,000 5,151 04GB | 0.2GB
80 20,000 | 13,041 | 2.1 GB 1.4 GB
100 | 30,000 20301 | 49GB | 3.3GB
200 | 100,000 | 80601 64 GB 52 GB

v

My laptop: 8 GB
One beagle node: Shared memory 32 GB (users can use up to about
31 GB)

v

Parallelization in Integration Step

» Foreacht=1,..., T,

» compute the intratemporal choice ¢; and ¢¢q1j for j =1, ..., J, and
then ye = 371 wiF (0e417)
» Parallelization across t
> Parallelization across computation of ¢; and c¢q1j for j=1,...,J

Parallelization in Fitting Step

» Compute A= X’'X in parallel

» One example of naive parallelization: compute X’Xi, ..., X' X in
parallel

» Compute Cholesky factorization of A+ 1l = R'R in parallel
» Compute X'y" for h=1,..., N in parallel

Parallelization in Simulation Step

> Use kf!\; = K (x¢; b") for h=1,..., N to generate {ke}ico, T
> Parallelization across h

More Parallelization

» The most time-consuming part of fitting step:

» compute A= X'X
> the Cholesky factorization A+ nl = R'R

» Independent between

» computing A and the Cholesky factorization in the fitting step
» computing y" for h=1,..., N in the integration step

» Parallelization:

» One cluster computes A and the Cholesky factorization in parallel,
another computes y" for h=1,..., N in parallel

> If y" is very time-consuming to be computed even in parallel, then
the naive way that computes C = (A + nl) ™1 X’ explicitly may be
good

> If computation of A and the Cholesky factorization is more
time-consuming than computation of y", then the another cluster
keeps computing X'y" for h =1, ..., N in parallel

Parallelization Results

» Use OpenMP for parallelization over one beagle node (a 24-core
computer)

» Solve the illustration model using one-node Gaussian quadrature
method

» Use quadratic polynomial approximation, one GSSA iteration

’ N \ T \ one beagle core \ one beagle node ‘
50 | 10,000 99 seconds 12 seconds
80 | 20,000 21 minutes 2 minutes
100 | 30,000 73 minutes 6 minutes

Parallelization Results

» Use linear and quadratic polynomial approximation, iterates until
convergence

(N[T]
50 | 10,000

n | one beagle core | one beagle node |
1 77 seconds 20 seconds
2 26 minutes 3 minutes

80 | 20,000 | 1 57 seconds 17 seconds
2
1
2

- 1.5 hours
101 seconds 31 seconds
- 5.8 hours

100 | 30,000

Under Development

» Combine MPI and OpenMP
» Solve a general model using an equation solver

» Parallelization to overcome the memory limit

