Parallel GSSA

Yongyang Cai, Hoover Institution

July 31, 2013

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Outline

- Review of GSSA
- Analysis before parallelization
 - computational complexity

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

- memory requirement
- Parallelization
 - in integration step
 - in fitting step
- Parallelization results

Model for Illustration

N-country optimization problem

$$\max_{\left\{c_{t}^{h},k_{t+1}^{h}\right\}_{t=0,\ldots,\infty}^{h=1,\ldots,N}} E_{0} \sum_{h=1}^{N} \lambda^{h} \left[\sum_{t=0}^{\infty} \beta^{t} u^{h} \left(c_{t}^{h}\right)\right]$$
(1)

subject to the aggregate resource constraint,

$$\sum_{h=1}^{N} c_{t}^{h} + \sum_{h=1}^{N} k_{t+1}^{h} = \sum_{h=1}^{N} k_{t}^{h} (1-\delta) + \sum_{h=1}^{N} \theta_{t}^{h} A f^{h} \left(k_{t}^{h}\right), \qquad (2)$$

the countries' productivity levels,

$$\ln \theta_{t+1}^h = \rho \ln \theta_t^h + \epsilon_t^h, \qquad h = 1, ..., N,$$
(3)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

where $\epsilon_t^1, ..., \epsilon_t^N$ are correllated normal random variables

Euler Equations

Euler Equations:

$$u_{c}^{h}(c_{t}^{h}) = E_{t}\left\{\beta u_{c}^{h}(c_{t+1}^{h})\left[1 - \delta + \theta_{t+1}^{h}Af_{k}^{h}(k_{t+1}^{h})\right]\right\}, \quad h = 1, ..., N,$$
(4)

this implies

$$k_{t+1} = E\left\{F\left(\theta_{t+1}\right) \mid (k_t, \theta_t)\right\} \approx \widehat{K}\left(k_t, \theta_t; b\right),\tag{5}$$

where

$$F\left(\theta_{t+1}\right) \equiv \beta \frac{u_{c}\left(c_{t+1}\right)}{u_{c}\left(c_{t}\right)} \left[1 - \delta + \theta_{t+1}Af_{k}\left(k_{t+1}\right)\right]k_{t+1}$$

- Randomness: θ_{t+1}, and c_{t+1} when it is dependent on θ_{t+1} if we do not use the one-node MC method
- KKT conditions also implies

$$u_{c}^{h}\left(c_{t}^{h}\right)\lambda^{h}=\mu_{t} \tag{6}$$

(ロ) (型) (E) (E) (E) (O)

for any h = 1, ..., N, where μ_t is the Lagrange multiplier of the aggregate resource constraint at time t.

GSSA Algorithm

- Initialization:
 - Given the initial state (k_0, θ_0) . Simulate a path of θ_t for t = 1, ..., T 1, denoted by $\{\vartheta_t\}_{t=0,...,T-1}$
 - Choose a functional form $\widehat{K}(x_t; b^h)$, where $x_t = (k_t, \vartheta_t)$.
 - Choose an initial guess on the coefficients vectors $b^1, ..., b^N$.
- ► Step 1. Simulation step. Use $k_{t+1}^h = \widehat{K}(x_t; b^h)$ to generate $\{k_t\}_{t=0,...,T}$
- Step 2. Integration step.
 - Compute the intratemporal choice c_t and c_{t+1}
 - Compute $y_t = E \{F(\theta_{t+1}) \mid x_t\}$
- ▶ Step 3. Fitting step. Compute \hat{b}^h such that $\hat{K}(x_t; b^h)$ approximates (x_t, y_t^h) , for each country h
 - update b^h : $b^h = (1 \xi) b^h + \xi \widehat{b}^h$

Approximation

Approximation: Choose a functional form

$$k_{t+1}^{h} = \widehat{K}\left(x_{t}; b^{h}\right),$$

for each country h.

basis approximation:

$$k_{t+1}^h = \sum_{i=1}^m b_i^h \psi_i(x_t),$$

degree-n complete polynomial approximation:

$$k_{t+1}^h = \sum_{|\alpha| \le n} b_{\alpha}^h x_t^{\alpha},$$

Minimization of approximation errors

$$\widehat{b}^{h} = \arg\min_{b^{h}} \sum_{t=1}^{T} \left\| y_{t}^{h} - \widehat{K} \left(x_{t}; b^{h} \right) \right\|.$$

Integration

Quadrature with J nodes

$$y_{t} = E_{t} \{ F(\theta_{t+1}) \mid x_{t} \} \approx \sum_{j=1}^{J} \omega_{j} F(\theta_{t+1,j})$$

• To compute c_t ,

$$\sum_{h=1}^{N} c_{t}^{h} + \sum_{h=1}^{N} k_{t+1}^{h} = \sum_{h=1}^{N} k_{t}^{h} (1-\delta) + \sum_{h=1}^{N} \vartheta_{t}^{h} A f^{h} (k_{t}^{h}),$$
$$u_{c}^{h} (c_{t}^{h}) \lambda^{h} = \mu_{t}, \quad h = 1, ..., N$$

- N + 1 unknown variables, N + 1 equations
- In general, we may need an equation solver to find the solution of the system

For this specific example, it exists an explicit formula

Integration

• Similar for computing $c_{t+1,j}$ for j = 1, ..., J:

$$\sum_{h=1}^{N} c_{t+1,j}^{h} + \sum_{h=1}^{N} k_{t+2,j}^{h} = \sum_{h=1}^{N} k_{t+1}^{h} (1-\delta) + \sum_{h=1}^{N} \theta_{t+1,j}^{h} A f^{h} (k_{t+1}^{h}),$$
$$u_{c}^{h} (c_{t+1,j}^{h}) \lambda^{h} = \mu_{t+1,j}, \quad h = 1, ..., N$$
where $k_{t+2,j}^{h} = \widehat{K} (k_{t+1}, \theta_{t+1,j}; b^{h})$

◆□ > < 個 > < E > < E > E の < @</p>

RLS fitting

Regularized least square fitting (RLS-Tikhonov):

$$\widehat{b}^{h} = \left(X'X + \eta I\right)^{-1} X' y^{h}$$

where

$$X = \begin{pmatrix} \psi_1(x_1) & \cdots & \psi_m(x_1) \\ \vdots & \ddots & \vdots \\ \psi_1(x_T) & \cdots & \psi_m(x_T) \end{pmatrix}, \quad y^h = \begin{pmatrix} y_1^h \\ \vdots \\ y_T^h \end{pmatrix}$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Computational Complexity

- Before designing a parallel algorithm, do a complexity analysis at first
- No need to think about parallelization on fast steps
- ▶ Simulation step: Use $k_{t+1}^h = \widehat{K}(x_t; b^h)$ for h = 1, ..., N to generate $\{k_t\}_{t=0,...,T}$.
 - Assume that we use degree-n complete polynomials.
 - ► Number of coefficients of degree-*n* complete polynomials for *N* countries: $m = \begin{pmatrix} 2N + n \\ n \end{pmatrix}$

うして ふゆう ふほう ふほう うらつ

- computational cost: O(TNm)
 - When N = 100, n = 2, T = 30,000, it is 61 Gflops

Cost of Integration Step

Integration step:

- Compute the intratemporal choice c_t and $c_{t+1,j}$ for j = 1, ..., J
 - fast for the illustration model, computational cost: O(N(J+1))
 - may be time-consuming for a general model using an equation solver
 - f(N): cost of computing c_t
- Compute $y_t = \sum_{j=1}^{J} \omega_j F(\theta_{t+1,j})$
 - computational cost: O(f(N)(J+1)MN)
 - *M*: the cost for computing one $F^{h}(\theta_{t+1,j})$ for given c_t , $c_{t+1,j}$ and $\theta_{t+1,j}$
 - ► For the illustration model using one Gaussian quadrature node for integration (J = 1): it is very fast.

Cost of Fitting Step

Fitting step: compute $\widehat{b}^{h} = \left(X'X + \eta I\right)^{-1}X'y^{h}$ for h = 1, ..., N

- Compute A = X'X, computational cost: $O(m^2T)$: When N = 100, n = 2, T = 30,000, it is 8 Teraflops.
- Naive way:
 - compute $B = (A + \eta I)^{-1}$, computational cost: $O(m^3)$
 - compute C = BX', computational cost: $O(m^2 T)$
 - compute Cy^h for h = 1, ..., N, computational cost: O(mTN)
- Less-computational-cost way:
 - Compute $z^h = X'y^h$ for h = 1, ..., N, computational cost: O(mTN)
 - Cholsky factorization: $A + \eta I = R'R$, computational cost: $O(m^3)$
 - but much faster than computation of $(A + \eta I)^{-1}$
 - e.g., in Matlab, 14 seconds to compute inverse of a positive definite matrix, but only 1 second for computing its cholesky factorization.
 - Solve $R'\hat{z}^h = z^h$ for h = 1, ..., N, computational cost: $O(m^2 N)$
 - Solve $R\hat{b}^h = \hat{z}^h$ for h = 1, ..., N, computational cost: $O(m^2 N)$

• $N \ll m$ for nonlinear polynomial approximation, and m < T

Large Memory is Required

- ▶ To store *X*, it needs 8*Tm* bytes
- To store A = X'X, it needs $8m^2$ bytes
- If we use quadratic approximation,

N	Т	т	Store X	Store A
50	10,000	5,151	0.4 GB	0.2 GB
80	20,000	13,041	2.1 GB	1.4 GB
100	30,000	20301	4.9 GB	3.3 GB
200	100,000	80601	64 GB	52 GB

- My laptop: 8 GB
- One beagle node: Shared memory 32 GB (users can use up to about 31 GB)

Parallelization in Integration Step

- ▶ For each t = 1, ..., T,
 - compute the intratemporal choice c_t and $c_{t+1,j}$ for j = 1, ..., J, and then $y_t = \sum_{j=1}^{J} \omega_j F(\theta_{t+1,j})$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

- Parallelization across t
- ▶ Parallelization across computation of c_t and $c_{t+1,j}$ for j = 1, ..., J

Parallelization in Fitting Step

- Compute A = X'X in parallel
 - ▶ One example of naive parallelization: compute X'X₁, ..., X'X_m in parallel

- Compute Cholesky factorization of $A + \eta I = R'R$ in parallel
- Compute $X'y^h$ for h = 1, ..., N in parallel

Parallelization in Simulation Step

• Use
$$k_{t+1}^h = \widehat{K}(x_t; b^h)$$
 for $h = 1, ..., N$ to generate $\{k_t\}_{t=0,...,T}$.

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

► Parallelization across *h*

More Parallelization

The most time-consuming part of fitting step:

- compute A = X'X
- the Cholesky factorization $A + \eta I = R'R$
- Independent between
 - computing A and the Cholesky factorization in the fitting step
 - computing y^h for h = 1, ..., N in the integration step
- Parallelization:
 - One cluster computes A and the Cholesky factorization in parallel, another computes y^h for h = 1,..., N in parallel
 - If y^h is very time-consuming to be computed even in parallel, then the naive way that computes $C = (A + \eta I)^{-1}X'$ explicitly may be good
 - If computation of A and the Cholesky factorization is more time-consuming than computation of y^h, then the another cluster keeps computing X'y^h for h = 1,..., N in parallel

Parallelization Results

- Use OpenMP for parallelization over one beagle node (a 24-core computer)
- Solve the illustration model using one-node Gaussian quadrature method
- ► Use quadratic polynomial approximation, one GSSA iteration

N	T	one beagle core	one beagle node
50	10,000	99 seconds	12 seconds
80	20,000	21 minutes	2 minutes
100	30,000	73 minutes	6 minutes

Parallelization Results

Use linear and quadratic polynomial approximation, iterates until convergence

N	T	n	one beagle core	one beagle node
50	10,000	1	77 seconds	20 seconds
		2	26 minutes	3 minutes
80	20,000	1	57 seconds 17 seconds	
		2	-	1.5 hours
100	30,000	1	101 seconds	31 seconds
		2	-	5.8 hours

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Under Development

- Combine MPI and OpenMP
- Solve a general model using an equation solver

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへで

> Parallelization to overcome the memory limit