

Guess a value for the b coefficients, and define the transition law for k to be

 $K(k, a) = \Psi(k, a; b)$

Run simulation

(*at* is generated once in initialization process, used in all simulations)

- $k_{t+1} = K(k_t, a_t), t = 1, ..., T$
- $c_t = (1 \delta) k_t + a_t f(k_t) k_{t+1}$

Euler Equation

The Euler equation is

$$
1 = E\left\{\frac{u'(c_{t+1})}{u'(c_t)}(1 - \delta - a_{t+1}f'(k_{t+1}))\middle| k_t, a_t\right\}
$$

Construct regression data

Using the simulated data, define

$$
y_t = E\left\{\frac{u'(c_{t+1})}{u'(c_t)}(1-\delta - a_{t+1}f'(k_{t+1}))k_{t+1} | k_t, a_t\right\}
$$

Relate simulation data to Euler equation

If we have the equilibrium $K(...)$ function, then

$$
y_{t} = E \left\{ \frac{u'(c_{t+1})}{u'(c_{t})} (1 - \delta - a_{t+1} f'(k_{t+1})) k_{t+1} | k_{t} \right\}
$$

= 1 * k_{t+1}
= K(k_t, a_t)
= \Psi(k_t, a_t; b)

GSSA.nb **5**

Design regression

To see if that is true, we choose b' so as to minimize

 $\sum_t (y_t - \Psi(k_t, a_t; b'))^2$

which in our case is nothing more than a linear regression

Approximate *yt*

We need to approximate y_t . There are several possibilities

Rational expectations, Monte Carlo:

 $y_t = \left(\frac{u'(c_{t+1})}{u'(c_t)}(1-\delta-a_{t+1} f'(k_{t+1})) k_{t+1}\right) + \text{noise}$

where noise has mean zero; so we define

$$
\mathsf{yhat}_{t} = \left(\frac{u'(c_{t+1})}{u'(c_{t})} \left(1 - \delta - a_{t+1} f'(k_{t+1})\right) k_{t+1}\right)
$$

and regress yhat on $\Psi(k, a; b)$

(This is PEA procedure)

Rational expectations, quadrature:

 $yhat_t$ = a quadrature formula for

$$
E\left\{\frac{u'(c_{t+1})}{u'(c_t)}(1-\delta-a_{t+1}f'(k_{t+1}))k_{t+1}\,\bigg|\,k_t\right\}
$$

The quadrature nodes are points in the distribution of $a_{t+1} | a_t$. For each quadrature node, we compute the c_{t+1} under $K(k, a; b)$ The quadrature weights are related to the distribution of $a_{t+1} | a_t$

Rational beliefs, quadrature:

yhat*^j* = a quadrature formula for

$$
E^j\left\{\frac{u'(c^j_{t+1})}{u'(c^j_{t})}\,R_{t+1}\,k^j_{t+1}\,\middle|\,{\rm state}_t\right\}
$$

where the quadrature weights and nodes are determined by agent j's distribution of $a_{t+1} | a_t$

Bond prices:

Let $m_{i,t}$ be the expected MRS of tomorrow's consumption with respect to today's consumption:

$$
m_{i,t} = \beta E \left\{ \frac{u_i^{\mathsf{T}}(c_{i,t+1})}{u_i^{\mathsf{T}}(c_{i,t})} \middle| \text{state}_t \right\}
$$

Let q be the price of a one-period bond that delivers one unit of consumption tomorrow. q depends on the current state, so we let $q = \Psi(\text{state}; b)$ approximate the equilibrium q function

The regression chooses b' so as to minimize

 $\sum_i \sum_t (m_{i,t} - \Psi(\text{state}_t; b'))^2$

which in our case is nothing more than a linear regression where we have multiple observations at each time t