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Epsilon-distinguishable set (EDS) algorithm

A novel accurate method for solving dynamic economic models:
works for problems with high dimensionality, intractable for earlier
solution methods:

we accurately solve models with 20-50 state variables using a laptop.

Related literature focuses on much lower dimensionality: a
special JEDC 2011�s issue compares solution methods using models
with 12-20 state variables.
Examples of potential applications of the EDS algorithm:

macroeconomics (many heterogeneous consumers);
international economics (many countries);
industrial organization (many �rms);
�nance (many assets);
climate change (many sectors and countries); etc.

EDS algorithm is a global method: can handle strong
non-linearities and inequality constraints.

we solve a new Keynesian model with the zero lower bound.
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Epsilon-distinguishable set (EDS) algorithm

EDS algorithm merges stochastic simulation and projection
approaches:

we use simulation to approximate the ergodic measure of the solution;
we construct a �xed grid covering the support of the constructed
ergodic measure;
we use projection techniques to accurately solve the model on that grid.

The key novel piece of our analysis: the EDS grid construction:

we select an ε-distinguishable subset of simulated points that covers
the support of the ergodic measure roughly uniformly.
"ε-distinguishable set (EDS)" = a set of points situated at the distance
at least ε from one another, where ε > 0 is a parameter.
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A grid of points covering support of the ergodic measure

An illustration of an ε-distinguishable set.
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Ingredients of the EDS algorithm used for high-dimensional
models

Endogenous solution domain: our EDS grid is constructed by
approximating the ergodic set - we avoid costs of �nding a solution in
the areas of state space that are never visited in equilibrium.
Low-cost integration: non-product monomial and one-point
quadrature integration rules.
Derivative-free solvers for �nding the polynomial coe¢ cients:
�xed-point iteration.
E¢ cient vectorized approaches for �nding the control variables:
precomputation and iteration-on-allocation by Maliar, Maliar and
Judd (2011).

+

Taken together, these ingredients allow us to meet challenges
of high-dimensional problems.
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Remarks

Codes

Not yet available for the EDS method.
But a simple and well-documented MATLAB code is available for
generalized stochastic simulation method (GSSA).
GSSA is less e¢ cient but can also solve models with 20-50 state
variables.

Our class of problems di¤ers from Krusell and Smith (1998)

We can have any heterogeneity of agents but the number of
heterogeneous agents is not too large (like 20-50) and we work with
the true state space.
Krusell and Smith (1998) have a continuum of ex ante identical agents,
and they describe aggregate behavior with a reduced state space
(moments of aggregate variables).
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Illustrative example: a representative-agent model

The representative-agent neoclassical stochastic growth model:

max
fkt+1,ctg∞

t=0

E0
∞

∑
t=0

βtu (ct )

s.t. ct + kt+1 = (1� δ) kt + θt f (kt ) ,

ln θt+1 = ρ ln θt + εt+1, εt+1 � N
�
0, σ2

�
where initial condition (k0, θ0) is given;
u (�) = utility function; f (�) = production function;
ct = consumption; kt+1 = capital; θt = productivity;
β = discount factor; δ = depreciation rate of capital;
ρ = autocorrelation coe¢ cient of the productivity level;
σ = standard deviation of the productivity shock.
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Conventional projection methods, Judd (1992)

Characteristic features

Solve a model on a prespeci�ed grid of points.

Use quadrature integration for approximating conditional
expectations.

Compute polynomial coe¢ cients of policy functions using Newton�s
type solver.
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A projection method for the optimal growth model

Choose a grid of M points in the state space fkm , θmgMm=1 .
Choose nodes, εj , and weights, ωj , j = 1, ..., J, for approximating
integrals.
Parameterize capital policy function K (�) � bK (�; b) by a polynomialbK (km , θm ; b) = b0 + b1km + b2θm + b3k2m + b4kmθm + ...+ bnθLm

Solve for b � (b0, b1, ..., bn) that satis�es the Euler equation

min
b






u0 (cm (b))� β
J

∑
j=1

ωj
�
u0
�
c 0m,j (b)

� ��
1� δ+ θ0m,j f

0 �k 0m (b)����







θ0m,j = θ
ρ
m exp (εj ) ,

k 0m (b) = bK (km , θm ; b)
k 00m,j (b) = bK �k 0m , θ0m,j ; b�
cm (b) = (1� δ) km + θm f (km)� k 0m (b)
c 0m,j (b) = (1� δ) k 0m (b) + θ0m,j f

�
k 0m (b)

�
� k 00m,j (b)
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Conventional projection methods: curse of dimensionality

Very accurate and fast with few state variables but cost grows
exponentially with dimensionality!
(a) Tensor product grids =) Curse of dimensionality!
(b) Product quadrature integration =) Curse of dimensionality!
(c) Newton�s solver (Jacobian, Hessian) =) Curse of dimensionality!

θ4
θ3
θ2
θ1

k1 k2 k3 k4

- 2 state variables with 4 grid
points ) 4� 4 = 42 = 16
- 3 state variables with 4 grid
points ) 43 = 64
- 10 state variables with 4 grid
points ) 410 = 1, 048, 576
(With 100 grid points
) 10010 = 1020).

Krueger and Kubler (2004): Smolyak�s sparse grid - reduces the
number of points within the multidimensional hypercube domain but
not the size of the hypercube domain itself.
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Stochastic simulation methods, e.g., Marcet (1988)

Compute solution on simulated series.

Draw shocks fεtgTt=1 Compute and �x productivity levels fθtgTt=1.
Guess a decision function bK (k, θ; b) .
Simulate time series fct , kt+1gTt=0 .
Check equilibrium conditions and recompute bb.
Iterate on b until convergence.

Use Monte Carlo integration for approximating conditional
expectations.

Use learning techniques for solving for parameters of decision
functions.
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Advantage of stochastic simulation method

Advantage of stochastic simulation method: "Grid" is adaptive: we
solve the model only in the area of the state space that is visited in
simulation.
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Reduction in cost in a 2-dimensional case

How much can we save on cost using the ergodic-set domain
comparatively to the hypercube domain?

Suppose the ergodic set is a circle (it was an ellipse in the �gure).

In the 2-dimensional case, a circle inscribed within a square occupies
about 79% of the area of the square.

The reduction in cost is proportional to the shaded area in the �gure.

It does not seem to be a large gain.
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Reduction in cost in a d-dimensional case

In a 3-dimensional case, the gain is larger (a volume of a sphere of
diameter 1 is 52% of the volume of a cube of width 1)

In a d-dimensional case, the ratio of a hypersphere�s volume to a
hypercube�s volume

Vd =

8<: (π/2)
d�1
2

1�3�...�d for d = 1, 3, 5...
(π/2)

d
2

2�4�...�d for d = 2, 4, 6...
.

Vd declines very rapidly with dimensionality of state space. When
d = 10 ) Vd = 3 � 10�3 (0.3%). When d = 30 ) Vd = 2 � 10�14.
We face a tiny fraction of cost we would have faced on the hypercube.
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Shortcomings of stochastic simulation approach

1 Simulated points are not an e¢ cient choice for constructing a grid:

1 there are many closely situated and hence, redundant points;
2 there are points outside the high-probability area.

2 Simulated points are not an e¢ cient choice for the purpose of
integration �accuracy of Monte Carlo integration is low:

Et [yt+1] � y t+1 �
n

∑
τ=1
yτ+1

Suppose std (yτ+1) = 1%

n = 1 draws ) std (y t+1) = 1%

n = 100 draws ) std (y t+1) = 0.1%

n = 10, 000 draws ) std (y t+1) = 0.01%

Monte Carlo method has a slow,
p
n, rate of convergence.
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Ine¢ ciency of Monte Carlo integration

Why is Monte Carlo integration ine¢ cient?

Because we compute expectations from noisy simulated data as do
econometricians who do not know true density of DGP.

But we do know the true density of DGP (we de�ne productivity
ourselves, ln θt+1 = ρ ln θt + εt+1).

We can compute integrals far more accurately using quadrature
methods based on true density of DGP!
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Merging projection and stochastic simulation

What do we do?

Similar to stochastic simulation approach: use simulation to
identify and approximate the ergodic set.

Similar to projection approach: construct a �xed (EDS) grid and
use quadrature integration to accurately solve the model on that grid.

We use integration and optimization methods that are tractable in
high-dimensional problems: non-product monomial integration
formulas and derivative-free solvers.
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Mathematical foundations

We provide mathematical foundations for the EDS grid

We establish computational complexity, dispersion, cardinality and
degree of uniformity of the EDS grid constructed on simulated series.

We perform the typical and the worst-case analysis for the
discrepancy of the EDS grid.

We relate our results to recent mathematical literature on

covering problems (e.g., measuring entropy); see, Temlyakov (2011).
random sequential packing problems, (e.g., germ contagion); see,
Baryshnikov et al. (2008).
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A class of stochastic processes

Suppose we know the solution to the model.
A class of discrete-time stochastic processes:

xt+1 = ϕ (xt , εt+1) , t = 0, 1, ...,

ε 2 E � Rp = vector of p independent and identically distributed shocks;
x 2 X � Rd = vector of d (exogenous and endogenous) state variables;
x is endowed with its relative Borel σ-algebra denoted by X.

Example, kt+1 = K (kt , θt ) and θt+1 = θ
ρ
t exp (εt+1).

Assumption 1. There exists a unique ergodic set A� and the associated
ergodic measure µ.
Assumption 2. The ergodic measure µ admits a representation in the
form of a density function g : X ! R+ such that

R
A g (x) dx = µ (A) for

every A � X.
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A two-step EDS technique

A two-step procedure for forming a discrete approximation to the ergodic
set.

1 We identify an area of the state space that contains nearly all the
probability mass.

2 We cover this area with a �nite set of points that are roughly evenly
spaced.
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An essentially ergodic set

We de�ne a high-probability area of the state space using the level set of
the density function g .

Def. A set Aη � A� is called a η-level ergodic set if η > 0 and

Aη � fx 2 X : g (x) � ηg .

The mass of Aη under the density g (x) is equal to
p (η) �

R
g (x )�η g (x) dx .

If p (η) � 1, then Aη contains all X except for points where the
density is lowest.

In this case, Aη is called an essentially ergodic set.
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Law of iterated logarithm

LIL: The ergodic measure can be approximated by simulation.
P = random draws x1, ..., xn � Rd generated with µ : Rd ! R+.
C (P; J) = counts the number of points from P in a given J � Rd .
J = intersection of all subintervals Πd

i=1 [�∞, vi ), where vi > 0.

Proposition: (Law of iterated logarithm). For every dimensionality d and
every continuous function µ, we have

lim
n!∞

(
sup
J2J

����C (P; J)n
� µ (J)

���� �� 2n
log log n

�1/2
)
= 1, a.e.

Proof: See Kiefer (1961, Theorem 2).

That is, the empirical distribution function bµ (J) � C (P ;J )
n converges

asymptotically to the true distribution function µ (J) for every J 2 J at

the rate given by
�

2n
log log n

�1/2
.
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Multivariate kernel density estimation

(Algorithm Aη): Selection of points within an essentially ergodic set.
Step 1. Simulate xt+1 = ϕ (xt , εt+1) for T periods.
Step 2. Select each κth point to get a set P of n points x1, ..., xn 2 X � Rd .
Step 3. Estimate the density function bg (xi ) � g (xi ) for all xi 2 P.
Step 4. Remove all points for which the density is below η.

To estimate the density function bg from the simulated data, we use a
multivariate kernel algorithm

bg (x) = 1

n (2π)d/2 h
d

n

∑
i=1
exp

�
�D (x , xi )

2h
2

�
,

where h is the bandwidth parameter, and D (x , xi ) is the distance between
x and xi .

The complexity of Algorithm Aη is O
�
n2
�
because it requires to

compute pairwise distances between all the sample points.

We remove 5% of the sample which has the lowest density.
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Constructing EDS

Def. Let (X ,D) be a bounded metric space. A set P ε consisting of points

x ε
1, ..., x

ε
M 2 X � Rd is called ε-distinguishable if D

�
x ε
i , x

ε
j

�
> ε for all

1 � i , j � M : i 6= j , where ε > 0 is a parameter.

(Algorithm P ε): Construction of an EDS.
Let P be a set of n point x1, ..., xn 2 X � Rd .
Let P ε begin as an empty set, P ε = f?g.
Step 1. Select xi 2 P. Compute D

�
xi , xj

�
to all xj in P.

Step 2. Eliminate from P all xj for which D
�
xi , xj

�
< ε.

Step 3. Add xi to P ε and eliminate it from P.
Iterate on Steps 1-3 until all points are eliminated from P.

Proposition: The complexity of Algorithm P ε is of order O (nM).
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Measuring distance between points

Both estimating the density and constructing an EDS requires us to
measure the distance between simulated points.

Generally, variables in economic models have di¤erent measurement
units and are correlated.

This a¤ects the distance between the simulated points and hence,
a¤ects the resulting EDS.

Therefore, prior to using Algorithm Aη and Algorithm P ε, we
normalize and orthogonalize the simulated data using Principal
Component transformation.
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Principal component transformation

Let X 2 Rn�d be simulated data normalized to zero mean and unit
variance.
Perform the singular value decomposition of X , i.e., X = UQV>,
where U 2 Rn�d and V 2 Rd�d are orthogonal matrices, and
Q 2 Rd�d is a diagonal matrix.
Perform a linear transformation of X using PC� XV .
PC=

�
PC1, ...,PCd

�
2 Rn�d are principal components (PCs) of X ,

and are orthogonal (uncorrelated), i.e.,
�
PC`

0
�>
PC` = 0 for any

`0 6= `.
Distance between two observations xi and xj is the Euclidean distance
between their PCs

D (xi , xj ) =

"
d

∑
`=1

�
PC`i � PC`j

�2#1/2

,

where PC1, ...,PCd are normalized to unit variance.
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Illustrating the EDS technique
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Cluster grid �another procedure for approximating the
ergodic set

Instead of constructing an EDS, we can use methods from cluster
analysis to select a set of representative points from a given set of
simulated points.
We partition the simulated data into clusters (groups of
closely-located points) and replace each cluster with one
representative point.
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Dispersion of points in the EDS

Def. Let P be a set consisting of points x1, ..., xn 2 X � Rd , and let
(X ,D) be a bounded metric space. The dispersion of P in X is given by

dn (P;X ) = sup
x2X

inf
1�i�n

D (x , xi ) , (1)

where D is a (Euclidean) metric on X .

Def. Let S be a sequence of elements on X , and let x1, ..., xn 2 X � Rd

be the �rst n terms of S. The sequence S is called low-dispersion if
lim
n!∞

dn (S ;X ) = 0.

Proposition. Let P be any set of n points x1, ..., xn 2 X � Rd with a
dispersion dn (P;X ) < ε. Let (X ,D) be a bounded metric space, and let
P ε be an EDS x ε

1, ..., x
ε
M constructed by Algorithm P ε. Then, the

dispersion of P ε is bounded by ε < dM (P ε;X ) < 2ε.
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Number of points in the EDS

Proposition. Let P be any set of n points x1, ..., xn 2 B (0, r) � Rd with
a dispersion dn (P;X ) < ε. Then, the number of points in P ε constructed
by Algorithm P ε is bounded by

� r
2ε

�d � M �
�
1+ r

ε

�d .
To construct an EDS with a given target number of points M, we use a
simple bisection method :

�x ε1 and ε2 such that M (ε1) � M � M (ε2),
take ε = ε1+ε2

2 , construct an EDS and �nd M (ε);

if M (ε) > M, set ε1 = ε and otherwise, set ε2 = ε, and proceed
iteratively until M (ε) converges to some limit.

To �nd the initial values of ε1 and ε2, we use the bounds established
in the above proposition.
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Discrepancy

The degree of uniformity of EDSs. Standard notion of uniformity in the
literature �discrepancy from the uniform distribution.

Def. Let P be a set consisting of points x1, ..., xn 2 X � Rd , and let J
be a family of Lebesgue-measurable subsets of X . The discrepancy of P
under J is given by Dn (P;J ) = sup

J2J

���C (P ;J )n � λ (J)
���, where C (P; J)

counts the number of points from P in J, and λ (J) is a Lebesgue
measure of J.

Proposition. Let P be any set of n points x1, ..., xn 2 B (0; 1) � Rd with
a dispersion dn (P;X ) < ε. Then, the discrepancy of an EDS constructed

by Algorithm P ε under B is bounded by DM (P ε;B) �
p
2d�1p
2d+1

.
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Existence results for a covering-number problem

Temlyakov (2011) studies the problem of �nding a covering number �
a minimum number of balls of radius ε which cover a given compact
set (such as a d-dimensional hypercube or hypersphere).

He shows that there exists an EDS P ε on a unit hypercube [0, 1]d

whose discrepancy converges to 0 as M ! ∞ (i.e., ε ! 0).

However, constructing such an EDS is operationally di¢ cult and
costly.

Also, Temlyakov (2011) selects points from a compact subset of Rd ,
and his analysis cannot be directly applied to our problem of �nding
an ε-distinguishable subset of a given �nite set of points.
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Probabilistic results: random sequential packing problems

Probabilistic analysis of an EDS is non-trivial as points are spatially
dependent: once we place a point in an EDS, it a¤ects the placement of
all subsequent points.

A random sequential packing problem:

consider a bounded set X � Rd and a sequence of d-dimensional
balls whose centers are i.i.d. random vectors x1, ..., xn 2 X with a
given density function g .

A ball is packed if and only if it does not overlap with any ball which
has already been packed. If not packed, the ball is discarded. At
saturation, the centers of accepted balls constitute an EDS.
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Probabilistic results: random sequential packing problems
Rényi�s (1958) car parking model
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Probabilistic results: random sequential packing problems
Rényi�s (1958) car parking model
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Probabilistic results for random sequential packing
problems

For a multidimensional case, Baryshnikov et al. (2008) show that the
sequential packing measure, induced by the accepted balls centers,
satis�es the LIL.

Thus, the discrepancy of EDS converges to 0 asymptotically if the
density of points in an EDS is uniform in the limit ε ! 0. However,
the density of points in an EDS depends on the density function g of
the stochastic process used to produce the data.

Hence, an EDS needs not be uniform in the limit even in the
probabilistic sense (unless the density function is uniform).
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Our best- and worst-case scenarios

Implications of our analysis for Rényi�s (1958) car parking model.
The best- and worst-case scenarios: cars occupy between 50% and 100%
of the roadside ( 12 � lim

ε!0
Mε � 1).

1 Distance ε between cars: evil drivers park their cars to leave as little
parking space to other drivers as possible

2 Distance 0 between cars: a police o¢ cer directs the cars to park in a
socially e¢ cient way).
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Our best- and worst-case scenarios

The worst-case scenario for discrepancy in Rényi�s (1958) model,

DsM (P ε;B) �
p
2�1p
2+1

� 0.17, which is obtained under λ� =
p
2p
2+1
.

1 To attain this bound, consider an EDS on [0, 1] such that on the
interval [0,λ�], all points are situated on a distance 2ε, and on
[λ�, 1], all points are situated on the distance ε.

2 In the �rst interval, we have λ�

2ε � M � λ�

2ε + 1 points and in the
second interval, we have 1�λ�

ε � M � 1�λ�

ε + 1 points.
3 On the �rst interval, the limiting discrepancy is

lim
ε!0

�
λ� �

λ�
2ε

λ�
2ε +

1�λ�
ε

�
=

p
2�1p
2+1

� 0.17, the same value as implied by
our propositions.
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Comparison of EDS grid with other grids in the literature

Judd, Maliar and Maliar (07/30/2013) Merging Simulation&Projection Approaches Stanford, Summer Workshop 39 / 82



Deterministic integration methods

Our EDS relies on accurate Gauss-Hermite quadrature integration

Z
RN
g (ε)w (ε) dε �

J

∑
j=1

ωjg (εj ) ,

where fεjgJj=1 = integration nodes, fωjgJj=1 = integration weights.

Example

a) A two-node Gauss-Hermite quadrature method, Q (2), uses nodes
ε1 = �σ, ε2 = σ and weights ω1 = ω2 =

1
2 .

b) A three-node Gauss-Hermite quadrature method, Q (3), uses nodes

ε1 = 0, ε2 = σ
q

3
2 , ε3 = �σ

q
3
2 and weights ω1 =

2
p

π
3 ,

ω2 = ω3 =
p

π
6 .

c) A one-node Gauss-Hermite quadrature method, Q (1), uses a zero
node, ε1 = 0, and a unit weight, ω1 = 1.
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Multidimensional Gauss Hermite product rules

In multidimensional problem, we can use Gauss Hermite product rules.

Example

Let εht+1 � N
�
0, σ2

�
, h = 1, 2, 3 be uncorrelated random variables. A

two-node Gauss-Hermite product rule, Q (2), (obtained from the two-node
Gauss-Hermite rule) has 23 nodes, which are as follows:

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8
ε1t+1,j σ σ σ σ �σ �σ �σ �σ

ε2t+1,j σ σ �σ �σ σ σ �σ �σ

ε3t+1,j σ �σ σ �σ σ �σ σ �σ

where weights of all nodes are equal, ωt ,j = 1/8 for all j .

The cost of product rules increases exponentially, 2N , with the number of
exogenous state variables, N. Such rules are not practical when the
dimensionality is high.
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Non-product integration

Types of nodes: the center; the circles (6 centers of faces); the stars (12
centers of edges); the squares (8 vertices).
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Monomial non-product integration formulas

Monomial formulas are a cheap alternative for multi-dimensional problem
(there is a variety of such formulas di¤ering in accuracy and cost).

Example

Let εht+1 � N
�
0, σ2

�
, h = 1, 2, 3 be uncorrelated random variables.

Consider the following monomial (non-product) integration rule with 2 � 3
nodes:

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6
ε1t+1,j σ

p
3 �σ

p
3 0 0 0 0

ε2t+1,j 0 0 σ
p
3 �σ

p
3 0 0

ε3t+1,j 0 0 0 0 σ
p
3 �σ

p
3

where weights of all nodes are equal, ωt ,j = 1/6 for all j .

Monomial rules are practical for problems with very high dimensionality,
for example, with N = 100, this rule has only 2N = 200 nodes.
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Solving for polynomial coe¢ cients: �xed-point iteration

Derivative-free solvers

The cost of Newton�s type method grows quickly with dimensionality
because of the growing number of terms in Jacobian and Hessian.

A simple and e¢ cient alternative is �xed-point iteration

b(j+1) = (1� ξ) b(j) + ξbb,
where ξ 2 (0, 1) is damping parameter.
Cost of �xed-point iteration grows little with dimensionality.

Fixed-point iteration works for very high dimensions, like 400 state
variables!
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Description of the EDS algorithm iterating on Euler
equation

Parameterize the RHS of the Euler equation by a polynomial bK (k, θ; b),
E
�

β
u0 (c 0)
u0 (c)

�
1� δ+ θ0f 0

�
k 0
��
k 0
�

� bK (k, θ; b) = b0 + b1k + b2θ + ....+ bnθL

Step 1. Simulate fkt , θtgT+1t=1 . Construct an EDS grid, fkm , θmg
M
m=1.

Step 2. Fix b � (b0, b1, b2, ..., bn). Given fkm , θmgMm=1 solve for
fcmgMm=1.
Step 3. Compute the expectation using numerical integration (quadrature
integration or monomial rules)

bk 0m � E �β
u0 (c 0m)
u0 (cm)

�
1� δ+ θ0m f

0 �k 0m�� k 0m� .
Regress bk 0m on �1, km , θm , k2m , θ2m , ..., θLm� =) get bb.
Step 4. Solve for the coe¢ cients using damping,

b(j+1) = (1� ξ) b(j) + ξbb, ξ 2 (0, 1) .Judd, Maliar and Maliar (07/30/2013) Merging Simulation&Projection Approaches Stanford, Summer Workshop 45 / 82



Representative-agent model: parameters choice

Production function: f (kt ) = kα
t with α = 0.36.

Utility function: u (ct ) =
c1�γ
t �1
1�γ with γ 2

� 1
5 , 1, 5

	
.

Process for shocks: ln θt+1 = ρ ln θt + εt+1 with ρ = 0.95 and σ = 0.01.
Discount factor: β = 0.99.
Depreciation rate: δ = 0.025.
Accuracy is measured by an Euler-equation residual,

R (ki , θi ) � Ei

"
β
c�γ
i+1

c�γ
i

�
1� δ+ αθi+1kα�1

i+1

�#
� 1.
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Table 1. Accuracy and speed of the Euler equation EDS
algorithm in the representative-agent model

Polynomial degree Mean error Max error CPU (sec)

1st degree �4.29 �3.31 24.7
2nd degree �5.94 �4.87 0.8
3rd degree �7.26 �6.04 0.9
4th degree �8.65 �7.32 0.9
5th degree �9.47 �8.24 5.5

Target number of grid points is M = 25.
Realized number of grid points is M (ε) = 27.
Mean and Max are unit-free Euler equation errors in log10 units, e.g.,

�4 means 10�4 = 0.0001 (0.01%);

�4.5 means 10�4.5 = 0.0000316 (0.00316%).

Benchmark parameters: γ = 1, δ = 0.025, ρ = 0.95, σ = 0.01.
In the paper, also consider γ = 1/5 (low risk aversion) and γ = 5 (high
risk aversion). Accuracy and speed are similar.
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Autocorrection of the EDS grid
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Table 2: Accuracy and speed in the one-agent model:
Smolyak grid versus EDS grid

Test on a simulation Test on a hypercube
Polyn. Smolyak grid EDS grid Smolyak grid EDS grid
deg. Mean Max Mean Max Mean Max Mean Max

1st -3.31 -2.94 -4.23 -3.31 -3.25 -2.54 -3.26 -2.38
2nd -4.74 -4.17 -5.89 -4.87 -4.32 -3.80 -4.41 -3.25
3rd -5.27 -5.13 -7.19 -6.16 -5.39 -4.78 -5.44 -4.11
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Description of the EDS algorithm iterating on Bellman
equation

Parameterize the value function by a polynomial V (�) � bV (�; b):
max
k 0,c

n
u (c) + βE

hbV �k 0, θ0; b�io
� bV (k, θ; b) = b0 + b1k + b2θ + ....+ bnθL.

Step 1. Find bK corresponding to bV (�; b). Simulate fkt , θtgT+1t=1 .
Construct an EDS grid, fkm , θmgMm=1.
Step 2. Fix b � (b0, b1, b2, ..., bn). Given fkm , θmgMm=1 solve for
fcmgMm=1.
Step 3. Compute the expectation using numerical integration (quadrature
integration or monomial rules)

Vm � u (cm) + βE bV �k 0m , θ0m ; b� .
Regress Vm on

�
1, km , θm , k2m , θ

2
m , ..., θ

L
m

�
=) get bb.

Step 4. Solve for the coe¢ cients using damping,

b(j+1) = (1� ξ) b(j) + ξbb, ξ 2 (0, 1) .
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Table 3. Accuracy and speed of the Bellman equation EDS
algorithm in the representative-agent model

Polynomial degree Mean error Max error CPU (sec)

1st degree � � �
2nd degree �3.98 �3.11 0.5
3rd degree �5.15 �4.17 0.4
4th degree �6.26 �5.12 0.4
5th degree �7.42 �5.93 0.4

Target number of grid points is M = 25.
Realized number of grid points is M (ε) = 27.
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Multi-country model

The planner maximizes a weighted sum of N countries�utility functions:

maxn
fcht ,kht+1gNh=1

o∞

t=0

E0
N

∑
h=1

vh
 

∞

∑
t=0

βtuh
�
cht
�!

subject to

N

∑
h=1

cht +
N

∑
h=1

kht+1 =
N

∑
h=1

kht (1� δ) +
N

∑
h=1

θht f
h
�
kht
�
,

where vh is country h�s welfare weight.
Productivity of country h follows the process

ln θht+1 = ρ ln θht + εht+1,

where εht+1 � ςt+1 + ςht+1 with ςt+1 � N
�
0, σ2

�
is identical for all

countries and ςht+1 � N
�
0, σ2

�
is country-speci�c.
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Table 3. Accuracy and speed in the multi-country model

Polyn. M1 Q(1)
degree Mean Max CPU Mean Max CPU

N=2 1st �4.09 �3.19 44 sec �4.07 �3.19 45 sec
2nd �5.45 �4.51 2 min �5.06 �4.41 1 min
3rd �6.51 �5.29 4 min �5.17 �4.92 2 min

N=20 1st �4.21 �3.29 20 min �4.17 �3.28 3 min
2nd �5.08 �4.17 5 hours �4.83 �4.10 32 min

N=40 1st �4.23 �3.31 5 hours �4.19 �3.29 2 hours
2nd � � - �4.86 �4.48 24 hours

N=100 1st �4.09 �3.24 10 hours �4.06 �3.23 36 min
N=200 1st � � - �3.97 �3.20 2 hours

M1 means monomial integration with 2N nodes; Q(1) means quadrature
integration with one node in each dimension; Mean and Max are mean and
maximum unit-free Euler equation errors in log10 units, respectively; CPU
is running time.
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A new Keynesian (NK) model

A stylized new Keynesian model with Calvo-type price frictions and
a Taylor (1993) rule with the ZLB

Literature that estimates the models:
-Christiano, Eichenbaum and Evans (2005), Smets and Wouters (2003,
2007), Del Negro, Schorfheide, Smets and Wouters (2007).
Literature that �nds numerical solutions: mostly relies on local
(perturbation) solution methods. Few papers apply global solution
methods to low-dimensional problems.
Perturbation:
-most use linear approximations (Christiano, Eichenbaum&Rebelo, 2009);
-some use quadratic approx. (Kollmann, 2002, Schmitt-Grohé&Uribe, 2007);
-very few use cubic approximations (Rudebusch and Swanson, 2008).
Global solution methods: at most 4 state variables and simplifying
assumptions.
-Adam and Billi (2006): all except one FOCs are linearized;
-Adjemian and Juillard (2011): extended path method of Fair&Taylor (1984)
) perfect foresight.
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A new Keynesian (NK) model

Assumptions:

Households choose consumption and labor.

Perfectly competitive �nal-good �rms produce goods using
intermediate goods.

Monopolistic intermediate-good �rms produce goods using labor and
are subject to sticky price (á la Calvo, 1983).

Monetary authority obeys a Taylor rule with zero lower bound (ZLB).

Government �nances a stochastic stream of public consumption by
levying lump-sum taxes and by issuing nominal debt.

6 exogenous shocks and 8 state variables =) The model is large
scale (it is expensive to solve or even intractable under conventional
global solution methods that rely on product rules).
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The representative household

The utility-maximization problem:

max
fCt ,Lt ,Btgt=0,...,∞

E0
∞

∑
t=0

βt exp
�
ηu,t

� "C 1�γ
t � 1
1� γ

� exp
�
ηL,t

� L1+ϑ
t � 1
1+ ϑ

#

s.t. PtCt +
Bt

exp
�
ηB ,t

�
Rt
+ Tt = Bt�1 +WtLt +Πt

where
�
B0, ηu,0, ηL,0, ηB ,0

�
is given.

�Ct , Lt , and Bt = consumption, labor and nominal bond holdings, resp.;
�Pt , Wt and Rt = the commodity price, nominal wage and (gross)
nominal interest rate, respectively;
�Tt = lump-sum taxes;
�Πt = the pro�t of intermediate-good �rms;
� β = discount factor; γ > 0 and ϑ > 0.
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The representative household

Stochastic processes for shocks

ηu,t and ηL,t = exogenous preference shocks;

ηB ,t = exogenous premium in the return to bonds;

ηu,t+1 = ρuηu,t + εu,t+1, εu,t+1 � N
�
0, σ2u

�
ηL,t+1 = ρLηL,t + εL,t+1, εL,t+1 � N

�
0, σ2L

�
ηB ,t+1 = ρBηB ,t + εB ,t+1, εB ,t+1 � N

�
0, σ2B

�
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Final-good producers

The pro�t-maximization problem:

Perfectly competitive producers
Use intermediate goods i 2 [0, 1] as inputs

max
Yt (i )

PtYt �
Z 1

0
Pt (i)Yt (i) di

s.t. Yt =
�Z 1

0
Yt (i)

ε�1
ε di

� ε
ε�1
, ε � 1 (2)

�Yt (i) and Pt (i) = quantity and price of an intermediate good i , resp.;
�Yt and Pt = quantity and price of the �nal good, resp.;
�Eq (2) = production function (Dixit-Stiglitz aggregator function).

Result 1: Demand for the intermediate good i : Yt (i) = Yt
�
Pt (i )
Pt

��ε
.

Result 2: Aggregate price index Pt =
�R 1

0 Pt (i)
1�ε di

� 1
1�ε
.
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Intermediate-good producers

The cost-minimization problem:

Monopolisticly competitive

Use labor as an input

Are hit by a productiviy shock

Are subject to sticky prices

min
Lt (i )

TC (Yt (i)) = (1� v)WtLt (i)

s.t. Yt (i) = exp
�
ηa,t
�
Lt (i)

ηa,t+1 = ρaηa,t + εa,t+1, εa,t+1 � N
�
0, σ2a

�
�TC = nominal total cost (net of government subsidy v);
�Lt (i) = labor input;
� exp

�
ηa,t
�
is the productivity level.
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Intermediate-good producers (price decisions)

Calvo-type price setting:
1� θ of the �rms sets prices optimally, Pt (i) = ePt , for i 2 [0, 1];
θ is not allowed to change the price, Pt (i) = Pt�1 (i), for i 2 [0, 1].

The pro�t-maximization problem of a reoptimizing �rm i :

maxePt
∞

∑
j=0

βj θjEt
n

Λt+j

hePtYt+j (i)� Pt+jmct+jYt+j (i)io
s.t. Yt (i) = Yt

�
Pt (i)
Pt

��ε

(3)

�Eq (3) is the demand for an intermediate good i ;
�Λt+j is the Lagrange multiplier on the household�s budget constraint;
�mct+j is the real marginal cost of output at time t + j .
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Government

The government budget constraint:

Tt +
Bt

exp
�
ηB ,t

�
Rt
= Pt

GYt
exp

�
ηG ,t

� + Bt�1 + vWtLt

� GYt
exp(ηG ,t)

= Gt is government spending;

� vWtLt is the subsidy to the intermediate-good �rms;
� ηG ,t is a government-spending shock,

ηG ,t+1 = ρG ηG ,t + εG ,t+1, εG ,t+1 � N
�
0, σ2G

�
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Monetary authority

Taylor rule with ZLB on the net nominal interest rate:

Rt = max

8<:1, R�

�
Rt�1
R�

�µ
"�

πt
π�

�φπ
�
Yt
YN ,t

�φy
#1�µ

exp
�
ηR ,t

�9=;
�R� = long-run gross nominal interest rate;
�πt = gross in�ation rate between t � 1 and t;
�π� = in�ation target;
�YN ,t = natural level of output;
� ηR ,t = monetary shock

ηR ,t+1 = ρRηR ,t + εR ,t+1, εR ,t+1 � N
�
0, σ2R

�
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Natural equilibrium

"Natural equilibrium" - the model in which the potential
ine¢ ciencies have been eliminated:

Natural level of output YN ,t in the Taylor rule is a solution to a
planner�s problem

max
fCt ,Ltgt=0,...,∞

E0
∞

∑
t=0

βt exp
�
ηu,t

� "C 1�γ
t � 1
1� γ

� exp
�
ηL,t

� L1+ϑ
t � 1
1+ ϑ

#
s.t. Ct = exp

�
ηa,t
�
Lt � Gt

where Gt is given.
This implies

YN ,t =

"
exp

�
ηa,t
�1+ϑ�

exp
�
ηG ,t

���γ exp
�
ηL,t

�#
1

ϑ+γ
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Summary of equilibrium conditions

Aggregate production

Yt = exp
�
ηa,t
�
Lt∆t

Aggregate resource constraint

Ct + Gt = Yt

Taylor rule with ZLB on the net nominal interest rate

Rt = max

8<:1, R�

�
Rt�1
R�

�µ
"�

πt
π�

�φπ
�
Yt
YN ,t

�φy
#1�µ

exp
�
ηR ,t

�9=;
Natural level of output

YN ,t =

"
exp

�
ηa,t
�1+ϑ�

exp
�
ηG ,t

���γ exp
�
ηL,t

�#
1

ϑ+γ

.
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Summary of equilibrium conditions

We have

Stochastic processes for 6 exogenous shocks�
ηu,t , ηL,t , ηB ,t , ηa,t , ηG ,t , ηR ,t

	
.

8 endogenous equilibrium equations & 8 unknowns
fCt ,Yt ,Rt , Lt ,∆t ,πt ,Ft ,Stg.
2 endogenous state variables f∆t�1,Rt�1g.
Thus, there are 8 (endogenous plus exogenous) state variables.
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Computational papers on ZLB

How to impose the ZLB on interest rate?

Perturbation methods do not allow us to impose the ZLB in the
solution procedure.

The conventional approach in the literature is to disregard the ZLB
when computing perturbation solutions and to impose the ZLB in
simulations when running accuracy checks (that is, whenever Rt
happens to be smaller than 1 in simulation, we set it at 1).

Christiano, Eichenbaum&Rebelo (2009)

In contrast, our global EDS method does allow to impose the ZLB
both in the solution and simulation procedures.
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Parameter values

We calibrate the model using the results in Smets and Wouters (2003,
2007), and Del Negro, Smets and Wouters (2007).

Preferences: γ = 1; ϑ = 2.09; β = 0.99
Intermediate-good production: ε = 4.45
Fraction of �rms that cannot change price: θ = 0.83
Taylor rule: φy = 0.07; φπ = 2.21; µ = 0.82
In�ation target: π� 2 f1, 1.0598g
Government to output ratio: G = 0.23
Stochastic processes for shocks:
ρu = 0.92; ρL = 0.25; ρB = 0.22; ρa = 0.95; ρR = 0.15; ρG = 0.95
σu = 0.54%; σL 2 f18.21%, 40.54%g; σB = 0.23%; σa = 0.45%;
σR = 0.28%; σG = 0.38%

We compute 1st and 2nd perturbation solutions using Dynare, and we
compute 2nd and 3rd degree EDS solutions.
Judd, Maliar and Maliar (07/30/2013) Merging Simulation&Projection Approaches Stanford, Summer Workshop 67 / 82



Time-series solution and EDS grid
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Table 4. Accuracy and speed in the NK model with 0%
in�ation target and 18.21% volatility of labor shock

PER1 PER2 EDS2 EDS3

CPU 0.15 24.3 4.4
Mean �3.03 �3.77 �3.99 �4.86
Max �1.21 �1.64 �2.02 �2.73
Rmin 0.9916 0.9929 0.9931 0.9927
Rmax 1.0340 1.0364 1.0356 1.0358

Fr(R�1),% 2.07 1.43 1.69 1.68
4R,% 0.17 0.09 0.05 0
4C ,% 1.00 0.19 0.12 0
4Y ,% 1.00 0.19 0.12 0
4L,% 0.65 0.33 0.16 0
4π,% 0.30 0.16 0.11 0

PER 1 and PER 2 = 1st and 2nd order Dynare solutions; EDS2 and EDS3 = 2nd and 3rd degree

EDS algorithm; Mean and Max = average and max absolute errors (in log10 units); Rmin and

Rmax = min and max R; Fr = frequency of R� 1; 4X = max di¤erence from EDS3.
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Table 5. Accuracy and speed in the NK model with 5.98%
in�ation target and 40.54% volatility of labor shock

PER1 PER2 EDS2 EDS3

CPU 0.15 22.1 12.0
Mean �2.52 �2.90 �3.43 �4.00
Max �0.59 �0.42 �1.31 �1.91
Rmin 1.0014 1.0065 1.0060 1.0060
Rmax 1.0615 1.0694 1.0653 1.0660
Fr(R�1),% 0 0 0 0
4R,% 0.63 0.39 0.25 0
4C ,% 6.57 1.49 0.72 0
4Y ,% 6.57 1.48 0.72 0
4L,% 3.16 1.30 0.54 0
4π,% 1.05 0.79 0.60 0

PER 1 and PER 2 = 1st and 2nd order Dynare solutions; EDS2 and EDS3 = 2nd and 3rd

degree EDS; Mean and Max = average and max absolute errors (in log10 units); Rmin and

Rmax = min and max R; Fr = frequency of R� 1; 4X = max di¤erence from EDS3.
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Table 6. Accuracy and speed in the NK model with 0%
in�ation target, 18.21% volatility of labor shock and ZLB

PER1 PER2 EDS2 EDS3

CPU 0.15 21.4 3.58
Mean �3.02 �3.72 �3.57 �3.65
Max �1.21 �1.34 �1.58 �1.81
Rmin 1.0000 1.0000 1.0000 1.0000
Rmax 1.0340 1.0364 1.0348 1.0374
Fr(R�1),% 1.76 1.19 2.46 2.23
4R,% 0.33 0.34 0.34 0
4C ,% 4.31 3.65 2.26 0
4Y ,% 4.33 3.65 2.26 0
4L,% 3.37 3.17 2.45 0
4π,% 1.17 1.39 0.79 0

PER 1 and PER 2 = 1st and 2nd order Dynare solutions; EDS2 and EDS3 = 2nd and 3rd

degree EDS; Mean and Max = average and max absolute errors (in log10 units); Rmin and

Rmax = min and max R; Fr = frequency of R� 1; 4X = max di¤erence from EDS3.
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Simulated series: ZLB is not imposed versus ZLB is
imposed
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Conclusion

The EDS algorithm accurately solves models that were considered to
be unfeasible until now.

A mix of techniques taken together allows us to address the
challenges of high-dimensional problems:

EDS grid domain - a tiny fraction of the standard hypercube domain;
monomial and one-node integration rules;
�xed-point iteration for �nding policy functions;
iteration-on-allocation and precomputation approaches for solving for
intratemporal choice.

A proper coordination of the above techniques is crucial for accuracy
and speed.
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Equilibrium conditions

Some derivations:

FOC of a reoptimizing intermediate-good �rm with respect to ePt is
Et

∞

∑
j=0
(βθ)j Λt+jYt+jP ε+1

t+j

" ePt
Pt+j

� ε

ε� 1mct+j

#
= 0

where Λt+j =
exp(ηu,t+j)C

�γ
t+j

Pt+j
follows from the household�s FOC.

How should we deal with this in�nite sum when solving the model?
Need a recursive representation of this FOC.
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Equilibrium conditions

Step 1: De�ne χt ,j

χt ,j �
(
1 if j = 0

1
πt+j �πt+j�1 ���πt+1 if j � 1

.

Then χt ,j = χt+1,j�1 � 1
πt+1

for j > 0. Therefore, FOC with the
in�nite sum becomes

Et
∞

∑
j=0
(βθ)j exp

�
ηu,t+j

�
C�γ
t+jYt+jχ

�ε
t ,j

" ePt
Pt

χt ,j �
ε

ε� 1mct+j

#
= 0

Step 2: Rewrite the above FOC as

ePt
Pt
=

Et
∞

∑
j=0
(βθ)j exp

�
ηu,t+j

�
C�γ
t+jYt+jχ

�ε
t ,j

ε
ε�1mct+j

Et
∞

∑
j=0
(βθ)j exp

�
ηu,t+j

�
C�γ
t+jYt+jχ

1�ε
t ,j

� St
Ft
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Equilibrium conditions

Step 3: Find recursive formulas for St and Ft . For example, for St ,

St � Et
∞

∑
j=0
(βθ)j exp

�
ηu,t+j

�
C�γ
t+jYt+jχ

�ε
t ,j

ε

ε� 1mct+j

=
ε

ε� 1 exp
�
ηu,t

�
C�γ
t Ytmct

+βθEt

(
∞

∑
j=1
(βθ)j�1 exp

�
ηu,t+j

�
C�γ
t+jYt+j

�
χt+1,j�1

πt+1

��ε ε

ε� 1mct+j

)

=
ε

ε� 1 exp
�
ηu,t

�
C�γ
t Ytmct + βθEt

(
1

π�ε
t+1
�

� Et+1

 
∞

∑
j=0
(βθ)j exp

�
ηu,t+1+j

�
C�γ
t+1+jYt+1+jχ

�ε
t+1,j

ε

ε� 1mct+1+j

!)
=

ε

ε� 1 exp
�
ηu,t

�
C�γ
t Ytmct + βθEt fπε

t+1St+1g
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Aggregate price relationship

Aggregate price index:

Pt �
�Z 1

0
Pt (i)

1�ε di
� 1

1�ε

=�Z
reopt.

Pt (i)
1�ε di +

Z
non-reopt.

Pt (i)
1�ε di

� 1
1�ε

�"reopt." and "non-reopt." denote, resp., the �rms that reoptimize
and do not reoptimize their prices at t.

Easy part (all reoptimizers choose the same price):Z
reopt.

Pt (i)
1�ε di = (1� θ) eP1�ε

t
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Aggregate price relationship

Harder part:Z
non-reopt.

Pt (i)
1�ε di =

Z 1

0
P (j)1�ε ωt�1,t (j) dj

where ωt�1,t (j) = measure of non-reoptimizers at t that had P (j)
at t � 1.
Note ωt�1,t (j) = θωt�1 (j), where ωt�1 (j) = measure of �rms with
P (j) in t � 1.Z

non-reopt.
Pt (i)

1�ε di =
Z 1

0
θP (j)1�ε ωt�1 (j) dj = θP1�ε

t�1

Combine the easy and hard parts:

Pt =
h
(1� θ) eP1�ε

t + θP1�ε
t�1

i 1
1�ε

Rewrite ePt
Pt
=

�
1� θπε�1

t

1� θ

� 1
1�ε

=
St
Ft
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Aggregate output

Y t �
Z 1

0
Yt (i) di =

Z 1

0
exp

�
ηa,t
�
Lt (i) di = exp

�
ηa,t
�
Lt

Use the demand for Yt (i)

Y t =
Z 1

0
Yt

�
Pt (i)
Pt

��ε

di = YtP ε
t

Z 1

0
Pt (i)

�ε di = YtP ε
t

�
P t
��ε

where �
P t
��ε �

Z 1

0
Pt (i)

�ε di

Combine to get

Yt � Y t
�
P t
Pt

�ε

= exp
�
ηa,t
�
Lt∆t with ∆t �

�
P t
Pt

�ε

�∆t = measure of price dispersion across �rms.
If Pt (i) = Pt (i 0) for all i and i 0 2 [0, 1] =) ∆t = 1.
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Law of motion for price distortion

By analogy with the aggregate price index Pt , de�ne

P t �
h
(1� θ) eP�ε

t + θ
�
P t�1

��ε
i� 1

ε

Use P t in the de�nition of ∆t

∆t =

0B@
h
(1� θ) eP�ε

t + θ
�
P t�1

��ε
i� 1

ε

Pt

1CA
ε

This implies the law of motion for ∆t ,

∆t =

"
(1� θ)

�
1� θπε�1

t

1� θ

�� ε
1�ε

+ θ
πε
t

∆t�1

#�1
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Aggregate resource constraint

Combine the household�s BC with the government BC

PtCt + Pt
GYt

exp
�
ηG ,t

� = (1� v)WtLt +Πt

Note that the ith intermediate-good �rm�s pro�t at t is
Πt (i) � Pt (i)Yt (i)� (1� v)WtLt (i).

Thus, since Πt �
R 1
0 Πt (i) di ,

Πt =
R 1
0 Pt (i)Yt (i) di � (1� v)Wt

R 1
0 Lt (i) di = PtYt � (1� v)WtLt

where PtYt =
R 1
0 Pt (i)Yt (i) di follows by a zero-pro�t condition of the

�nal-good �rms.

Hence, PtCt + Pt G
exp(ηG ,t)

Yt = PtYt .

In real terms,

Ct =

 
1� G

exp
�
ηG ,t

�!Yt
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Summary of equilibrium conditions

FOCs of the intermediate-good �rms

St =
1

exp
�
ηa,t
� � exp �ηu,t + ηL,t

�
Lϕ
t Yt + βθEt fπε

t+1St+1g

Ft = C
�γ
t Yt + βθEt

�
πε�1
t+1Ft+1

	
St
Ft
=

�
1� θπε�1

t

1� θ

� 1
1�ε

Euler equation of the household�s problem

exp
�
ηu,t

�
C�γ
t = β exp

�
ηB ,t

�
RtEt

"
exp

�
ηu,t+1

�
C�γ
t+1

πt+1

#
Law of motion for the price distortion ∆t

∆t =

"
(1� θ)

�
1� θπε�1

t

1� θ

� ε
ε�1

+ θ
πε
t

∆t�1

#�1
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