Numerical Dynamic Programming and Applications

Yongyang Cai, Hoover Institution

(Co-author: Kenneth L. Judd)

July 16, 2013

K ロ ▶ K 레 ▶ K 레 ▶ K 레 ≯ K 게 회 게 이 및 사 이 의 O

Outline

- Introduction of Numerical Dynamic Programming
- **Advances in Numerical Dynamic Programming**
	- \triangleright Shape-preserving Approximation
	- \blacktriangleright Hermite Approximation
	- \blacktriangleright Parallelization
- \blacktriangleright Applications
	- \blacktriangleright Dynamic Portfolio Optimization
	- \triangleright Dynamic and Stochastic Integration of Climate and Economy

KORK STRATER STRAKES

Introduction of Dynamic Programming

- \triangleright Finite horizon and/or non-stationary dynamic programming problems
- \blacktriangleright Value function:

$$
V_t(x_t, \theta_t) = \max_{a_s \in \mathcal{D}(x_s, \theta_s, s)} \sum_{s=t}^{T-1} \beta^{s-t} \mathbb{E} \left\{ u_s(x_s, a_s, \theta_s) \right\} + \beta^{T-t} \mathbb{E} \left\{ V_T(x_T, \theta_T) \right\}
$$

 \blacktriangleright Bellman equation:

$$
V_t(x,\theta) = \max_{a \in \mathcal{D}(x,\theta,t)} u_t(x,a) + \beta \mathbb{E} \left\{ V_{t+1}(x^+,\theta^+) \mid x,\theta,a \right\},
$$

s.t.
$$
x^+ = g_t(x,\theta,a,\omega),
$$

$$
\theta^+ = h_t(\theta,\epsilon),
$$

K ロ ▶ K 레 ▶ K 레 ▶ K 레 ≯ K 게 회 게 이 및 사 이 의 O

Three Numerical Parts in DP

- **Approximation of Value Functions**
	- \triangleright (Multidimensional) Chebyshev polynomails

K ロ ▶ K 레 ▶ K 레 ▶ K 레 ≯ K 게 회 게 이 및 사 이 의 O

- \blacktriangleright Numerical Integration
	- \blacktriangleright Gauss-Hermite quadrature
- \triangleright Optimization
	- \triangleright NPSOL

Typical Application I

 \triangleright Optimal growth problem:

$$
V_0(k_0) = \max_{c,l} \sum_{t=0}^{T-1} \beta^t u(c_t, l_t) + \beta^T V_T(k_T),
$$

s.t.
$$
k_{t+1} = F(k_t, l_t) - c_t, \quad 0 \le t < T,
$$

$$
\underline{k} \le k_t \le \overline{k}, \quad 1 \le t \le T,
$$

$$
c_t, l_t \ge \epsilon, \quad 0 \le t < T,
$$

 \blacktriangleright Bellman equation:

$$
V_t(k) = \max_{c,l} u(c,l) + \beta V_{t+1}(k^+),
$$

s.t.
$$
k^+ = F(k,l) - c,
$$

$$
\underline{k} \le k^+ \le \overline{k}, c, l \ge \epsilon,
$$

K ロ X (御 X X を X X を X) 主 : 990

Typical Application II

 \blacktriangleright Multi-stage portfolio optimization problem:

$$
V_0(W_0)=\max_{S_{\mathbf{t}},0\leq t<\mathcal{T}}\ \mathbb{E}\{u(W_{\mathcal{T}})\},
$$

 \blacktriangleright Wealth transition:

$$
W_{t+1} = R_f(W_t - e^{\top} S_t) + R^{\top} S_t,
$$

 \blacktriangleright Bellman equation:

$$
V_t(W) = \max_{B,S} \mathbb{E}\{V_{t+1}(R_f B + R^{\top} S)\},
$$

s.t. $B + e^{\top} S = W$,

Typical Application III

Multi-country optimal growth problem:

$$
V_0(k_0, \theta_0) = \max_{k_t, l_t, c_t, l_t} \mathbb{E} \left\{ \sum_{t=0}^{T-1} \beta^t u(c_t, l_t) + \beta^T V_T(k_T, \theta_T) \right\},
$$

s.t. $k_{t+1,j} = (1 - \delta) k_{t,j} + l_{t,j}, \quad j = 1, ..., d,$

$$
\Gamma_{t,j} = \frac{\zeta}{2} k_{t,j} \left(\frac{l_{t,j}}{k_{t,j}} - \delta \right)^2, \quad j = 1, ..., d,
$$

$$
\sum_{j=1}^d (c_{t,j} + l_{t,j} - \delta k_{t,j}) = \sum_{j=1}^d \left(f(k_{t,j}, l_{t,j}, \theta_t) - \Gamma_{t,j} \right),
$$

$$
\theta_{t+1} = g(\theta_t, \epsilon_t).
$$

Numerical Dynamic Programming

Value function iteration method for solving finite-horizon and/or non-stationary dynamic programming problems.

▶ Initialization. Choose the approximation grid, $X = \{x_i : 1 \le i \le m\}$, and choose functional form for $\hat{V}(x; b)$. Let $\hat{V}(x; b^{\bar{\dagger}}) = V_{\mathcal{T}}(x)$. Iterate through steps1 and 2 over $t = T - 1, ..., 1, 0$.

 \triangleright Step 1. Maximization step: Compute

$$
v_i = \max_{a_i \in \mathcal{D}(x_i, t)} u_t(x_i, a_i) + \beta \mathbb{E}\{\hat{V}(x_i^+; \mathbf{b}^{t+1})\},
$$

for each $x_i \in X$, $1 \le i \le m$.

 \triangleright Step 2. Fitting step: Using the appropriate approximation method, compute the b^t such that $\hat{V}(x;b^t)$ approximates (x_i, v_i) data.

Computational Challenges

 \triangleright Smooth function approximation is important for high-dimensional problems:

- \blacktriangleright It can avoid the curse of dimensionality
- \blacktriangleright Fast Newton-type optimization solvers can be applied
- ▶ Monotonicity and concavity of value functions may be NOT preserved by smooth function approximation
	- \triangleright Difficult for optimization solvers to find global maximizers
- \blacktriangleright High-dimensional problems require many approximation nodes
	- \triangleright Efficient usage of all possible information (such as slopes of value functions) can improve much

KORKA REPARATION ADD

 \blacktriangleright Parallelization can also be very efficient

Approximation

 \blacktriangleright Chebyshev polynomial approximation

$$
\hat{V}(x; \mathbf{b}) = \sum_{j=0}^{n} b_j \mathcal{T}_j(Z(x)),
$$

- ► Chebyshev polynomial basis: $\mathcal{T}_j(z) = \cos(j \cos^{-1}(z))$
- ► Normalization: $Z(x) = \frac{2x x_{\min} x_{\max}}{x_{\max} x_{\min}}$

 \triangleright Multidimensional Chebyshev polynomial approximation

 \triangleright Complete polynomial approximation:

$$
\hat{V}_n(x; \mathbf{b}) = \sum_{0 \leq |\alpha| \leq n} b_{\alpha} \mathcal{T}_{\alpha} (Z(x)),
$$

KORK STRAIN ABY COMPARI

$$
\triangleright \ \mathcal{T}_{\alpha}(z) \text{ denote the product } \mathcal{T}_{\alpha_1}(z_1) \cdots \mathcal{T}_{\alpha_d}(z_d)
$$

Shape-preserving Chebyshev Interpolation

 \blacktriangleright LP problem to find coefficients

$$
\min_{b_j, b_j^+, b_j^-} \sum_{j=0}^{m-1} (b_j^+ + b_j^-) + \sum_{j=m}^n (j+1-m)^2 (b_j^+ + b_j^-),
$$
\ns.t.
$$
\sum_{j=0}^n b_j T_j' (y_{i'}) > 0, \quad i' = 1, ..., m',
$$
\n
$$
\sum_{j=0}^n b_j T_j'' (y_{i'}) < 0, \quad i' = 1, ..., m',
$$
\n
$$
\sum_{j=0}^n b_j T_j (z_i) = v_i, \quad i = 1, ..., m,
$$
\n
$$
b_j - \hat{b}_j = b_j^+ - b_j^-, \quad j = 0, ..., m - 1,
$$
\n
$$
b_j = b_j^+ - b_j^-, \quad j = m, ..., n,
$$
\n
$$
b_j^+, b_j^- \ge 0, \quad j = 1, ..., n,
$$

 \blacktriangleright y: shape nodes; z: approximation nodes

Application in Example I

Figure: Errors of numerical dynamic programming with Chebyshev interpolation with/without shape-preservation for growth problems

Hermite Value Function Iteration

Envelope Theorem: If

$$
H(x) = \max_{a} f(x, a)
$$

s.t. $g(x, a) = 0$,
 $h(x, a) \ge 0$,

then

$$
\frac{\partial H(x)}{\partial x_j} = \frac{\partial f}{\partial x_j}(x, a^*(x)) + \lambda^*(x)^{\top} \frac{\partial g}{\partial x_j}(x, a^*(x)) + \mu^*(x)^{\top} \frac{\partial h}{\partial x_j}(x, a^*(x))
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | X 9 Q @

Get Slopes Easily

 \blacktriangleright Equivalent formulation:

$$
H(x) = \max_{a,y} f(y, a)
$$

s.t. $g(y, a) = 0$,
 $h(y, a) \ge 0$,
 $x_j - y_j = 0$, $j = 1, ..., d$,

 \blacktriangleright Get slope of H easily:

$$
\frac{\partial H(x)}{\partial x_j} = \tau_j^*(x),
$$

► $\tau_j^*(x)$: the shadow price of the trivial constraint $x_j - y_j = 0$

Multidimensional Hermite Approximation

 \blacktriangleright Least-square problem

$$
\min_{\mathbf{b}} \qquad \sum_{i=1}^{N} \left(v_i - \sum_{0 \leq |\alpha| \leq n} b_{\alpha} \mathcal{T}_{\alpha} \left(x^{i} \right) \right)^{2} + \\ \sum_{i=1}^{N} \sum_{j=1}^{d} \left(s_{j}^{i} - \sum_{0 \leq |\alpha| \leq n} b_{\alpha} \frac{\partial}{\partial x_{j}} \mathcal{T}_{\alpha} \left(x^{i} \right) \right)^{2}
$$

Hermite data $\{(x^i, v_i, s^i) : i = 1, \ldots, N\}$: in a fill

$$
\begin{array}{ll}\n\blacktriangleright & \nu_i = V(x'), \\
\blacktriangleright & s_j^i = \frac{\partial}{\partial x_j} V(x')\n\end{array}
$$

Application in Example II

Figure: Errors of H-VFI or L-VFI for Dynamic Portfolio Optimization

 $2Q$ ă

Accuracy and Running Times

Table: Relative Errors and Running Times of L-VFI or H-VFI for Dynamic Portfolio Optimization

 \triangleright To reach the same accuracy of H-VFI, for one-dimensional problems, L-VFI needs

K ロ ▶ K 레 ▶ K 레 ▶ K 레 ≯ K 게 회 게 이 및 사 이 의 O

- \blacktriangleright twice as many nodes
- \blacktriangleright twice as much time

Application in Example III (Three Countries)

Figure: L-VFI vs H-VFI for Three-Country Optimal Growth Problems

 $2Q$ Ξ

Application in Example III (Six Countries)

Table: H-VFI vs L-VFI for Six-Dimensional Stochastic Problems

Note: $a(k)$ means $a \times 10^k$.

 \triangleright To reach the same accuracy of H-VFI, for six-dimensional problems, L-VFI needs

KORK STRAIN ABY COMPARI

- ► 64 times as many nodes (6⁶ nodes vs 3⁶ nodes)
- \blacktriangleright 55 times as much time (36.6 hours vs 0.67 hours)

Parallel Resources

- ▶ Multi-Core Local Machine (OpenMPI)
- \blacktriangleright Supercomputers
	- Beagle: 17,424 cores, 150 Teraflops $(10^{12}$ FLOPS)
	- \triangleright Cray Titan in Oak Ridge: 299,008 cores, 17.59 Petaflops (10¹⁵) FLOPS)

KOD KARD KED KED E VOOR

- Around 2018: 1 Exaflops $(10^{18}$ FLOPS)
- \triangleright Distributed Parallelization (Grid Computing)
	- \blacktriangleright Condor
	- \blacktriangleright Cloud

Parallel Computing

- \blacktriangleright High Performance Computing
	- \triangleright One application, many cores
	- \triangleright focus on speed of floating-point operations (flops)
	- \blacktriangleright distributed memory and/or shared memory (MPI and/or OpenMP)

KORK STRAIN ABY COMPARI

- \triangleright Graphics processing unit (GPU computing)
- \blacktriangleright High Throughput Computing: Many applications at the same time (Grid computing)
- \triangleright Data-intensive Computing: Focus on speed of I/O operations

Parallelization in Dynamic Programming

 \triangleright Parallelization in Maximization step in NDP: Compute

$$
v_i = \max_{a_i \in \mathcal{D}(x_i, t)} u_t(x_i, a_i) + \beta \mathbb{E}\{\hat{V}(x_i^+; \mathbf{b}^{t+1})\},
$$

for each $x_i \in X_t$, $1 \leq i \leq m_t$.

▶ Master-Worker system: Master processor, Worker processors.

- \triangleright Workers solve the independent maximization problems
- \blacktriangleright Master distributes tasks, collects results, does the fitting step

Parallel DP Algorithm for Master

Initialization. Set up
$$
\hat{V}(x, \theta; \mathbf{b}^T)
$$
, for all $\theta \in \Theta = \{\theta_j = (\theta_{j1}, \ldots, \theta_{jk}) : 1 \leq j \leq N\}$. Choose the approximation nodes, $X_t = \{x_i^t = (x_{i1}^t, \ldots, x_{id}^t) : 1 \leq i \leq m_t\}$. Iterate through steps1 and 2 over $t = T - 1, \ldots, 1, 0$.

- Step 1. Separate the maximization step into N tasks, one task per $\theta_i \in \Theta = {\theta_i = (\theta_{i1}, \ldots, \theta_{ik}) : 1 \leq j \leq N}$. Each task contains the parameters \mathbf{b}^{t+1} , and a given $\theta_j.$ Then send these tasks to the workers.
- Step 2. Wait until all tasks are done by the workers. Then collect the parameters \mathbf{b}_j^t from the workers, for $1 \leq j \leq \mathit{N}.$

A DIA K PIA A BIA A BIA A Q A CA

Parallel DP Algorithm for Workers

Step 1. Receive the parameters \mathbf{b}^{t+1} for one specific θ_j from the master.

Step 2. For θ_j , compute

$$
v_{ij} = \max_{a_{ij} \in \mathcal{D}(x_i, \theta_j, t)} u(x_i, \theta_j, a_{ij}) + \beta \mathbb{E} \{ \hat{V}(x_i^+, \theta_j^+; \mathbf{b}^{t+1}) \},
$$

KORK EX KEY KEY YOUR

for each $x_i \in X_t$, $1 \leq i \leq m_t$.

Step 3. Using an appropriate approximation method, compute the \mathbf{b}_j^t , such that $\hat{V}(\text{x}, \theta_j; \mathbf{b}_j^t)$ approximates $\{(\text{x}_{ij}, \text{v}_{ij})\}$ $1 \leq i \leq m_t$.

Step 4. Send \mathbf{b}_j^t to the master.

Parallelization Results for Example III

 \blacktriangleright Multi-country optimal growth problem:

$$
V_t(k, \theta) = \max_{c, l, l} u(c, l) + \beta \mathbb{E} \left\{ V_{t+1}(k^+, \theta^+) \mid \theta \right\},
$$

s.t. $k_j^+ = (1 - \delta)k_j + l_j + \epsilon_j, \quad j = 1, ..., d,$

$$
\Gamma_j = \frac{\zeta}{2}k_j \left(\frac{l_j}{k_j} - \delta \right)^2, \quad j = 1, ..., d,
$$

$$
\sum_{j=1}^d (c_j + l_j - \delta k_j) = \sum_{j=1}^d \left(f(k_j, l_j, \theta_j) - \Gamma_j \right),
$$

$$
\theta^+ = g(\theta, \xi_t),
$$

- \blacktriangleright Four-dimensional k (continuous)
- **Four-dimensional** θ **(discrete with 7 values per country)**
- \triangleright Four-dimensional ϵ (discrete with 3 values per country)

Results for Example III

- \triangleright 2401 tasks per value function iteration
- \triangleright 2401 optimization problems per task

Table: Statistics of parallel dynamic programming under HTCondor-MW for the growth problem

K ロ ▶ K 레 ▶ K 레 ▶ K 레 ≯ K 게 회 게 이 및 사 이 의 O

Parallel Efficiency for Example III

Table: Parallel efficiency for various number of worker processors

$#$ Worker	Parallel	Average task	Total wall clock
processors	efficiency	wall clock time (seconds)	time (hours)
50	98.6%	199	8.28
100	97%	185	3.89
200	91.8%	186	2.26

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | 2000

PART II:

NEW APPLICATIONS

K □ ▶ K @ ▶ K 할 X X 할 X : 할 X 1 9 Q Q ^

Portfolio with Transaction Costs

▶ Multi-stage Portfolio Optimization Problem:

$$
V_0(W_0, x_0) = \max_{\delta_t} \mathbb{E}\left\{u(W_\mathcal{T})\right\}
$$

s.t. $W_{t+1} = \mathbf{e}^\top X_{t+1} + R_f(1 - \mathbf{e}^\top x_t - y_t)W_t),$
 $X_{t+1,i} = R_i(x_{t,i} + \delta_{t,i})W_t,$
 $y_t = \mathbf{e}^\top(\delta_t + \tau|\delta_t|),$
 $x_{t+1,i} = X_{t+1,i}/W_{t+1},$
 $t = 0, ..., T-1; i = 1, ..., k,$

- \blacktriangleright τ : proportional transaction costs
- $\blacktriangleright \delta_{t,i} > 0$ means buying, and $\delta_{t,i} < 0$ means selling

Bellman Equation

 \blacktriangleright Bellman equation

$$
V_t(W_t, x_t) = \max_{\delta_t} \mathbb{E}\left\{V_{t+1}(W_{t+1}, x_{t+1})\right\},\,
$$

where

$$
\begin{array}{rcl}\ny_t & \equiv & \mathbf{e}^\top (\delta_t + \tau | \delta_t |), \\
X_{t+1,i} & \equiv & R_i(x_{t,i} + \delta_{t,i}) W_t, \\
W_{t+1} & \equiv & \mathbf{e}^\top X_{t+1} + R_f (1 - \mathbf{e}^\top x_t - y_t) W_t, \\
x_{t+1,i} & \equiv & X_{t+1,i} / W_{t+1},\n\end{array}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | X 9 Q @

No-trade regions

メロト メタト メモト メモト È 299

Parallelization of Dynamic Portfolio

- \triangleright Number of Value Function Iterations: 6
- \triangleright Number of optimization problems in one VFI: 15625
- \triangleright Number of quadrature points for the integration in the objective function for one optimization problem: 15625

KORK STRAIN A BY A GRAY

New Application II: Climate Change Analysis

Question: What can and should be the response to rising CO2 concentrations?

- \triangleright Analytical tools in the literature: IAMs (Integrated Assessment Models)
	- \triangleright Two components: economic model and climate model
	- Interaction is often limited: Economy emits $CO2$ which affects world average temperature which affects economic productivity.
- \triangleright Existing IAMs cannot study dynamic decision-making in an evolving and uncertain world
	- \triangleright Most are deterministic; economic actors know with certainty the consequences of their actions and the alternatives

4 D X 4 P X 3 X 4 B X 3 B X 9 Q O

 \triangleright Most are myopic; standard reason is computational feasibility

Nordhaus' DICE: The Prototypical Model

- \triangleright DICE2007 was the only dynamic economic model used by the US Interagency Working Group on the Cost of Carbon
- \blacktriangleright Economic system
	- ► gross output: $Y_t \equiv f(k_t, t) = A_t k_t^{\alpha} \frac{1}{t}^{-\alpha}$
	- \blacktriangleright damage factor: Ω_t $\equiv 1/\left(1+\pi_1\,T_t^{\rm AT}+\pi_2(\,T_t^{\rm AT})^2\right)$
	- ► emission control cost: $\Lambda_t \equiv \psi_t^{1-\theta_2} \theta_{1,t} \mu_t^{\theta_2}$, where μ_t is policy choice
	- \triangleright output net of damages and emission control: $\Omega_t (1 \Lambda_t) Y_t$
- \blacktriangleright Climate system
	- \blacktriangleright Carbon mass: $\mathsf{M}_t = (\mathsf{M}_t^{\mathrm{AT}}, \mathsf{M}_t^{\mathrm{UP}}, \mathsf{M}_t^{\mathrm{LO}})^{\top}$
	- \blacktriangleright Temperature: $\mathbf{T}_t = (T_t^{\text{AT}}, T_t^{\text{LO}})^{\top}$
	- ► Carbon emission: $E_t = \sigma_t (1 \mu_t) Y_t + E_t^{\rm Land}$
	- \blacktriangleright Radiative forcing: $F_t = \eta \log_2 \left(\left(M_t^{\text{AT}} + M_{t+1}^{\text{AT}} \right) / \left(2 M_0^{\text{AT}} \right) \right) + F_t^{\text{EX}}$

KORKAR KERKER DRAM

Figure: DSICE Framework

State Variable

Control Variable

Markov Process

K □ ▶ K @ ▶ K 할 X X 할 X : 할 X 1 9 Q Q ^

All agree that uncertainty needs to be a central part of any IAM analysis Multiple forms of uncertainty

- \triangleright Risk: productivity shocks, taste shocks, uncertain technological advances, weather shocks
- \triangleright Parameter uncertainty: policymakers do not know parameters that characterize the economic and/or climate systems
- \triangleright Model uncertainty: policymakers do not know the proper model or the stochastic processes

Abrupt, Stochastic, and Irreversible Climate Change

Question: What is the optimal carbon tax when faced with abrupt and irreversible climate change?

- \triangleright Common assumption in IAMs: damages depend only on contemporaneous temperature
- \triangleright Our criticism: this cannot analyze the permanent and irreversible damages from tipping points
- \triangleright We show that
	- \triangleright Abrupt climate change can be modeled stochastically
	- \blacktriangleright The policy response to the threat of tipping points is very different from the policy response to standard damage representations.

Tipping point

- \triangleright A tipping point is where temperature causes a big event with permanent damage
- \triangleright The time of tipping is a Poisson process, and probability of a tipping point occurring at t equals the hazard rate $h_t({\mathcal{T}}_t^{\text{AT}})$
- \blacktriangleright Examples:
	- \blacktriangleright Thermohaline circulation collapse
	- Extreme catastrophe (Weitzman (2009)): small probability (hazard rate is 0.1% at 2100) but big deduction of production (20% damage)

Cai-Judd-Lontzek DSICE Model

DSICE (Dynamic Stochastic Integrated Model of Climate and Economy)

 $DSICE = DICE2007$

- + stochastic damage factor
- $+$ stochastic production function
- $+$ flexible period length

DSICE: new features

- ► Economic system: $Y_t \equiv f(k_t, \zeta_t, t) = \zeta_t A_t k_t^{\alpha} l_t^{1-\alpha}$ where $\zeta_{t+1} = g^\zeta(\zeta_t, \omega_t^\zeta)$ is an AR(1) process for the productivity state ζ
- ► Climate system: $\Omega_t \equiv (1 J_t) / (1 + \pi_1 T_t^{AT} + \pi_2 (T_t^{AT})^2)$ where $J_{t+1} = g^J (J_t, \omega_t^J)$ is a Markov process for the damage factor state J

KORKAR KERKER EL VOLO

DP model of DSICE

 \triangleright DP model for DSICE

$$
V_t(k, \mathbf{M}, \mathbf{T}, \zeta, J) = \max_{c, \mu} u_t(c) + \beta \mathbb{E}[V_{t+1}(k^+, \mathbf{M}^+, \mathbf{T}^+, \zeta^+, J^+)]
$$

s.t. $k^+ = (1 - \delta)k + \Omega_t(1 - \Lambda_t)Y_t - c$,
 $\mathbf{M}^+ = \Phi^M \mathbf{M} + (\mathbf{E}_t, 0, 0)^\top$,
 $\mathbf{T}^+ = \Phi^\top \mathbf{T} + (\xi_1 \mathbf{F}_t, 0)^\top$,
 $\zeta^+ = g^\zeta(\zeta, \omega^\zeta)$,
 $J^+ = g^J(J, \omega^J)$

▶ One year (or one quarter of a year) time steps over 600 years

K ロ ▶ K 레 ▶ K 레 ▶ K 레 ≯ K 게 회 게 이 및 사 이 의 O

- **In Seven continuous states:** k, M, T, ζ
- \triangleright one discrete state: J

Epstein-Zin Preference

 \blacktriangleright Epstein-Zin preference

$$
U_{t} (k, \mathbf{M}, \mathbf{T}, J) = \max_{c, \mu} \left\{ (1 - \beta) u(c_{t}, l_{t}) + \beta \left[\mathbb{E} \left\{ \left(U_{t+1} (k^{+}, \mathbf{M}^{+}, \mathbf{T}^{+}, J^{+}) \right)^{1-\gamma} \right\} \right]^{\frac{1-\psi}{1-\gamma}} \right\}^{\frac{1}{1-\psi}}
$$

 $\triangleright \psi$: the inverse of the intertemporal elasticity of substitution \blacktriangleright γ : the risk aversion parameter

Standardized DP model:

$$
V_t(k, \mathbf{M}, \mathbf{T}, J) = \max_{c, \mu} \qquad u(c_t, l_t) + \frac{\beta}{1 - \psi} \times \left[\mathbb{E} \left\{ \left((1 - \psi) V_{t+1} \left(k^+, \mathbf{M}^+, \mathbf{T}^+, J^+ \right) \right)^{\frac{1 - \gamma}{1 - \psi}} \right\} \right] \xrightarrow{\frac{1 - \psi}{1 - \gamma}}
$$

K ロ ▶ K 레 ▶ K 레 ▶ K 레 ≯ K 게 회 게 이 및 사 이 의 O

Accuracy Test and Running Times

 \triangleright Relative errors and running times for the deterministic problem for accuracy test

 \blacktriangleright Running times for various cases of DSICE

Big Increase of Carbon Tax

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | X 9 Q @

Parallelization of DSICE

- \blacktriangleright Larger-size DSICE:
	- \triangleright Number of stages of multi-stage process could be large to represent a continuous tipping process
	- \blacktriangleright The transition system of carbon concentration and temperature are random
	- \blacktriangleright Many parameters, such as climate sensitivity, are estimated with errors (treated as random)
- \triangleright One economic shock and six other continuous random variables
- \blacktriangleright Number of optimization problems in one VFI: 78,125
- \triangleright Number of quadrature points for the integration in the objective function for one optimization problem: 78,125

