Results 0000000

The Bus Engine Replacement Model with Serially Correlated Unobserved State Variables: A Deterministic Approach

Gregor Reich

Computation in CA July 24, 2013

PRELIMINARY - PLEASE DO NOT CIRCULATE

Introduction	Model	Expected Value	Likelihood	Results
•	000000000		0000000000	0000000
Abstract				

- Dynamic Discrete Choice Models (DDCM) usually make strong **distributional assumptions** for the unobserved state variables (aka errors):
 - Extreme value type I (iid) distributed errors
 - Conditional independence (i. e. no serial correlation of errors)
- This assumption ensures **closed form solutions** of (potentially high-dimensional) integrals in both likelihood and expected value function
- This paper proposes a combination of numerical methods to solve these integrals numerically, allowing for:
 - serially correlated errors
 - variety of (conditional) distributions of the errors (e. g. normal)

Introduction 0	Model	Expected Value	Likelihood 0000000000	Results 0000000
Outline				

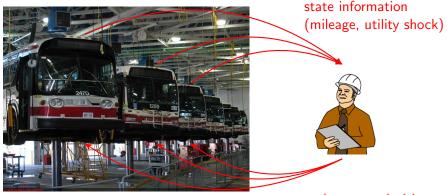
- 2 The Bus Engine Replacement Model (Rust, 1987)
 - Model and Common Solution Approach
 - Motivation: Serially Correlated Unobserved State Variables

3 The Expected Value Function

- 4 The Likelihood Function
- 5 Estimation and Results

Introduction Model Expected Value Cikelihood Results Cocococco The Bus Engine Replacement Model (Rust, 1987)

John Rust: *Optimal replacement of GMC bus engines: An empirical model of Harold Zurcher.* Econometrica, 1987.



replacement decision

Introduction Model Expected Value Coordinate Coordinate

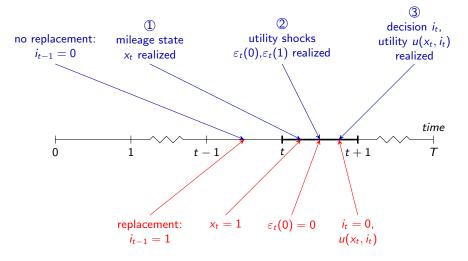
• Utility per individual bus at time t

$$u(i, x_t, \theta_1) + \varepsilon_t(i) = \begin{cases} -RC + \varepsilon_t(1) & \text{if } i = 1\\ -c(x_t, \theta_1) + \varepsilon_t(0) & \text{if } i = 0 \end{cases}$$
(1)

- State variables:
 - x_t observed; discretized; Markovian with probability vector θ_3
 - ε_t observable to agent, but not to econometrician; continuous (usual assumption: $\varepsilon_t(i) \sim EV1$ iid)
- Decision variable: *i*_t observed
- Bellman equation

$$V_{\theta}(x_t,\varepsilon_t) = \max_{i \in \{0,1\}} \{ u(i,x_t,\theta_1) + \varepsilon_t(i) + \beta \mathbb{E}[V_{\theta}(x_{t+1},\varepsilon_{t+1})|i,x_t,\varepsilon_t] \}$$

Estimation: Given data {x_t, i_t}, estimate model (1) using maximum likelihood



- Problem: Computing EV and the likelihood function generally involves (high-dimensional) integration over the unobserved state variables ε(i)
- "Solution": Assume ε_t(i) ~ EV1 iid to get closed form solutions for these integrals
- Few empirical justification for this assumption (see Larsen et al, 2012)
- Misspecification can lead to biased parameter estimates

Introduction	Model	Expected Value	Likelihood	Results
O	○○○○●○○○○○		0000000000	0000000
Outline				

- The Bus Engine Replacement Model (Rust, 1987)
 Model and Common Solution Approach
 - Motivation: Serially Correlated Unobserved State Variables
- 3 The Expected Value Function
- 4 The Likelihood Function
- 5 Estimation and Results

The Role of the Conditional Independence Assumption

• Conditional Independence assumption (CI)

$$Pr(x_{t+1},\varepsilon_{t+1}|i,x_t,\varepsilon_t) = q(\varepsilon_{t+1}|x_{t+1})p(x_{t+1}|i,x_t)$$

• ε : independent of ε_t (no serial correlation)

- x: mileage transition independent of ε
- Decision probabilities under CI ($m_{it} \equiv u_{it} + \beta EV_{it}$)

$$Pr(i = 1 | x_t, \theta) = Pr(\varepsilon_t(1) + m_{1t} > \varepsilon_t(0) + m_{0t})$$

If i = 1 is rare (optimal stopping problem), the whole model is driven by the tail of the distribution of ε_t(1) - ε_t(0) ("the agent is taken off-guard")

• Serially correlated unobserved state variables

$$\varepsilon_t(0) = \rho \varepsilon_{t-1}(0) + \tilde{\varepsilon}_t(0), \quad \tilde{\varepsilon}_t(0) \sim f \text{ iid} \\ \varepsilon_t(1) \sim f \text{ iid}$$
(2)

- Remarks
 - Definition (2) nests the original model for $\rho = 0$ and f density of EV1
 - serial correlation only for i = 0
 - Serial correlation for the unobserved state variable in case of continuing is intuitive, but less in case of stopping
 - Interpolation is one-dimensional
 - Norets (2009) has an equivalent specification

To be extended ...

Introduction Model Expected Value Likelihood Results

Motivation for Serially Correlated Errors

• Decision probabilities with SCE (conditional)

 $Pr(i = 1 | x_t, \theta, \varepsilon_{t-1}) = Pr(\varepsilon_t(1) + m_{1t} > \rho \varepsilon_{t-1}(0) + \tilde{\varepsilon}_t(0) + m_{0t})$

- Conditional on ε_{t-1} , $Pr(i = 1 | \cdot)$ can be large, even if i = 1 is rare ("agent can anticipate replacement event")
- Rust (1987) does a specification test of CI, and concludes: "for groups 1, 2, and 3 and the combined groups 1-4 there is strong evidence that (CI) does not hold. The reason for rejection in the latter cases may be due to the presence of "fixed-effects" heterogeneity which induces serial correlation in the error terms."

Introduction	Model	Expected Value	Likelihood	Results
0	○○○○○○○●○		0000000000	0000000
Main Cor	nnutational T	asks		

- Serial correlation directly violates the CI assumption, thus no closed form solutions for integrals available
- Main computational tasks:
 - Expected value function
 - Likelihood function

Introduction	Model	Expected Value	Likelihood	Results
O	○○○○○○○○●		0000000000	0000000
Literature				

- Norets (2009):
 - Instead of explicit likelihood integration, a MCMC approach is used to obtain distribution of parameters
 - The expected value function is obtained using random grids (small size), and value function iteration (few iterations).
 - Convergence of this method is proved

Introduction	Model	Expected Value	Likelihood	Results
O	000000000		0000000000	0000000
Outline				

2 The Bus Engine Replacement Model (Rust, 1987)

The Expected Value Function

- Derivation
- Numerical Approximation
- 4 The Likelihood Function
- 5 Estimation and Results

Introduction Model Expected Value Likelihood Results

$$\mathbb{E}[V(x',\varepsilon') \mid x,\varepsilon(0)] = \sum_{x'} \iint_{\varepsilon'} V(x',\varepsilon') q(d\varepsilon' \mid \varepsilon, i) Pr(x' \mid x, i)$$

$$= \sum_{x'} \iint_{\varepsilon'(0)} \iint_{\varepsilon'(1)} \max\left\{ u(1,0) + \tilde{\varepsilon}'(1) + \beta \mathbb{E}[V(x'',\varepsilon'') \mid 0,0], u(0,x') + \rho\varepsilon + \tilde{\varepsilon}'(0) + \beta \mathbb{E}[V(x'',\varepsilon'') \mid x',\varepsilon'(0)] \right\} q(d\tilde{\varepsilon}'(0)) q(d\tilde{\varepsilon}'(1)) Pr(x' \mid x, i)$$

- Note: $\mathbb{E}[V(x',\varepsilon') \mid x,\varepsilon(0)]$ is a function of $\varepsilon(0)$ only
- Computation
 - **1** Numerical integration over $\tilde{\varepsilon}$
 - Oiscretization Γ_ε and interpolation EV_Γ(x, ε) (only if integration over ε̃ rather than ε)
 - Solution of the fixed point problem $EV_{\Gamma}(x,\varepsilon) = TEV_{\Gamma}(x,\varepsilon) \quad \forall x \in \Gamma_x, \forall \varepsilon \in \Gamma_{\varepsilon}$

Introduction	Model	Expected Value	Likelihood	Results
O	000000000		0000000000	0000000
Outline				

- 2 The Bus Engine Replacement Model (Rust, 1987)
- The Expected Value Function
 Derivation
 - Numerical Approximation
- 4 The Likelihood Function
- 5 Estimation and Results

Numerical Quadrature for the Expected Value Function

• Method: Gaussian Quadrature

- $\tilde{\varepsilon}_t \sim N$: Gauss-Hermite quadrature
- $\tilde{\varepsilon}_t \sim EV1$:
 - Change of variables

$$\int_{-\infty}^{+\infty} g(x)f(x) = \int_0^1 g(F^{-1}(x))$$

where x is RV with density f and (invertible) distribution function F

- Gauss-Legendre quadrature (unity weighting function)
- Issues
 - Integration over max function (singularity, potentially more nodes needed)
 - Conditional integration over $\tilde{\varepsilon}$ rather than ε

Introduction Model Expected Value Likelihood Results

Discretization of the Support of ε

- Discretization: adaptive grid (Gruene and Semmler, 2004)
 - refinement:
 - 1: initialize η , Γ_{ε} 2: while η > threshold **do** solve $EV_{\Gamma}(x,\varepsilon) = TEV_{\Gamma}(x,\varepsilon)$ 3: for all grid cells *I* in Γ_{ε} do 4: approximate $\eta_l = \max_{x,\varepsilon \in I} |EV_{\Gamma}(x,\varepsilon) - TEV_{\Gamma}(x,\varepsilon)|$ 5: 6: end for 7: $\eta = \max_{l} \eta_{l}$ 8: if $\eta_l > \theta \eta$ then insert node in cell / <u>g</u>. end if 10: 11: end while
 - coarsening: similar (using $\max_{x,\varepsilon\in I} |EV_{\Gamma} EV_{\tilde{\Gamma}}|$, where $\tilde{\Gamma}_{\varepsilon}$ is "thinned grid")

• error bound: $\max_{x,\varepsilon} |EV(x,\varepsilon) - EV_{\Gamma}(x,\varepsilon)| \le \frac{1}{1-\beta}\eta$

Introduction	Model	Expected Value	Likelihood	Results
O	000000000	○000€000	0000000000	0000000
Internola	tion of EV-			

- Interpolation: "Kindergarten"-method (Judd, 1998), aka piecewise linear interpolation
- Higher order methods
 - higher order splines caused instability in FX problem
 - general polynomial interpolation too "wiggly" (conjecture)

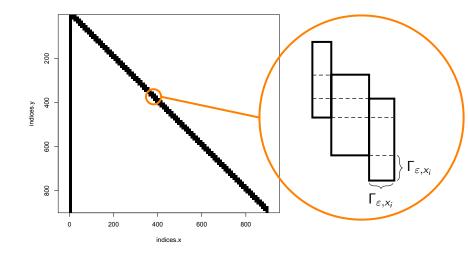
• General approach: solve NLES

$$0 = EV_{\Gamma}(x,\varepsilon) - TEV_{\Gamma}(x,\varepsilon)$$

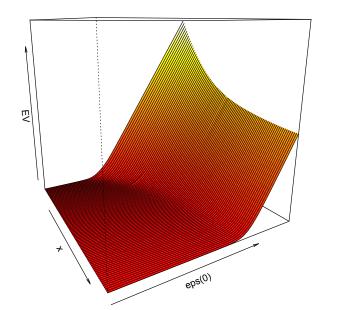
Note: high accuracy is needed to have convergence in likelihood ("outer loop")

- Dimension: usually around 10 20,000, precision: 1e-12
- Method and Solver (all parallel):
 - Newton ("ipopt" + "pardiso"; sparse)
 - Quasi-Newton (Broyden; R-package "nleqslv"; dense)
 - Quasi-Newton for sparse Jacobian (PETSc??)
- Sparsity: mileage transition probabilities imply sparsity of the Jacobian *J* (similar to block diagonal)

Introduction	Model	Expected Value	Likelihood	Results
0	000000000	○00000●0	0000000000	0000000
Sparsity F	Pattern of J			



The Expected Value Function



Introduction O	Model 000000000	Expected Value	Likelihood	Results 0000000
Outline				

2 The Bus Engine Replacement Model (Rust, 1987)

3 The Expected Value Function

4 The Likelihood Function

- Derivation
- Numerical Approximation
- Maximization

• General assessment of likelihood integration with serially correlated errors in DDCM:

"In DDCMs, the likelihood function is an integral over the unobserved state variables. If the unobserved state variables are serially correlated, computing this integral is generally infeasible." (Norets, 2009)

• However, for this model, a feasible and accurate approximation procedure exists.

Introduction	Model	Expected Value	Likelihood	Results
O	000000000		○●OO○○○○○○	0000000
Outline				

2 The Bus Engine Replacement Model (Rust, 1987)

3 The Expected Value Function

The Likelihood Function Derivation

- Numerical Approximation
- Maximization

Introduction Model Expected Value Likelihood Results

Deriving the Likelihood Function (1)

L

$$\begin{aligned} (\theta \mid \{x_t, i_t\}_{t=0,...,T}) &\equiv \Pr(\{x_t, i_t\}_{t=0,...,T} \mid \theta) \\ &= \iint_{\varepsilon_0,...,\varepsilon_T} \Pr(\{x_t, i_t, \varepsilon_t\}_{t=0,...,T}) \, \mathrm{d}\varepsilon_0 \dots \mathrm{d}\varepsilon_T \\ &= \iint_{\varepsilon_0,...,\varepsilon_T} \prod_{t=1,...,T} \Pr(\{x_t, i_t, \varepsilon_t\} \mid \{x_{t-1}, i_{t-1}, \varepsilon_{t-1}\}) \, \mathrm{d}\varepsilon_0 \dots \mathrm{d}\varepsilon_T \\ &= \prod_{t=1,...,T} \Pr(x_t \mid x_{t-1}, i_{t-1}) \iint_{\varepsilon_0,...,\varepsilon_T} \prod_{t=1,...,T} \Pr(i_t \mid x_t, \varepsilon_t) \Pr(\varepsilon_t \mid i_{t-1}, \varepsilon_{t-1}) \, \mathrm{d}\varepsilon_0 \dots \mathrm{d}\varepsilon_T \\ &= \ell_1 \iint_{\varepsilon_0} \dots \iint_{\varepsilon_{T-2}} \dots \iint_{\varepsilon_{T-1}} \dots \iint_{\varepsilon_T} \Pr(i_T \mid x_T, \varepsilon_T) \Pr(\varepsilon_T \mid i_{T-1}, \varepsilon_{T-1}) \, \mathrm{d}\varepsilon_0 \dots \mathrm{d}\varepsilon_T + \ell_T \mathbb{d}\varepsilon_T \end{bmatrix}$$

Introduction Model Expected Value Likelihood Results

Deriving the Likelihood Function (2)

$$\int_{\varepsilon_t} \Pr(i_t = 1 \mid x_t, \varepsilon_t) \Pr(\varepsilon_t \mid i_{t-1}, \varepsilon_{t-1}) d\varepsilon_t$$

=
$$\int_{\varepsilon_t(0)} \Pr(\varepsilon_t(0) \mid i_{t-1}, \varepsilon_{t-1}(0)) \int_{\varepsilon_t(1)} \Pr(i_t = 1 \mid x_t, \varepsilon_t(0), \varepsilon_t(1)) \Pr(\varepsilon_t(1)) d\varepsilon_t(1) d\varepsilon_t(0)$$

$$Pr(i_t = 1 \mid x_t, \varepsilon_t(0), \varepsilon_t(1)) = \mathbb{1}(m_{1t} + \varepsilon_t(1) > m_{0t} + \varepsilon_t(0)) \qquad (m_{it} \equiv u_{it} + \beta EV_{it})$$

$$\int_{-\infty}^{\infty} \mathbb{1}(\varepsilon_t(1) > m_{0t} - m_{1t} + \varepsilon_t(0)) \operatorname{Pr}(\varepsilon_t(1)) d\varepsilon_t(1)$$
$$= \int_{m_{0t} - m_{1t} + \varepsilon_t(0)}^{\infty} \operatorname{Pr}(\varepsilon_t(1)) d\varepsilon_t(1) = 1 - \operatorname{F}(m_{0t} - m_{1t} + \varepsilon_t(0)) \equiv g(x_t, \varepsilon_t(0))$$

$$L = \ell_1 \int_{\varepsilon_0(0)} \dots \int_{\varepsilon_T(0)} \Pr(\varepsilon_T(0) \mid i_{T-1}, \varepsilon_{T-1}(0)) \ g(x_T, \varepsilon_T(0)) \ d\varepsilon_0(0) \dots d\varepsilon_T(0)$$

Introduction	Model	Expected Value	Likelihood	Results
O	000000000		○○○○●○○○○○	0000000
Outline				

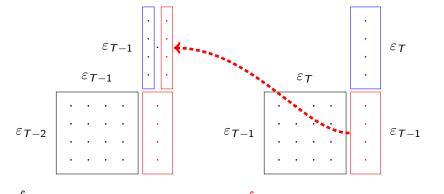
- 2 The Bus Engine Replacement Model (Rust, 1987)
- 3 The Expected Value Function
- The Likelihood Function
 Derivation
 - Numerical Approximation
 - Maximization

Numerical Quadrature for the Likelihood Function

- $\tilde{\varepsilon}_t \sim EV$ 1:
 - Gauss-Legendre quadrature
 - Change of variables
- $\tilde{\varepsilon}_t \sim N$
 - Gauss-Hermite quadrature
- \Rightarrow fixed set of integration nodes (no recursive schemes)



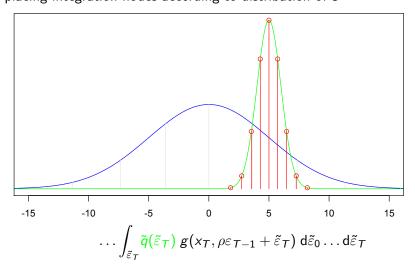
Computing the Likelihood Function (1)



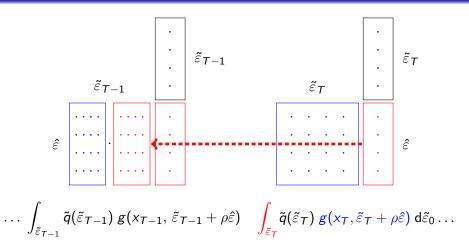
$$\dots \int_{\varepsilon_{T-1}} q(\varepsilon_{T-1} | \varepsilon_{T-2}) g(x_{T-1}, \varepsilon_{T-1}) \int_{\varepsilon_T} q(\varepsilon_T | \varepsilon_{T-1}) g(x_T, \varepsilon_T) d\varepsilon_0 \dots$$

complexity: O(N) + O(N)

placing integration nodes according to distribution of $ilde{arepsilon}$



Computing the Likelihood Function (2)



complexity: $O(N^2) + O(N^2)$

Introduction	Model	Expected Value	Likelihood	Results
O	000000000		○○○○○○○●○	0000000
Outline				

2 The Bus Engine Replacement Model (Rust, 1987)

3 The Expected Value Function

The Likelihood Function

- Derivation
- Numerical Approximation
- Maximization

Maximization of the Likelihood Function

- Quasi-Newton trust-region method (R-package "trustOptim")
- finite difference gradient approximation (GSL)
- Issues
 - problem scaling
 - Finite difference gradient approximation step length
 - numerical precision (??)

Introduction O	Model 000000000	Expected Value	Likelihood 0000000000	Results
Outline				

- 2 The Bus Engine Replacement Model (Rust, 1987)
- 3 The Expected Value Function
- 4 The Likelihood Function
- **5** Estimation and Results
 - The Complete Algorithm
 - Estimation Results

Introduction 0	Model 0000000000	Expected Value	Likelihood 0000000000	Results ●000000
A Neste	ed Fixed Point A	Algorithm		
1: ir	nitialize $ heta$, D (scaling	g matrix)		
2: W	while $ abla \ell_2 eq 0$ do			
3:	initialize Γ_{ε} , ε_{FD} ,	B _{BFGS}		
4:	while $\nabla \ell_2 \neq 0$ o	r iter $<$ maxIter c	do	
5:	while $\eta > { m thr}$	eshold do		
6:	solve TEV	$V_{\theta}(x, \Gamma_{\varepsilon}) = EV_{\theta}(x, \Gamma_{\varepsilon})$	(Γ_{ε})	
7:	update $\Gamma_arepsilon$	(coarsening and r	efinement)	
8:	end while			
9:	evaluate ℓ_2			
10:	compute $ abla \ell_2$	(update ε_{FD} if ne	ecessary)	
11:	compute next	θ (QNTR, updati	ing B _{BFGS} , scaled by	y D)
12:	end while			
13:	compute next D f	from $ abla^2 \ell_2$		
14:	update η			
15: e	end while			

Introduction	Model	Expected Value	Likelihood	Results
0	000000000		0000000000	○●○○○○○

Some Implementation Details

- Most code is written in R
- Time-critical components (*TEV*, *EV*, Jacobian) are written in C++ (Intel)
- Parallelization using OpenMP
- Computations are carried out on AMD Opteron (AbuDhabi) 4x16 core workstation

Introduction	Model	Expected Value	Likelihood	Results
O	000000000		0000000000	○○●○○○○
Outline				

- 2 The Bus Engine Replacement Model (Rust, 1987)
- 3 The Expected Value Function
- 4 The Likelihood Function
- 5 Estimation and Results
 The Complete Algorithm
 Estimation Results

Replication	Rust (1087)	Table IX and	Simulated Da	ta
Introduction	Model	Expected Value	Likelihood	Results
O	000000000		0000000000	○○0●000

	Bus Groups 1-4 $(N = 8, 156)$		0	ted Data 106, 132)	
	Rust (1987)	estimated		true	estimated
RC	9.7558	9.7557		14.0000	13.9959
θ_1	2.6275	2.6274		2.0000	2.0390
ρ	0	0		0.6000	0.5997
θ_{30}	0.3489	0.3489		0.3489	0.3489
θ_{31}	0.6394	0.6394		0.6394	0.6394
L	-6055.250	-6055.250			-81749.86
$ \nabla L $		1e-9			1e-5

 $\beta = .9999$

Introduction	Model	Expected Value	Likelihood	Results
O	0000000000		0000000000	○○○○●○○
Estimation	n: $ ilde{arepsilon} \sim EV1$ (-	$-\gamma.1)$		

	Bus Groups 1-3 (<i>N</i> = 3,864)			roup 1-4 8,156)
RC	11.8270	25.0000	9.7557	26.4972
θ_1	4.6724	9.8347	2.6274	7.2392
$RC/ heta_1$	2.5313	2.5420	3.7130	3.6602
ρ	0	0.6894	0	0.7366
L	-2708.335	-2707.765	-6055.250	-6053.341
$ \nabla L $	1e-7	1e-6	1e-9	1e-5
p (LR)		0.2854		0.0507

 $\beta = .9999$, p (LR) is p-value of likelihood ratio test $H_0: \rho = 0$

•	000000000	0000000	0000000000	0000000
Estimatic	on: $\widetilde{arepsilon} \sim N(0,1)$			

	Bus Groups 1-3 (<i>N</i> = 3,864)			oup 1-4 8,156)
RC	7.0870	13.9130	6.0047	18.4240
θ_1	2.4586	5.4257	1.4011	5.1150
$RC/ heta_1$	2.8826	2.5643	4.2857	3.6020
ρ	0	0.5230	0	0.6623
L	-2707.877 1e-5	-2707.820 1e-5	-6054.084 1e-6	-6053.685 1e-5
∇ <i>L</i> p (LR)	16-2	0.7354	1e-0	0.3713

 $\beta = .9999$, p (LR) is p-value of likelihood ratio test $H_0: \rho = 0$

<u> </u>				
Introduction	Model	Expected Value	Likelihood	Results
0	000000000		0000000000	○○○○○○●

Summary and Outlook

• Summary

- Estimation of a popular DBCM with serially correlated unobserved state variables, using a fully deterministic approach
- For some datasets, significant serial correlation could be identified
- Outlook
 - Resolve some technicalities (standard errors, distribution of ε_0 , try PETSc etc.)
 - Generalize to DDCM

L. Grüne and W. Semmler.

Using dynamic programming with adaptive grid scheme for optimal control problems in economics.

Journal of Economic Dynamics and Control, 28(12):2427–2456, 2004.

- B. Larsen, F. Oswald, G. Reich, and D. Wunderli.

A test of the extreme value type I assumption in the bus engine replacement model.

Economics Letters, 116(2):213-216, 2012.

A. Norets

Inference in Dynamic Discrete Choice Models with Serially Correlated Unobserved State Variables.

Econometrica, 77 (5): 1665-1682, 2009

J. Rust.

Optimal replacement of GMC bus engines: An empirical model of Harold Zurcher.

Econometrica, 55(5):999-1033, 1987.