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Introduction
°

Abstract

@ Dynamic Discrete Choice Models (DDCM) usually make
strong distributional assumptions for the unobserved state
variables (aka errors):

o Extreme value type | (iid) distributed errors
o Conditional independence (i. e. no serial correlation of errors)

@ This assumption ensures closed form solutions of
(potentially high-dimensional) integrals in both likelihood and
expected value function

@ This paper proposes a combination of numerical methods to
solve these integrals numerically, allowing for:

o serially correlated errors
e variety of (conditional) distributions of the errors (e. g. normal)

)
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Outline

© The Bus Engine Replacement Model (Rust, 1987)
@ Model and Common Solution Approach
@ Motivation: Serially Correlated Unobserved State Variables



Model
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The Bus Engine Replacement Model (Rust, 1987)

John Rust: Optimal replacement of GMC bus engines:
An empirical model of Harold Zurcher. Econometrica, 1987.

state information

replacement decision
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Formal Model in a Nutshell

e Utility per individual bus at time t

—RC 4 £¢(1) ifi=1

—c(x¢, 01) +€¢(0) ifi=0 (1)

u(i,xe,01) +ee(i) = {

State variables:
e x; observed; discretized; Markovian with probability vector 63
e £, observable to agent, but not to econometrician; continuous
(usual assumption: e¢(i) ~ EV1 iid)
Decision variable: i; observed

Bellman equation

Vo(xt,et) = 'max}{u(i, xt, 01)+ee(N)+BE[Vo(Xtt1, et41)|i, Xt, 4]}

! )

e Estimation: Given data {x, i}, estimate model (1) using
maximum likelihood



Timeline

©)
) Q decision iz,
no replacement:  mileage state utility shocks utility u(xe, i)
ii—1 =0 x; realized et(0),e+(1) realized realized
time
f f f } i i
0 1 t—1 t t+1 T

replacement: xe =1 e(0) =0 it =0,
[It71 =1 U(Xt, It)
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The Role of the Extreme Value Type 1 Distribution

@ Problem: Computing EV and the likelihood function generally
involves (high-dimensional) integration over the unobserved
state variables (/)

@ "“Solution”: Assume (i) ~ EV'1 iid to get closed form
solutions for these integrals

@ Few empirical justification for this assumption
(see Larsen et al, 2012)

@ Misspecification can lead to biased parameter estimates
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© The Bus Engine Replacement Model (Rust, 1987)

@ Motivation: Serially Correlated Unobserved State Variables
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The Role of the Conditional Independence Assumption

e Conditional Independence assumption (Cl)

Pr(xty1,€eq1li, xe,€) = qlees1 | Xer1)p(Xeq1li, Xe)

o e: independent of £; (no serial correlation)
e x: mileage transition independent of ¢

e Decision probabilities under Cl (mj: = ujy + BEVt)
Pr(i = 1|x¢,0) = Pr(e¢(1) + m1e > €:(0) + mo¢)

e If i =1 is rare (optimal stopping problem), the whole model is
driven by the tail of the distribution of £,(1) — £:(0)
(“the agent is taken off-guard")
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Serially Correlated Unobserved State Variables

@ Serially correlated unobserved state variables

£(0) = pee_1(0) + 2:(0), Z(0) ~ f iid o)

ee(1) ~ £ iid
@ Remarks
o Definition (2) nests the original model for p = 0 and f density
of EV1
e serial correlation only for i =0

o Serial correlation for the unobserved state variable in case of
continuing is intuitive, but less in case of stopping

o Interpolation is one-dimensional

o Norets (2009) has an equivalent specification

To be extended . ..
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Motivation for Serially Correlated Errors

@ Decision probabilities with SCE (conditional)
Pr(i = 1|x¢,0,et—1) = Pr(et(1)4+m1t > per—1(0)+E(0)+mo:)

e Conditional on €;_1, Pr(i =1]|-) can be large, even if i =1 is

rare (“agent can anticipate replacement event”)

@ Rust (1987) does a specification test of Cl, and concludes:
“for groups 1, 2, and 3 and the combined groups 1-4
there is strong evidence that (Cl) does not hold.

The reason for rejection in the latter cases may be

due to the presence of "fixed-effects” heterogeneity
which induces serial correlation in the error terms.”
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Main Computational Tasks

@ Serial correlation directly violates the Cl assumption, thus no
closed form solutions for integrals available

@ Main computational tasks:

o Expected value function
o Likelihood function
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Literature

o Norets (2009):
e Instead of explicit likelihood integration, a MCMC approach is
used to obtain distribution of parameters
e The expected value function is obtained using random grids
(small size), and value function iteration (few iterations).
e Convergence of this method is proved
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© The Expected Value Function
@ Derivation
@ Numerical Approximation
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Approximating the Expected Value Function

E[V(xX',&") | x,£(0)] = Z// V(x',e")q(de’ | g,i) Pr(x" | x,i)

=5 [ [ morfutto) 42+ 53V 001

X e

u(0,x') + pe +&'(0) + BE[V(x",e") | X, 6/(0)]} q(d&'(0)) q(d' (1)) Pr(x" | x, i)

e Note: E[V(x',&") | x,£(0)] is a function of £(0) only
@ Computation
© Numerical integration over £
@ Discretization I'. and interpolation EVi(x,¢)
(only if integration over & rather than &)

© Solution of the fixed point problem
EVr(x,e) = TEVi(x,e) VxeTl,,Veel,
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Outline

© The Expected Value Function

@ Numerical Approximation
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Numerical Quadrature for the Expected Value Function

o Method: Gaussian Quadrature
e &; ~ N: Gauss-Hermite quadrature
o & ~ EV1:
o Change of variables

st = [ etF e

where x is RV with density f and (invertible) distribution
function F
o Gauss-Legendre quadrature (unity weighting function)
@ Issues

o Integration over max function
(singularity, potentially more nodes needed)
e Conditional integration over & rather than ¢

18 /43



Expected Value
[e]eY Yololele}

Discretization of the Support of ¢

e Discretization: adaptive grid (Gruene and Semmler, 2004)
o refinement:

1. initialize , ¢
2: while 1 > threshold do

3: solve EVi(x,e) = TEVr(x,¢)

4: for all grid cells / in I do

5: approximate 7; = maxy cc/ |EVi(x,€) — TEVr(x, €)]
6: end for

7 7 = max; 7y

8: if n; > On then

9: insert node in cell /

10: end if

11: end while

o coarsening: similar (using max, ccj |EVr — EVk|, where T is
“thinned grid")

@ error bound: max, . |EV(x,e) — EVi(x,¢)| < ﬁn

19/43



Expected Value
000®000

Interpolation of EVf

e Interpolation: “Kindergarten”-method (Judd, 1998),
aka piecewise linear interpolation

@ Higher order methods

o higher order splines caused instability in FX problem
e general polynomial interpolation too "wiggly” (conjecture)
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Solution of EVf(x,e) = TEVr(x,¢)

General approach: solve NLES
0= EVr(X,E) — TEVr(X,&)

Note: high accuracy is needed to have convergence in
likelihood (“outer loop™)

Dimension: usually around 10 — 20, 000, precision: le-12
Method and Solver (all parallel):

o Newton (“ipopt” + “pardiso”; sparse)

o Quasi-Newton (Broyden; R-package “nlegslv’; dense)

o Quasi-Newton for sparse Jacobian (PETSc??)

Sparsity: mileage transition probabilities imply sparsity of the
Jacobian J (similar to block diagonal)
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Sparsity Pattern of J
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The Expected Value Function

€]
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@ The Likelihood Function
@ Derivation
@ Numerical Approximation
@ Maximization
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The Likelihood Function

@ General assessment of likelihood integration with serially
correlated errors in DDCM:
“In DDCMs, the likelihood function is an integral
over the unobserved state variables. If the
unobserved state variables are serially correlated,
computing this integral is generally infeasible.”
(Norets, 2009)

@ However, for this model, a feasible and accurate
approximation procedure exists.
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@ The Likelihood Function
@ Derivation
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Deriving the Likelihood Function (1)

.....

AAAAAAAA
.....

:121/... / / .../Pr(ir|X7—757—)Pr(57—|ir,1,57—,1) dEo,..d{;‘TfldET
€0 ET—2 €T-1 eT
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Deriving the Likelihood Function (2)

/Pr(/} =1|x¢,e¢) Pr(ee | ir—1,€e—1)dee

€t

_ / Pr(:(0) | ie_1,c-1(0)) / Pr(ic = 1| xt, £:(0), :(1)) Pr(ec(1)) dee(1)de:(0)

£t(0) e(1)

Pr(l} =1 ‘ Xt7Et(0)7Et(1)) = IL(mlt + Et(l) > mot + Ef(O)) (m,'f = ujr + ﬂE\/,t)

/ 1(e(1) > moc — mue + £:(0)) Pr(ee(1)) dee(1)

oo

- / Pr(e:(1)) dee(1) = 1 — F(mo: — mye + €¢(0)) = g(xe, €¢(0))

mot—my¢+et(0)

c0(0)  e7(0)

L = ﬁl / / PF(ET(O) | iT_1,ET_1(0)) g(XT,ET(O)) d&o(O)dET(O) J
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@ The Likelihood Function

@ Numerical Approximation
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Numerical Quadrature for the Likelihood Function

(] é't ~ EV1:
o Gauss-Legendre quadrature
o Change of variables

o gt ~ N
e Gauss-Hermite quadrature

= fixed set of integration nodes (no recursive schemes)
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Computing the Likelihood Function (1)

: / qleT-1leT—2) g(xT-1,67-1) / q(eT |eT-1) g(xT,67) deg - ...
ET-1

_ eT

[ complexity: O(N) + O(N) J
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(Un-)Conditional Integration

placing integration nodes according to distribution of &

R

T T T T T T T
-15 -10 -5 0 5 10 15

/ g(x7, peT_1 +E7) d&y ... dET
ET
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Computing the Likelihood Function (2)

™

R P P e PP PR Y Y

™
A

. / G(E1-1) g(xT=1, ET-1 + pé) / a(&r) g(x, &7 4+ pé) déy . ..
ET—1 Er

[ complexity: O(N?) + O(N?) J

33/43



Likelihood
[ I}

Outline

@ The Likelihood Function

@ Maximization
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Maximization of the Likelihood Function

@ Quasi-Newton trust-region method (R-package “trustOptim”)

e finite difference gradient approximation (GSL)
o Issues

e problem scaling
e Finite difference gradient approximation step length
o numerical precision (?7)
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© Estimation and Results
@ The Complete Algorithm
@ Estimation Results
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A Nested Fixed Point Algorithm

1. initialize 8, D (scaling matrix)
2: while ng 75 0 do
3: initialize I, erp, Bares

4; while V/; # 0 or iter < maxlter do

5: while n > threshold do

6: solve TEVy(x,T.) = EVj(x,T?)

7: update . (coarsening and refinement)
8: end while

o: evaluate /5

10: compute V/, (update egp if necessary)
11: compute next 8 (QNTR, updating Bgrgs, scaled by D)
12: end while

13: compute next D from Y2/

14: update n

15: end while
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Some Implementation Details

Most code is written in R

Time-critical components (TEV, EV/, Jacobian) are written in
C++ (Intel)

Parallelization using OpenMP

Computations are carried out on AMD Opteron (AbuDhabi)
4x16 core workstation
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© Estimation and Results

@ Estimation Results
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Replication: Rust (1987) Table IX, and Simulated Data

Bus Groups 1-4

Simulated Data

(N = 8,156) (N = 106,132)

Rust (1987)  estimated true  estimated
RC 9.7558 9.7557 14.0000 13.9959
01 2.6275 2.6274 2.0000 2.0390
p 0 0 0.6000 0.5997
030 0.3489 0.3489 0.3489 0.3489
031 0.6394 0.6394 0.6394 0.6394
L -6055.250  -6055.250 -81749.86
[|VL]| le-9 le-5

B8 =.9999
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Estimation: £ ~ EV1(—~,1)

Bus Groups 1-3 Bus Group 1-4
(N = 3,864) (N = 8,156)
RC 11.8270 25.0000 9.7557 26.4972
01 4.6724 9.8347 2.6274 7.2392
RC/6, 2.5313 2.5420 3.7130 3.6602
P 0 0.6894 0 0.7366
L -2708.335 -2707.765 -6055.250 -6053.341
[|VL]| le-7 le-6 le-9 le-5
p (LR) 0.2854 0.0507

B =.9999, p (LR) is p-value of likelihood ratio test Hy : p =0
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Estimation: £ ~ N(0,1)

Bus Groups 1-3 Bus Group 1-4
(N = 3,864) (N = 8,156)
RC 7.0870 13.9130 6.0047 18.4240
01 2.4586 5.4257 1.4011 5.1150
RC/6, 2.8826 2.5643 4.2857 3.6020
P 0 0.5230 0 0.6623
L -2707.877 -2707.820 -6054.084 -6053.685
[|VL]| le-5 le-5 le-6 le-5
p (LR) 0.7354 0.3713

B =.9999, p (LR) is p-value of likelihood ratio test Hy : p =0
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Summary and Outlook

@ Summary
e Estimation of a popular DBCM with serially correlated
unobserved state variables, using a fully deterministic approach
o For some datasets, significant serial correlation could be
identified
o Outlook
o Resolve some technicalities (standard errors, distribution of &,
try PETSc etc.)
o Generalize to DDCM
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