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Abstract

Dynamic Discrete Choice Models (DDCM) usually make
strong distributional assumptions for the unobserved state
variables (aka errors):

Extreme value type I (iid) distributed errors
Conditional independence (i. e. no serial correlation of errors)

This assumption ensures closed form solutions of
(potentially high-dimensional) integrals in both likelihood and
expected value function

This paper proposes a combination of numerical methods to
solve these integrals numerically, allowing for:

serially correlated errors
variety of (conditional) distributions of the errors (e. g. normal)
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The Bus Engine Replacement Model (Rust, 1987)

John Rust: Optimal replacement of GMC bus engines:
An empirical model of Harold Zurcher. Econometrica, 1987.

state information
(mileage, utility shock)

replacement decision
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Formal Model in a Nutshell

Utility per individual bus at time t

u(i , xt , θ1) + εt(i) =

{
−RC + εt(1) if i = 1

−c(xt , θ1) + εt(0) if i = 0
(1)

State variables:
xt observed; discretized; Markovian with probability vector θ3

εt observable to agent, but not to econometrician; continuous
(usual assumption: εt(i) ∼ EV 1 iid)

Decision variable: it observed

Bellman equation

Vθ(xt , εt) = max
i∈{0,1}

{u(i , xt , θ1)+εt(i)+βE[Vθ(xt+1, εt+1)|i , xt , εt ]}

Estimation: Given data {xt , it}, estimate model (1) using
maximum likelihood
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Timeline

0 1 t − 1 t t + 1 T

time

no replacement:
it−1 = 0

1©
mileage state
xt realized

2©
utility shocks

εt(0),εt(1) realized

3©
decision it ,

utility u(xt , it)
realized

replacement:
it−1 = 1

xt = 1 εt(0) = 0 it = 0,
u(xt , it)

absent in data
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The Role of the Extreme Value Type 1 Distribution

Problem: Computing EV and the likelihood function generally
involves (high-dimensional) integration over the unobserved
state variables ε(i)

“Solution”: Assume εt(i) ∼ EV 1 iid to get closed form
solutions for these integrals

Few empirical justification for this assumption
(see Larsen et al, 2012)

Misspecification can lead to biased parameter estimates
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The Role of the Conditional Independence Assumption

Conditional Independence assumption (CI)

Pr(xt+1, εt+1|i , xt , εt) = q(εt+1 | xt+1)p(xt+1|i , xt)

ε: independent of εt (no serial correlation)
x : mileage transition independent of ε

Decision probabilities under CI (mit ≡ uit + βEVit)

Pr(i = 1|xt , θ) = Pr(εt(1) + m1t > εt(0) + m0t)

If i = 1 is rare (optimal stopping problem), the whole model is
driven by the tail of the distribution of εt(1)− εt(0)
(“the agent is taken off-guard”)
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Serially Correlated Unobserved State Variables

Serially correlated unobserved state variables

εt(0) = ρεt−1(0) + ε̃t(0) , ε̃t(0) ∼ f iid

εt(1) ∼ f iid
(2)

Remarks

Definition (2) nests the original model for ρ = 0 and f density
of EV 1
serial correlation only for i = 0

Serial correlation for the unobserved state variable in case of
continuing is intuitive, but less in case of stopping
Interpolation is one-dimensional
Norets (2009) has an equivalent specification

To be extended . . .
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Motivation for Serially Correlated Errors

Decision probabilities with SCE (conditional)

Pr(i = 1|xt , θ, εt−1) = Pr(εt(1)+m1t > ρεt−1(0)+ε̃t(0)+m0t)

Conditional on εt−1, Pr(i = 1 | ·) can be large, even if i = 1 is
rare (“agent can anticipate replacement event”)

Rust (1987) does a specification test of CI, and concludes:

“for groups 1, 2, and 3 and the combined groups 1-4
there is strong evidence that (CI) does not hold.
The reason for rejection in the latter cases may be
due to the presence of ”fixed-effects” heterogeneity
which induces serial correlation in the error terms.”
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Main Computational Tasks

Serial correlation directly violates the CI assumption, thus no
closed form solutions for integrals available

Main computational tasks:

Expected value function
Likelihood function
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Literature

Norets (2009):

Instead of explicit likelihood integration, a MCMC approach is
used to obtain distribution of parameters
The expected value function is obtained using random grids
(small size), and value function iteration (few iterations).
Convergence of this method is proved
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Approximating the Expected Value Function

E[V (x ′, ε′) | x , ε(0)] =
∑
x′

∫∫
ε′

V (x ′, ε′) q(dε′ | ε, i)Pr(x ′ | x , i)

=
∑
x′

∫
ε̃′(0)

∫
ε̃′(1)

max
{
u(1, 0) + ε̃′(1) + β E[V (x ′′, ε′′) | 0, 0] ,

u(0, x ′) + ρε+ ε̃′(0)︸ ︷︷ ︸ + β E[V (x ′′, ε′′) | x ′, ε′(0)]
}
q(dε̃′(0)) q(dε̃′(1))Pr(x ′ | x , i)

Note: E[V (x ′, ε′) | x , ε(0)] is a function of ε(0) only

Computation
1 Numerical integration over ε̃
2 Discretization Γε and interpolation EVΓ(x , ε)

(only if integration over ε̃ rather than ε)
3 Solution of the fixed point problem

EVΓ(x , ε) = TEVΓ(x , ε) ∀x ∈ Γx ,∀ε ∈ Γε
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Numerical Quadrature for the Expected Value Function

Method: Gaussian Quadrature

ε̃t ∼ N: Gauss-Hermite quadrature

ε̃t ∼ EV 1:

Change of variables∫ +∞

−∞
g(x)f (x) =

∫ 1

0

g(F−1(x))

where x is RV with density f and (invertible) distribution
function F
Gauss-Legendre quadrature (unity weighting function)

Issues

Integration over max function
(singularity, potentially more nodes needed)
Conditional integration over ε̃ rather than ε
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Discretization of the Support of ε

Discretization: adaptive grid (Gruene and Semmler, 2004)

refinement:

1: initialize η, Γε

2: while η > threshold do
3: solve EVΓ(x , ε) = TEVΓ(x , ε)
4: for all grid cells l in Γε do
5: approximate ηl = maxx,ε∈l |EVΓ(x , ε)− TEVΓ(x , ε)|
6: end for
7: η = maxl ηl
8: if ηl > θη then
9: insert node in cell l

10: end if
11: end while

coarsening: similar (using maxx,ε∈l |EVΓ − EVΓ̃|, where Γ̃ε is
“thinned grid”)

error bound: maxx ,ε |EV (x , ε)− EVΓ(x , ε)| ≤ 1
1−βη
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Interpolation of EVΓ

Interpolation: “Kindergarten”-method (Judd, 1998),
aka piecewise linear interpolation

Higher order methods

higher order splines caused instability in FX problem
general polynomial interpolation too ”wiggly” (conjecture)
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Solution of EVΓ(x , ε) = TEVΓ(x , ε)

General approach: solve NLES

0 = EVΓ(x , ε)− TEVΓ(x , ε)

Note: high accuracy is needed to have convergence in
likelihood (“outer loop”)

Dimension: usually around 10− 20, 000, precision: 1e-12

Method and Solver (all parallel):

Newton (“ipopt” + “pardiso”; sparse)
Quasi-Newton (Broyden; R-package “nleqslv”; dense)
Quasi-Newton for sparse Jacobian (PETSc??)

Sparsity: mileage transition probabilities imply sparsity of the
Jacobian J (similar to block diagonal)
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Sparsity Pattern of J
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The Expected Value Function

x
eps(

0)

EV
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The Likelihood Function

General assessment of likelihood integration with serially
correlated errors in DDCM:

“In DDCMs, the likelihood function is an integral
over the unobserved state variables. If the
unobserved state variables are serially correlated,
computing this integral is generally infeasible.”
(Norets, 2009)

However, for this model, a feasible and accurate
approximation procedure exists.
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Deriving the Likelihood Function (1)

L( θ | {xt , it}t=0,...,T ) ≡ Pr({xt , it}t=0,...,T | θ)

=

∫∫
ε0,...,εT

Pr({xt , it , εt}t=0,...,T ) dε0 . . . dεT

=

∫∫
ε0,...,εT

∏
t=1,...,T

Pr({xt , it , εt} | {xt−1, it−1, εt−1}) dε0 . . . dεT

=
∏

t=1,...,T

Pr(xt | xt−1, it−1)

∫∫
ε0,...,εT

∏
t=1,...,T

Pr(it | xt , εt)Pr(εt | it−1, εt−1) dε0 . . . dεT

= `1

∫
ε0

. . .

∫
εT−2

. . .

∫
εT−1

. . .

∫
εT

Pr(iT | xT , εT )Pr(εT | iT−1, εT−1) dε0 . . . dεT−1dεT
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Deriving the Likelihood Function (2)∫
εt

Pr(it = 1 | xt , εt) Pr(εt | it−1, εt−1)dεt

=

∫
εt (0)

Pr(εt(0) | it−1, εt−1(0))

∫
εt (1)

Pr(it = 1 | xt , εt(0), εt(1)) Pr(εt(1)) dεt(1)dεt(0)

Pr(it = 1 | xt , εt(0), εt(1)) = 1(m1t + εt(1) > m0t + εt(0)) (mit ≡ uit + βEVit)

∞∫
−∞

1(εt(1) > m0t −m1t + εt(0)) Pr(εt(1)) dεt(1)

=

∞∫
m0t−m1t+εt (0)

Pr(εt(1)) dεt(1) = 1− F (m0t −m1t + εt(0)) ≡ g(xt , εt(0))

L = `1

∫
ε0(0)

. . .

∫
εT (0)

Pr(εT (0) | iT−1, εT−1(0)) g(xT , εT (0)) dε0(0) . . . dεT (0)
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Numerical Quadrature for the Likelihood Function

ε̃t ∼ EV 1:

Gauss-Legendre quadrature
Change of variables

ε̃t ∼ N

Gauss-Hermite quadrature

⇒ fixed set of integration nodes (no recursive schemes)
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Computing the Likelihood Function (1)

· · · ·
· · · ·
· · · ·
· · · ·

·
·
·
·

εT−1

εT

εT

εT−1

·
·
·
·

. . .

∫
εT−1

q(εT−1 | εT−2) g(xT−1, εT−1)

∫
εT

q(εT | εT−1) g(xT , εT ) dε0 . . .

complexity: O(N) + O(N)

· · · ·
· · · ·
· · · ·
· · · ·

·
·
·
·

·

·
·
·
·

·
·
·
·

εT−1

εT−2

εT−1
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(Un-)Conditional Integration

-15 -10 -5 0 5 10 15-15 -10 -5 0 5 10 15

placing integration nodes according to (unconditional) distribution of ε

-15 -10 -5 0 5 10 15

placing integration nodes according to distribution of ε̃

. . .

∫
ε̃T

q̃(ε̃T ) g(xT , ρεT−1 + ε̃T ) dε̃0 . . . dε̃T
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Computing the Likelihood Function (2)

· · · ·
· · · ·
· · · ·
· · · ·

·
·
·
·

·
·
·
·

ε̂

ε̃T

ε̃T

ε̂

. . .

∫
ε̃T−1

q̃(ε̃T−1) g(xT−1, ε̃T−1 + ρε̂︸ ︷︷ ︸)

∫
ε̃T

q̃(ε̃T ) g(xT , ε̃T + ρε̂) dε̃0 . . .

complexity: O(N2) + O(N2)

· · · ·
· · · ·
· · · ·
· · · ·

·

· · · ·
· · · ·
· · · ·
· · · ·

·
·
·
·
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·
·
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Maximization of the Likelihood Function

Quasi-Newton trust-region method (R-package “trustOptim”)

finite difference gradient approximation (GSL)

Issues

problem scaling
Finite difference gradient approximation step length
numerical precision (??)
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A Nested Fixed Point Algorithm

1: initialize θ, D (scaling matrix)
2: while ∇`2 6= 0 do
3: initialize Γε, εFD , BBFGS

4: while ∇`2 6= 0 or iter < maxIter do
5: while η > threshold do
6: solve TEVθ(x , Γε) = EVθ(x , Γε)
7: update Γε (coarsening and refinement)
8: end while
9: evaluate `2

10: compute ∇`2 (update εFD if necessary)
11: compute next θ (QNTR, updating BBFGS , scaled by D)
12: end while
13: compute next D from ∇2`2

14: update η
15: end while
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Some Implementation Details

Most code is written in R

Time-critical components (TEV , EV , Jacobian) are written in
C++ (Intel)

Parallelization using OpenMP

Computations are carried out on AMD Opteron (AbuDhabi)
4x16 core workstation
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Replication: Rust (1987) Table IX, and Simulated Data

Bus Groups 1-4 Simulated Data
(N = 8, 156) (N = 106, 132)

Rust (1987) estimated true estimated

RC 9.7558 9.7557 14.0000 13.9959
θ1 2.6275 2.6274 2.0000 2.0390
ρ 0 0 0.6000 0.5997
θ30 0.3489 0.3489 0.3489 0.3489
θ31 0.6394 0.6394 0.6394 0.6394

L -6055.250 -6055.250 -81749.86
||∇L|| 1e-9 1e-5

β = .9999
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Estimation: ε̃ ∼ EV 1(−γ, 1)

Bus Groups 1-3 Bus Group 1-4
(N = 3, 864) (N = 8, 156)

RC 11.8270 25.0000 9.7557 26.4972
θ1 4.6724 9.8347 2.6274 7.2392
RC/θ1 2.5313 2.5420 3.7130 3.6602
ρ 0 0.6894 0 0.7366

L -2708.335 -2707.765 -6055.250 -6053.341
||∇L|| 1e-7 1e-6 1e-9 1e-5
p (LR) 0.2854 0.0507

β = .9999, p (LR) is p-value of likelihood ratio test H0 : ρ = 0
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Estimation: ε̃ ∼ N(0, 1)

Bus Groups 1-3 Bus Group 1-4
(N = 3, 864) (N = 8, 156)

RC 7.0870 13.9130 6.0047 18.4240
θ1 2.4586 5.4257 1.4011 5.1150
RC/θ1 2.8826 2.5643 4.2857 3.6020
ρ 0 0.5230 0 0.6623

L -2707.877 -2707.820 -6054.084 -6053.685
||∇L|| 1e-5 1e-5 1e-6 1e-5
p (LR) 0.7354 0.3713

β = .9999, p (LR) is p-value of likelihood ratio test H0 : ρ = 0
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Summary and Outlook

Summary

Estimation of a popular DBCM with serially correlated
unobserved state variables, using a fully deterministic approach
For some datasets, significant serial correlation could be
identified

Outlook

Resolve some technicalities (standard errors, distribution of ε0,
try PETSc etc.)
Generalize to DDCM
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