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Discuss developments within past 10 years (though the origins go
further back in some instances).
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Nonlinear Programming: Themes

I Nonlinear Programming (NLP) continues to provide fertile
ground for research into algorithms and software.

I New ideas;
I Continual reevaluation of old ideas.

I NLP is a broad paradigm encompassing many pathological
situations.

I Difficult to design robust algorithms;
I Relative performance of algorithms/software varies widely

between problems.

I Applications are becoming more plentiful and diverse, and are
driving developments in algorithms and software.
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Background

Focus mainly on the inequality constrained problem.

min f (x) subject to c(x) ≥ 0,

where f : IRn → IR and c : IRn → IRm are assumed smooth.

I Algorithms usually find local solutions—not global);

I May converge to less desirable points.
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Constraint Qualifications

Since NLP algorithms work with approximations based on the
algebraic representation of the feasible set, need conditions to
ensure that such approximations capture the essential geometry of
the set: Constraint Qualifications.

Define A∗ def
= {i = 1, 2, . . . ,m | ci (x

∗) = 0}.

I Linear Independence (LICQ): The gradients ∇ci (x
∗), i ∈ A∗

are linearly independent.

I Mangasarian-Fromovitz (MFCQ): There is a direction d such
that ∇ci (x

∗)Td > 0 for all i ∈ A∗.
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(MFCQ satisfied, not LICQ)

(CQ not satisfied)

linear approx

linear approx
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First-Order Necessary Conditions

Karush-Kuhn Tucker (KKT): If x∗ is a local minimizer and a CQ
is satisfied at x∗, there is λ∗ ∈ IRm such that

∇f (x∗) =
m∑

i=1

λ∗i∇ci (x
∗),

0 ≤ c(x∗) ⊥ λ∗ ≥ 0.

Complementarity ⊥ means that (λ∗)T c(x∗) = 0, that is,

λ∗i = 0 or ci (x
∗) = 0 for all i = 1, 2, . . . ,m.

“Objective gradient is a conic combination of active constraint
gradients.”
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Optimality conditions can be expressed in terms of the Lagrangian
function, which is a linear combination of objectives and
constraints, with Lagrange multipliers as coefficients:

L(x , λ) = f (x)− λT c(x).

Can write KKT conditions as

∇xL(x∗, λ∗) = 0,

0 ≤ c(x∗) ⊥ λ∗ ≥ 0.
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Second-Order Conditions

There is a critical cone of feasible directions C for which first
derivative information alone cannot determine whether f increases
or decreases.

We idenfity “tiebreaking” conditions based on second derivatives
to ensure increase in f along these directions.

Second-Order Sufficient: If x∗ satisfies KKT for some λ∗, and

dT∇2
xxL(x∗, λ∗)d > 0, for all d ∈ C with d 6= 0,

then x∗ is a strict local solution.
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A Basic Algorithm: SQP for Inequality Constraints
No “outer loop.” From current iterate x , obtain step ∆x by
solving:

min ∇f (x)T∆x + 1
2∆xTH∆x subject to

c(x) +∇c(x)T∆x ≥ 0,

H typically contains curvature information about both objective
and active constraints; “ideal” choice is Hessian of the Lagrangian:

∇2
xxL(x , λ) = ∇2f (x)−

∑
i

λi∇2ci (x).

I H can also be approximated using a quasi-Newton technique.

I ∆x modified via line-search and trust-region variants.

I Merit function often used to determine acceptability of step.
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SQP for Equality Constraints
If all constraints are equalities:

min f (x) subject to h(x) = 0, (1)

Get SQP step by solving

min ∇f (x)T∆x + 1
2∆xTH∆x subject to

h(x) +∇h(x)T∆x = 0,

When H = ∇2
xx L̄(x , µ) and second-order conditions are satisfied,

the same ∆x can be obtained by applying Newton’s method for
algebraic equations to the KKT conditions for (1), which are

∇x L̄(x , µ) = ∇f (x)−∇h(x)µ = 0,

h(x) = 0.
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1. Filter Methods: Background

Many NLP algorithms use a merit function to gauge progress and
to decide whether to accept a candidate step. Usually a weighted
average of objective value and constraint violation, e.g.

P(x ; ν) = f (x) + νr(c(x)), where

r(c(x))
def
=

m∑
i=1

max(0,−ci (x)) = ‖max(0,−c(x))‖1.

Choosing the penalty parameter ν may be tricky.
Too small: P(x ; ν) unbounded below;
Too large: Slow progress along boundary of Ω.

Seek a “minimalist” approach that doesn’t require choice of a
parameter, and rejects good steps less often than does P.
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(Fletcher & Leyffer, 1997): Filter methods treat NLP as a
two-objective optimization problem:

I minimize f ;

I minimize r(c(x)) = ‖max(0,−c(x))‖1 (but we need a zero
min value).

Construct a filter from f (xk) and r(c(xk)) values visited, e.g.

r(c(x)) [infeasibility]

f
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Filter-SQP

Subproblem is a trust-region SQP:

min ∇f (x)T∆x + 1
2∆xTH∆x subject to

c(x) +∇c(x)T∆x ≥ 0, ‖∆x‖∞ ≤ ρ.

ρ is radius of trust region.

Includes a “restoration” phase to recover a (nearly) feasible point
(minimize r(c(x)), ignoring f (x)) if the QP is infeasible.
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Many enhancements added to yield good theoretical behavior, and
to deal effectively with some difficult problems.

I Second-order correction: Accounts better for curvature in
constraints by solving

min ∇f (x)T∆x + 1
2∆xTH∆x subject to

c(x + ∆̂x) +∇c(x)T (∆x − ∆̂x) ≥ 0, ‖∆x‖∞ ≤ ρ,

where ∆̂x is the previous guess of ∆x .

I Use Lagrangian in place of f , allows rapid local convergence.

I Sufficient decrease conditions: Accept a candidate only if a
significant improvement over current filter.

I Allow for non-global and inexact solution of the subproblem.

I Others...

Stephen Wright Continuous Optimization: Recent Developments



Nonlinear Programming
Computation, Applications, Software

Background
Filter Methods
Interior-Point Methods
Degenerate NLP
MPECs

Following original proposal by Fletcher and Leyffer, contributors to
filter-SQP theory have included Gould, M. Ulbrich, S. Ulbrich,
Toint, Wächter, others.

The Filter approach is also used in conjunction with interior-point
methods (see below).

Recent codes using filters:

I FilterSQP (Fletcher and Leyffer; SQP/filter)

I IPOPT (Wächter and Biegler; interior-point/filter).
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2. Interior-Point Methods: Background
Logarithmic barrier: Choose parameter µ; x(µ) solves

Bx(µ) : min
x

P(x ;µ)
def
= f (x)− µ

m∑
i=1

log ci (x) (c(x) > 0).

Under certain assumptions, have x(µ)→ x∗ as µ→ 0.

Optimality condition:

∇f (x)−
m∑

i=1

µ

ci (x)
∇ci (x) = 0.

x(4)

x(1)
x(.1)

x(.3)
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Barrier-Unconstrained

k ← 1; set µ0 > 0; set x̄0

repeat
Solve Bx(µk) for x(µk), starting from x̄k−1;
Choose µk+1 ∈ (0, µk);
Choose next starting point x̄k ;
k ← k + 1;

until convergence.

Newton steps obtained from:

∇2
xxP(x ;µ)∆x = −∇xP(x ;µ).

Primal barrier was one of the original methods for NLP (Frisch,
’55; Fiacco & McCormick, ’68). Fell into disuse for various reasons,
including severe ill-conditioning of the Hessian ∇2

xxP(x ;µ).
(Many difficulties later turned out to be fixable.)
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Barrier-EQP

Introduce a slack variable w :

min f (x) subject to c(x)− w = 0, (w > 0).

Obtain x(µ) by solving an equality constrained problem:

Bw (µ) : min f (x)−µ

m∑
i=1

log wi , subject to c(x)−w = 0, (w > 0).

Bx(µ) and Bw (µ) have identical solutions, but obtained differently:

I unconstrained algorithms are applied to Bx(µ)

I equality-constrained algorithms for Bw (µ) (don’t maintain
feasibility of c(x)− w = 0 at every iteration).

Recent successful codes take their theoretical underpinnings from
solving Bw (µk) for a sequence of µk ↓ 0.
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Applying SQP to Bw(µ)

KKT conditions for Bw (µ):

∇f (x)−∇c(x)λ = 0,

c(x)− w = 0,

−µW−1e + λ = 0, (λ > 0, w > 0),

where W = diag(w1,w2, . . . ,wm), e = (1, 1, . . . , 1)T .

Get pure SQP step by applying Newton’s method to KKT
conditions: ∇2L(x , λ) −∇c(x) 0
∇c(x)T 0 −I

0 I µW−2

 ∆x
∆λ
∆w

 = −

 ∇xL(x , λ)
c(x)− w
−µW−1e + λ

 .
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Eliminate ∆w to get a more tractable form:[
∇2L(x , λ) −∇c(x)
∇c(x)T µ−1W 2

] [
∆x
∆λ

]
= −

[
∇xL(x , λ)

r(x ,w , λ, µ)

]
.

(Byrd, Gilbert, Nocedal, ’00): Apply a customized SQP-trust
region algorithm to Bw (µ),

(Wächter-Biegler, ’02): Apply a filter-SQP method to Bw (µ), with

I objective f (x)− µ
∑

log wi

I infeasibility measure ‖c(x)− w‖2

However, the theory isn’t the whole story! Explicit
manipulation of dual variables λ is key to making these
algorithms effective in practice.
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Primal-Dual Approach

Transform the last KKT condition for Bw (µ) by multiplying by W ;
then apply Newton-like method for algebraic equations to

∇f (x)−∇c(x)λ = 0,

c(x)− w = 0,

Wλ− µe = 0, (λ > 0, w > 0),

Choose search directions and steplengths to

I maintain λ > 0, w > 0;

I make progress toward the solution (according to certain
measures).
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Newton equations for primal-dual step, after elimination of ∆w :[
∇2L(x , λ) −∇c(x)
∇c(x)T Λ−1W

] [
∆x
∆λ

]
= −

[
∇xL(x , λ)

r(x ,w , λ, µ)

]
.

Take steps jointly in (x ,w , λ); maintain positivity of w and λ.
Choose αx , αw , αλ in (0, 1) (not necessarily the same!) and set

x ← x + αx∆x ,

w ← w + αw∆w > 0,

λ ← λ + αλ∆λ > 0.
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Primal-Dual Discussion

Primal-dual approaches for linear programming were well known by
’87 and were the practical approach of choice by ’90.

Extension to NLP obvious in principle, but the devil was in the
details! Many enhancements were needed to improve practical
robustness and efficiency.

Codes LOQO (Benson, Shanno, Vanderbei), KNITRO (Byrd et al.)
and IPOPT (Wächter & Biegler) all generate steps of primal-dual
type but differ in important respects.

KNITRO and IPOPT both derive their theoretical justification
from the Barrier-EQP approach, but replace µ−1W 2 in the
reduced system by Λ−1W . (IPOPT checks explicitly that Λ−1W
does not stray too far from µ−1W 2.)
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Software
IPOPT (Wächter, Biegler, ’04): Line-search filter method based
on Bw (µ), but with primal-dual steps.

Solve step equations using direct solver (MA27) for
symmetric-indefinite systems, adding perturbations to the diagonal
to “correct” the inertia if necessary.

LOQO uses direct factorization of reduced step equations, with
additions to (1, 1) block to fix the inertia.

KNITRO Trust-region algorithm for Bw (µ), with “primal-dual”
scaling (Λ−1W ). Merit function.

Solve step equations using an iterative method: projected
conjugate gradient.

KNITRO-Direct: Also uses direct solution of step equations and
a line search on some iterations.
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3. Degenerate NLP
Reminder of optimality conditions

∇f (x∗) =
m∑

i=1

λ∗i∇ci (x
∗),

0 ≤ c(x∗) ⊥ λ∗ ≥ 0.

Given the active constraints

A∗ def
= {i = 1, 2, . . . ,m | ci (x

∗) = 0},

we can rewrite optimality conditions as

∇f (x∗)−
∑
i∈A∗

λ∗i∇ci (x
∗) = 0,

ci (x
∗) = 0, for all i ∈ A∗

(since by complementarity have λ∗i = 0 for i /∈ A∗).
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Local convergence anaylsis of algorithms usually assumes

I Linear independence of active constraints: ∇ci (x
∗), i ∈ A∗

linearly independent (implies that λ∗ is unique).

I Strict complementarity: λ∗i > 0 for all i ∈ A∗.
I Second-order sufficient conditions.

Under these assumptions, the system

∇f (x∗)−
∑
i∈A∗

λ∗i∇ci (x
∗) = 0,

ci (x
∗) = 0, for all i ∈ A∗

is a “square” nonlinear algebraic system with whose Jacobian[
∇2L(x∗, λ∗) −∇cA∗(x)
∇cA∗(x)T 0

]
is nonsingular at the solution (x∗, λ∗A∗).
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Hence, for the inequality problem, can get rapid convergence by

I Identifying A∗ correctly;

I Applying Newton’s method to the reduced system above.

(Many algorithms do this, implicitly or explicitly.)

The three assumptions are rather strong. Degenerate problems are
those for which they are not satisfied.

I A∗ hard to identify;

I Jacobian of Newton system is singular in the limit.
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We discuss an approach that obtains fast convergence without
linear independence and strict complementarity (but still needs
second-order sufficient conditions).

Denote S = {(x∗, λ∗) satisfying KKT conditions}.

Under our assumptions, x∗ is unique but λ∗ may not be. In fact,
the set of optimal λ∗ may be unbounded.
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First Ingredient: Active Set Identification

First issue is to identify A∗ correctly.

Assume that estimates of both x and λ are available.

The following defines a computable estimate of the distance to
solution set S.

η(x , λ) =

∥∥∥∥[
∇xL(x , λ)

min(λ, c(x))

]∥∥∥∥
1

.

Can show that for (x , λ) near S, we have

η(x , λ) ∼ dist((x , λ),S).
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Active set estimate: Choose σ ∈ (0, 1) (say σ = 1/2) and set

A(x , λ) = {i | ci (x) ≤ η(x , λ)1/2}.

For (x , λ) sufficiently close to S, we have

A∗ = A(x , λ).

Proof. Have η(x , λ)→ 0 as (x , λ)→ S.

I For i /∈ A∗, have ci (x)→ ci (x
∗) > 0, so eventually

ci (x) > η(x , λ)1/2.

I For i ∈ A∗, have ci (x) = ci (x)− ci (x
∗) = O(‖x − x∗‖) =

O(η(x , λ)) ≤ η(x , λ)1/2.

QED
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Second Ingredient: A Stabilized Method for Equalities

Solve the equality-constrained problem

min f (x) subject to cA(x) = 0.

Define distance to solution by

η̄(x , λA) =

∥∥∥∥[
∇x L̄(x , λA)

cA(x)

]∥∥∥∥
and solve a stabilized SQP subproblem:[
∇2

xx L̄(x , λA) −∇cA(x)
∇cA(x)T η̄I

] [
∆x

∆λA

]
= −

[
∇x L̄(x , λA)

h(x)

]
.

and set (x , λA)← (x , λA) + (∆x ,∆λA).
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A Complete Algorithm

Use the two ingredients above to build a rapidly convergent local
phase into any algorithm that generates primal-dual iterates
(xk , λk).

I η(xk , λk) < τ , enter local phase:

I estimate A and apply the stabilized algorithm to

min f (x) subject to cA(x) = 0;

I check that new iterate is acceptable for the original inequality
constrained problem. If not, set τ ← τ/2 and return to outer
loop;

With appropriate checks, get superlinear convergence.
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4. Optimization with Equilibrium Constraints (MPEC)

Simplest example: Given x1 and x2 in IR,

min f (x1, x2) subject to x1 ≥ 0, x2 ≥ 0, x1 ⊥ x2.

Can write complementarity condition as x1x2 = 0 or −x1x2 ≥ 0.

x2

x1
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MPEC constraints look simple, but they

I Do not satisfy constraint qualifications at any feasible point.

I Are highly nonconvex at (0, 0).

I Are a union of “nice” feasible regions, rather than an
intersection. (Unions are much harder to deal with.)

If x1 = 0, have active constraints x1 ≥ 0 and −x1x2 ≥ 0 with
gradients: [

1
0

]
,

[
−x2

0

]
,

which are linearly dependent.

At (x1, x2) = 0, all three constraints are active with gradients[
1
0

]
,

[
0
1

]
,

[
0
0

]
.
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Application of MPEC: Equilibrium Problems with Design
Systems described by equilibrium conditions (e.g. economic or
mechanical), with an optimization or design problem overlaid.

Example: Nash equilibrium in a 2-player game.
Player 1 aims to maximize his some function f1(x1, x2) by choosing
“his” variables from the set x1 ≥ 0. If f1(·, x2) is convex, the
optimal choice for a given x2 satisfies

0 ≤ x1 ⊥ −∇x1f1(x1, x2) ≥ 0.

Similarly for Player 2 (whose variables are x2), optimal choice has

0 ≤ x2 ⊥ −∇x2f2(x1, x2) ≥ 0.

The Nash equilibrium is the point (x1, x2) at which both sets of
conditions are satisfied.
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Suppose there’s a design variable z that should be chosen to
maximize some overall utility, say g(x1, x2, z).

Adding z to the utility functions f1, f2 and assuming appropriate
convexity conditions, we can state the overall MPEC as

max
x1,x2,z

g(x1, x2, z) subject to

0 ≤ x1 ⊥ −∇x1f1(x1, x2, z) ≥ 0,

0 ≤ x2 ⊥ −∇x2f2(x1, x2, z) ≥ 0.

(Possibly other constraints on x1, x2, z .)
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Solving MPECs: 1996-2002

I Lack of CQ ⇒ Standard NLP algorithms may not work!

I Surge of interest prompted in part by ’96 monograph of Luo,
Pang, Ralph.

I Various specialized algorithms proposed (’96-’01) to deal with
the special nature of the constraints.

However, Fletcher & Leyffer (’02) showed that ordinary SQP codes
performed excellently on MPEC benchmarks (and interior-point
codes were also quite good).

Why?

Can robustness of standard NLP approaches be improved further?
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MPEC First-Order Optimality Conditions

Consider this formulation (where G and H are functions from
IRn → IRm):

min f (x) subject to 0 ≤ G (x) ⊥ H(x) ≥ 0.

Can include general equality (h(x) = 0) and inequality (c(x) ≥ 0)
constraints—they complicate the notation but not the concepts.

Active sets IG = {i |Gi (x
∗) = 0}, IH = {i |Hi (x

∗) = 0}.

Complementarity ⇒ IG ∪ IH = {1, 2, . . . ,m}.
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Stationarity Conditions: Have x∗ feasible for the MPEC, and
Lagrange multipliers τ∗i , ν∗i such that

∇f (x∗)−
∑
i∈IG

τ∗i ∇Gi (x
∗)−

∑
i∈IH

ν∗i ∇Hi (x
∗) = 0,

Gi (x
∗) = 0, i ∈ IG ,

Hi (x
∗) = 0, i ∈ IH .

For i ∈ IG\IH , have Hi (x) > 0 for all x near x∗, so
complementarity implies Gi (x) = 0.

Hence, Gi behaves as an equality constraint and so the multiplier
τ∗i can have either sign.

(Similarly for ν∗i , i ∈ IH\IG .)
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However for i ∈ IG ∩ IH—the biactive indices—it is less clear how
the sign of τ∗i and ν∗i should be restricted. Different flavors of
stationarity have been proposed:

I C-stationary: τ∗i and ν∗i have the same sign;

I M-stationary: Does not allow τ∗i and ν∗i of different signs, and
one of them must be nonnegative.

I Strong stationarity: τ∗i and ν∗i both nonnegative.

Strong stationarity is the most appealing, as it ensures that there
is no first-order direction of descent.
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Regularization (Scholtes ’01)

For parameter σ > 0, define

Reg(σ):
min f (x) subject to
G (x) ≥ 0, H(x) ≥ 0,
Gi (x)Hi (x) ≤ σ, i = 1, 2, . . . ,m,

I Solve for decreasing sequence of σ = σk with σk ↓ 0; Can
apply a more or less standard NLP algorithm.

I For each σ > 0, CQ are satisfied (under “reasonable”
assumptions).
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x2

x1

x2

x1

Relationship between solution x(σ) of Reg(σ) and the original
MPEC is quite complex. We may have

I ‖x(σ)− x∗‖ = O(σ);

I ‖x(σ)− x∗‖ = O(σ1/2),

depending on exactly what properties hold at a strongly stationary
x∗ (Scholtes ’01, Ralph and SW ’04).
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Penalization

For parameter ρ > 0 define

Pen(ρ):
min f (x) + ρG (x)TH(x) subject to
G (x) ≥ 0, H(x) ≥ 0.

I Force G (x)TH(x) = 0 by penalizing positive values of GTH.

I Solve Pen(ρk) for an increasing sequence of ρk .

I STOP when GTH = 0 at some ρk ; the solution of Pen(ρk) is
then at least stationary for the MPEC.

I CQ are satisfied (under “reasonable” assumptions).

I Good computational success reported for interior-point
methods applied to this formulation.
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Some Results for Penalization

(Anitescu ’01; Ralph and SW ’04; Anitescu, Tseng, SW, ’04)

If x∗ solves the MPEC, then it is also a local solution of Pen(ρ) for
all ρ sufficiently large.

If x∗ satisfies KKT conditions for Pen(ρ) and G (x∗)TH(x∗) = 0,
then x∗ is strongly stationary for the MPEC.

(Global Convergence) If second-order necessary conditions are
satisfied at each solution of Pen(ρk) then either

I for some k, solution of Pen(ρk) is a strongly stationary point
of the MPEC; or

I any accumulation point is infeasible or does not satisfy the
LICQ
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SQP for MPEC

I In Fletcher-Leyffer tests (’02), the SQP codes filterSQP and
SNOPT solved almost all test problems.

I Subsequent analysis (Fletcher et al. ’02) provided some
theoretical support for local convergence of SQP.

MPEC is a prime candidate for the stabilized SQP approach for
degenerate NLP outlined above.

I No longer need to assume feasibility of SQP subproblems;

I Can be embedded in other approaches to produce rapid local
convergence;

I However, needs second-order conditions that are stronger than
the ideal.
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Computation, Applications, Software

I Large optimization problems on computational grids

I Applications

I Software packages; Trends in software design

I Modeling languages

I The Internet

Stephen Wright Continuous Optimization: Recent Developments



Nonlinear Programming
Computation, Applications, Software

Optimization on the Grid
New Applications
Software
Modeling Languages
Internet

Optimization on the Grid

The Grid isn’t all hype! Optimizers have done serious
computations on it. Some examples:

I Traveling Salesman Problem: Applegate et al. Pre-”Grid”

I metaNEOS (’97-’01): NSF-funded collaboration between
optimizers and grid computing groups: Condor, Globus.

I MW Toolkit for implementing master-worker algorithms on
grids

I Many interesting parallel algorithmic paradigms can be
shoehorned effectively into the master-worker framework
(task-farming, branch-and-bound, “native” master-worker)

I Development of MW is continuing.
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Successful Implementations with MW

I Quadratic Assignment Problem: Solved the touchstone
problem NUG30 (Anstreicher et al., ’02). Seven years of CPU
time in a week on more than 1000 computers (10 locations, 3
continents).

I Two-stage stochastic linear programming (Linderoth & SW,
’03). Solved problems with up to 108 constraints and 1010

variables on similar platforms. Allowed extensive testing of
statistical properties of solutions to such problems and insight
into the nature of solutions (Linderoth, Shapiro, SW, ’02).
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“New” Applications

The NLP user base is smaller than for linear programming or
integer (linear) programming, though there has been steady
demand for codes such as MINOS, CONOPT, NPSOL for many
years.

NLP have arisen (or have attracted renewed attention) in a host of
applications in the past 10-15 years.

Optimization with PDE constraints. An area of particular focus.
Typically design or control problems overlaid on a system described
by PDEs. (see volume of Biegler et al., Springer LNCS, ’03)
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Cancer Treatment Planning. Find radiotherapy treatments for
cancer that deposit a given dose of radiation in the tumor while
avoiding nearby normal tissue and critical organs. Involves
optimization problems of many types; recent interest in biological
objective functions give rise to NLPs.

Meteorological Data Assimilation in medium-range weather
forecasting. Special case of PDE-constrained optimization.
Unknown is the state of atmosphere 48 hours ago; objective
function is fit between model and observations. NLP formulations
(with specialized algorithms) used at all major forecasting centers.
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Model Predictive Control in process engineering. Solve a
sequence of nonlinear optimal control problem over finite time
horizons; implement closed-loop control using open-loop strategies.
Feasible SQP methods have proved to be useful.

Statistics and Machine Learning. Multicategory support vector
machines, robust estimation.

Image Reconstruction. Reconstructing images from
undersampled MRI data.

Others were presented at this meeting.
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Connecting with Users

Optimization is a consumer-oriented discipline with a wide and
diverse user base.

I Science

I Engineering

I Operations Research

I Finance and Economics

I “Retail” Users

How is optimization technology transferred to the market? What
are the trends?
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NLP Software Packages
See NEOS Server www-neos.mcs.anl.gov

∗=freely available. Red=under active development.

I IPOPT∗: interior-point

I KNITRO: interior-point and SLQP variants

I SNOPT: SQP

I LOQO: interior-point

I FILTER: Filter-SQP

I CONOPT: Generalized reduced gradient

I LANCELOT∗: Augmented Lagrangian

I MINOS: sequential linearly constrained

I PENNON: Generalized augmented Lagrangian
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Other NLP solvers are embedded into larger optimization or
numerical computing systems: Matlab, Excel, NAG.

Numerous other commercial packages reviewed in 1998 OR/MS
Today survey:
www.lionhrtpub.com/orms/surveys/nlp/nlp.html.

NEOS Guide: www.mcs.anl.gov/otc/Guide/ (somewhat out of
date).
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Trends in Optimization Software Design

I Once were monolithic Fortran codes. Fortran still popular; C
now used in some leading codes; a few experiments in C++.

I Object-oriented design used in some recent codes; allow
specialization according to problem structure, modular use of
linear algebra:

I TAO (unconstrained and bound-constrained)
I OOPS and OOQP (quadratic programming)
I IOTR (NLP-forthcoming)

I Some interior-point codes are especially able to use
off-the-shelf linear algebra packages (e.g. IPOPT and OOQP
use Harwell’s MA27).

I Multiple user interfaces: native-language calls, batch files,
modeling languages, high-level languages (Matlab, Octave),
spreadsheets.
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Open-Source Software

Some good codes are now open-source.

The COIN-OR initiative www.coin-or.org has was founded in
2000 to organize and support community development of
optimization codes.

I Peer review process;

I Sessions at optimization meetings;

I OSI: common interface to optimization solvers (currently for
LP and MIP);

I Includes several excellent codes, e.g. IPOPT for NLP.
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Optimization Modeling Languages

Allows problems to be defined (and the results presented) in a way
that is natural to the application. No shoehorning into the
matrices/vectors of the underlying software.

AMPL, GAMS, Maximal, AIMMS

They have become an extremely popular way to call optimization
software (method of choice on NEOS Server).

Usually incorporate automatic differentiation, relieves user of need
to code first derivatives by hand. (Several codes optionally allow
second derivatives to be used; these must be provided by the user.)

They make optimzation the “outer loop”—not easy to embed the
optimization problem in a larger computation.
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The Internet

Using the Internet to reach users and build community.

I Following on from pioneers in the NA community: NAnet,
netlib (mid-’80s).

I NEOS (’94-present)
I Server: online solution of optimization problems; now

1500-3000 submissions/week.
I Guide: informational resource; not much recent development

I Preprint repositories:
I IPMO: Interior-Point Methods Online (’94-’01) was vital to the

interior-point boom.
I Optimization Online (’00-present)
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THANKS FOR YOUR ATTENTION!
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