Numerical Methods in Economics MIT Press, 1998

Notes for Chapter 9: quasi-Monte Carlo Methods

October 28, 2007

1

Quasi-Monte Carlo Methods

- Observation:
	- MC uses "random" sequences to satisfy i.i.d. premise of LLN
	- Integration only needs sequences which are good for integration
	- Integration does not care about i.i.d. property
- Idea of quasi-Monte Carlo methods
	- Explicitly construct a sequence designed to be good for integration.
	- Do not leave integration up to mindless random choices
- Pseudorandom sequence are not random.
	- von Neumann: "Anyone who considers arithmetical methods of producing random digits is, of course, in a state of sin."

 \tilde{a}

- "pseudo" means "false, feigned, fake, counterfeit, spurious, illusory"
- Neither LLN nor CLT apply
- Visual similarities are not mathematically relevant
- Monte Carlo Propaganda
	- Best deterministic methods converge at rate $N^{-1/d}$
	- MC converges at rate $N^{-1/2}$ for any dimension d
	- So, MC is far better than any deterministic scheme
- Observations about Monte Carlo Propaganda
	- Implementations of MC use pseudorandom (hence, deterministic) sequences instead of random numbers
	- Implementations of MC converge at rate $N^{-1/2}$ for any dimension d
	- Therefore, there exist deterministic methods which converge at rate $N^{-1/2}$ for any dimension d.
	- Therefore, under MC propaganda logic, $1/2=1/d$ for all $d > 1$
- Questions
	- What is rate of convergence when using pseudorandom numbers?
	- Why do deterministic pseudorandom methods converge at rate $N^{-1/2}$ in practice?
- Answer: MC propagandists pull a bait-and-switch
	- $-$ They use worst-case analysis in "Best deterministic methods for integrating $C⁰$ functions converge at rate $N^{-1/d}$
	- They use probability-one criterion when they say "MC methods converge at rate $N^{-1/2}$ "
- Mathematical Facts:
	- MC worst-case convergence rate is N^{-0} no convergence there is some sequence where MC does not converge
	- Some pseudorandom methods converge at $N^{-1/2}$ for smooth functions in worst case; proofs are number-theoretic.
	- If f is C^k and periodic, then there are deterministic rules converging at rate N^{-k} independent of dimension
- Practical facts
	- qMC has been used for many high-dimension (e.g., 360) problems.
	- pMC asymptotics kick in early; qMC asymptotics take longer
	- $-$ Therefore, pMC methods have *finite sample advantages*, not asymptotic advantages.
	- "quasi-MC" is bad name since qMC methods have no connection to probability theory

 $\frac{4}{3}$

Equidistributed Sequences

Definition 1 A sequence $\{x_j\}_{j=1}^{\infty} \subset R$ is equidistributed over $[a, b]$ if

$$
\lim_{n \to \infty} \frac{b-a}{n} \sum_{j=1}^{n} f(x_j) = \int_{a}^{b} f(x) dx
$$
\n(9.1.1)

for all Riemann-integrable $f(x)$. More generally, a sequence $\{x^j\}_{j=1}^{\infty} \subset D \subset R^d$ is equidistributed over D iff

$$
\lim_{n \to \infty} \frac{\mu(D)}{n} \sum_{j=1}^{n} f(x^j) = \int_D f(x) \, dx \tag{9.1.2}
$$

for all Riemann-integrable $f(x) : R^d \to R$, where $\mu(D)$ is the Lebesgue measure of D.

- Examples:
	- $-0, 1/2, 1, 1/4, 3/4, 1/8, 3/8, 5/8, 7/8,$ etc., is not equidistributed over [0, 1] since $\frac{b-a}{n} \sum_{j=1}^{n} x_j$, the approximation to $\int_0^1 x \, dx$, oscillates.
	- Weyl sequence: for θ irrational

$$
x_n = \{n\theta\}, \ n = 1, 2, \cdots,
$$
\n(9.1.3)

where $\{x\}$ is *fractional part of* x and defined by

$$
\{x\} \equiv x - \max\{k \in Z \mid k \le x\}
$$

is equidistributed

Figure 1: Weyl function

First 1500 Weyl points

1500 Points generated by LCM

Î

• MC vs qMC

- qMC are not serially uncorrelated
- Similar iterations for Weyl since $x_{n+1} = (x_n + \theta) \text{mod } 1$, but slope term is 1, not some big number.

9

Discrepancy

We want measures of deviation from uniformity for sets of points

Definition 2 The discrepancy D_N of the set $X \equiv \{x_1, \dots, x_N\} \subset [0, 1]$ is

$$
D_N(X) = \sup_{0 \le a < b \le 1} |\frac{card([a, b] \cap X)}{N} - (b - a)|.
$$

Definition 3 If X is a sequence $x_1, x_2, \dots \subset [0, 1]$, then $D_N(X)$ is $D_N(X^N)$ where $X^N = \{x_j \in X \mid$ $j = 1, \cdots, N$.

• Small discrepancy sets

 $-$ On [0, 1], the set with minimal D_N is $\left\{\frac{1}{N+1}, \frac{2}{N+1}, \dots, \frac{N}{N+1}\right\}$

— Discrepancy of lattice point set

$$
U_{d,m} = \left\{ \left(\frac{2m_1 - 1}{2m} , \cdots , \frac{2m_d - 1}{2m} \right) \mid 1 \leq m_j \leq m, j = 1, \cdots, d \right\}
$$

is $\mathcal{O}(m^{-1}) = \mathcal{O}\left(N^{-1/d}\right)$

- Star discrepancy of N random points is $\mathcal{O}(N^{-\frac{1}{2}}(\log \log N)^{1/2})$, a.s.
- Roth (1954) and Kuipers and Niederreiter (1974):

$$
D_N^* > 2^{-4d} \left((d-1) \log 2 \right)^{(1-d)/2} N^{-1} \left(\log N \right)^{(d-1)/2}.
$$
 (9.2.1)

which is much lower than the Chung-Kiefer result on randomly generated point sets. – The Halton sequence in I^d has discrepancy

11

$$
D_N < \frac{d}{N^2} + \frac{1}{N} \prod_{j=1}^d \left(\frac{p_j - 1}{2 \log p_j} \log N + \frac{p_j + 1}{2} \right)
$$
\n
$$
\sim \frac{(\log N)^d}{N} \leq \mathcal{O}\left(N^{-1+\varepsilon}\right)
$$
\n(9.2.4)

 $-$ Bound not good for moderate N and large d.

Variation and Integration

Theorem 4 The total variation of f, $V(f)$, on [0, 1] is

$$
V(f) = \sup_{n} \sup_{0 \le x_0 < x_1 < \dots < x_n \le 1} \sum_{j=1}^{n} |f(x_j) - f(x_{j-1})|
$$

Theorem 5 (Koksma) If f has bounded total variation, i.e., $V(f) < \infty$, on I, and the sequence $x_j \in I, j = 1, \cdots, N$, has discrepancy D_N^* , then

$$
\left| N^{-1} \sum_{j=1}^{N} f(x_j) - \int_0^1 f(x) \, dx \right| \le D_N^* V(f) \tag{9.2.5}
$$

Can generalize variation to multivariate functions, $V^{HK}(f)$.

Theorem 6 (Hlawka) If $V^{HK}(f)$ is finite and $\{x^j\}_{j=1}^N \subset I^d$ has discrepancy D_N^* , then

$$
\frac{1}{N} \sum_{j=1}^{N} f(x^j) - \int_{I^d} f(x) \, dx \le V^{HK}(f) D_N^*.
$$

Product rules use lattice sets, which have discrepancy $O(N^{-1/d})$, not as good as some other sets with discrepancy $\mathcal{O}(N^{-1+\varepsilon})$

Monte Carlo versus Quasi-Monte Carlo

Table 9.2: Integration Errors for $\int_{I^d} d^{-1} \sum_{j=1}^d |4x_j - 2| dx$

N(1000s) MC Weyl Haber Niederreiter

$$
d = 40:
$$

 \sim \sim

Table 9.3: Integration Errors for $\int_{I^d} \prod_{j=1}^d \left(\frac{\pi}{2} \sin \pi x_j\right) dx$

N(1000s) MC Weyl Haber Niederreiter

$$
d = 10:
$$
\n
$$
1 \t1(-2) \t6(-2) \t8(-2) \t9(-3)
$$
\n
$$
10 \t3(-2) \t8(-3) \t5(-3) \t5(-4)
$$
\n
$$
100 \t9(-3) \t2(-3) \t1(-3) \t6(-4)
$$
\n
$$
1000 \t2(-3) \t3(-5) \t6(-3) \t2(-4)
$$

 $d = 40$:

Fourier Analytic Methods

- Consider $\int_0^1 \cos 2\pi x \, dx = 0$ and its approximation $N^{-1} \sum_{n=1}^N \cos 2\pi x_n$
	- Choose $x_n = \{n\alpha\}$, a Weyl sequence
	- Periodicity of $\cos x$ implies $\cos 2\pi \{n\alpha\} = \cos 2\pi n\alpha$
	- Periodicity of $\cos 2\pi x$ implies Fourier series representation

$$
\cos 2\pi x = \frac{1}{2} (e^{2\pi ix} + e^{-2\pi ix})
$$

— Error analysis: error is approximation, and

$$
\frac{1}{N} \sum_{n=1}^{N} \frac{1}{2} (e^{2\pi i n \alpha} + e^{-2\pi i n \alpha})
$$
\n
$$
= \frac{1}{2N} \sum_{n=1}^{N} (e^{2\pi i \alpha})^{n} + \frac{1}{2N} \sum_{n=1}^{N} (e^{-2\pi i \alpha})^{n}
$$
\n
$$
\leq \frac{1}{2N} \left(\left| \frac{e^{2\pi i N \alpha} - 1}{e^{2\pi i \alpha} - 1} \right| + \left| \frac{e^{-2\pi i N \alpha} - 1}{e^{-2\pi i \alpha} - 1} \right| \right)
$$
\n
$$
\leq \frac{1}{2N} \left(\frac{2}{|e^{2\pi i \alpha} - 1|} + \frac{2}{|e^{-2\pi i \alpha} - 1|} \right) \leq \frac{C}{N}
$$
\n(9.3.1)

for a finite C as long as $e^{2\pi i \alpha} \neq 1$, which is true for any irrational α .

 $-$ So, convergence rate is N^{-1} .

 $-$ (9.3.1) applies to a finite sum of $e^{2\pi i kx}$ terms; can be generalized to arbitrary Fourier series.

15

• The following theorem summarizes results reported in book.

Theorem 7 Suppose, for some integer k, that $f : [0, 1]^d \to R$ satisfies the following two conditions: 1. All partial derivatives

$$
\frac{\partial^{m_1+\dots+m_d}f}{\partial x_1^{m_1}\cdots \partial x_d^{m_d}}, 0 \le m_j \le k-1, 1 \le j \le d
$$

exist and are of bounded variation in the sense of Hardy and Krause, and

2. All partial derivatives

$$
\frac{\partial^{m_1+\dots+m_d}f}{\partial x_1^{m_1}\dotsm\partial x_d^{m_d}}, 0 \le m_j \le k-2, 1 \le j \le d
$$

are periodic on $[0, 1]^d$.

Then, the error in integrating $f \in \mathcal{C}^k$ with Korobov or Keast good lattice point set with sample size N is $O(N^{-k}(\ln N)^{kd}).$

 $\ddot{}$

- Key observation:
	- If f is C^k we can find rules with $O(N^{-k+\epsilon})$ convergence.
	- For smooth functions, there are deterministic rules which far outperform MC
	- $-$ qMC asymptotics may not kick in until N is impractically large.

Estimating Quasi-Monte Carlo Errors

- MC rules have standard errors
- Quasi-MC rules do not have standard errors
- Add "randomization" to construct standard errors
- Suppose
	- $-$ For each β ,

$$
I(f) \doteq Q(f;\beta)
$$

– For $\beta \sim U$ [0, 1] $I(f) \equiv$ " D $f(x) dx = E\{Q(f; \beta)\}\$ (9.5.1) — Then

$$
\hat{I} \equiv \frac{1}{m} \sum_{j=1}^{m} Q(f; \beta_j)
$$
\n(9.5.2)

is an unbiased estimator of $I(f)$ with standard error $\sigma_{\hat{I}}$ approximated by

$$
\hat{\sigma}_{\hat{I}}^2 \equiv \frac{\sum_{j=1}^m (Q(f; \beta_j) - \hat{I})^2}{m - 1} \tag{9.5.3}
$$

• Example: Random shifts to Weyl rules, because if x_j is equidistributed on [0, 1], then so is $x_j + \beta$ for any random β .

Conclusion

- All sampling methods use deterministic sequences
- Probability theory does not apply to *any* practical sampling scheme
- Pseudorandom schemes seem to have $O(N^{-1/2})$ convergence; this is proven for LCM
- There are $O(N^{-1})$ schemes for continuously differentiable functions use equidistributional sequences
- There are $O(N^{-k})$ schemes for C^k functions use Fourier analytic schemes
- qMC methods have done well in some problems with hundreds of dimensions
- Pseudorandom sequences appear to have finite sample advantages for very high dimension problems