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Quasi-Monte Carlo Methods

e Observation:

— MC uses “random” sequences to satisfy i.i.d. premise of LLN
— Integration only needs sequences which are good for integration

— Integration does not care about i.i.d. property
e Idea of quasi-Monte Carlo methods

— Explicitly construct a sequence designed to be good for integration.

— Do not leave integration up to mindless random choices
e Pseudorandom sequence are not random.

— von Neumann: “Anyone who considers arithmetical methods of producing random digits is, of
course, in a state of sin.”

— “pseudo” means “false, feigned, fake, counterfeit, spurious, illusory”

— Neither LLN nor CLT apply

— Visual similarities are not mathematically relevant



e Monte Carlo Propaganda

— Best deterministic methods converge at rate N~1/4

— MC converges at rate N /2 for any dimension d

— So, MC is far better than any deterministic scheme
e Observations about Monte Carlo Propaganda

— Implementations of MC use pseudorandom (hence, deterministic) sequences instead of random

numbers
— Implementations of MC converge at rate N~!/2 for any dimension d

— Therefore, there exist deterministic methods which converge at rate N~'/2 for any dimension

d.
— Therefore, under MC propaganda logic, 1/2 = 1/d for all d > 1



e Questions

— What is rate of convergence when using pseudorandom numbers?

— Why do deterministic pseudorandom methods converge at rate N /2 in practice?
e Answer: MC propagandists pull a bait-and-switch
— They use worst-case analysis in “Best deterministic methods for integrating C° functions con-
verge at rate N1/

— They use probability-one criterion when they say “MC methods converge at rate N~1/2”

e Mathematical Facts:

— MC worst-case convergence rate is N~ - no convergence - there is some sequence where MC
does not converge

— Some pseudorandom methods converge at N ~1/2 for smooth functions in worst case; proofs are
number-theoretic.

— If f is C* and periodic, then there are deterministic rules converging at rate N % independent
of dimension

e Practical facts

— qMC has been used for many high-dimension (e.g., 360) problems.
— pMC asymptotics kick in early; gMC asymptotics take longer
— Therefore, pMC methods have finite sample advantages, not asymptotic advantages.

— “quasi-MC” is bad name since gMC methods have no connection to probability theory



Equidistributed Sequences

Definition 1 A sequence {x;}52, C R is equidistributed over [a, b] if

n

jim 2= 3 flay) = / f(z) da (9.1.1)
j=1 a
for all Riemann-integrable f(x). More generally, a sequence {x’ }2,CDC R? is equidistributed over
D iff
D) .,
jim 22§ ) = / f(z) da (9.1.2)
n—0o0 n = D

for all Riemann-integrable f(x) : R — R, where u(D) is the Lebesque measure of D.

e Examples:

—0,1/2,1,1/4,3/4,1/8,3/8,5/8, 7/8, etc., is not equidistributed over [0, 1] since =2 S z;,

a
n 7=1

the approximation to fol x dx, oscillates.

— Weyl sequence: for 6 irrational
T, ={nb}, n=1,2,--- | (9.1.3)
where {z} is fractional part of x and defined by
{z}=0—max{ke Z |k <z}

is equidistributed



Figure 1: Weyl function
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Table 9.1: Equidistributed Sequences in R¢

Name: Formula for z":
Wer (Fu} o
Haber ({—n(n;1> p}/Q} R {—n(n;1> pclz/Q

Niederreiter ({n 21/(d+1>} e qn Qd/(d“)})

Baker ({ne"},--- {ne'd}), r; rational and distinct

e MC vs gMC

— gMC are not serially uncorrelated

— Similar iterations for Weyl since x, 1 = (x, + #)mod 1, but slope term is 1, not some big
number.



Discrepancy
We want measures of deviation from uniformity for sets of points

Definition 2 The discrepancy Dy of the set X = {xy,--- ,xn} C [0,1] is

card(|a,b| N X
0<a<b<l

—(b—a)|.

Definition 3 If X is a sequence x1, T, - C [0,1], then Dy(X) is Dy(XY) where X = {z; € X |
j=1,--,N}.



e Small discrepancy sets

—On [0,1], the set with minimal Dy is {5, %5, - » 77}

— Discrepancy of lattice point set

2mi — 1 2mg — 1
Ud,m{(ml IR T > llgmjgma.]lv?d}

2m 2m

is O(m™') = O (N~9)
— Star discrepancy of N random points is O(N~2(loglog N)'/2), a.s.
— Roth (1954) and Kuipers and Niederreiter (1974):

D > 27% ((d = 1)1og 2)"92 N~ (log N)-1/2, (9.2.1)

which is much lower than the Chung-Kiefer result on randomly generated point sets.

— The Halton sequence in % has discrepancy

d
d 1 pi— 1 p;+1
Dy<— : log N + -2 9.2.4
N<N?+NJ:1 (QIngj BN 2 ) ( )
~ <1Og N) < O (N—1+€)

N

— Bound not good for moderate N and large d.



Variation and Integration

Theorem 4 The total variation of f, V(f), on [0,1] is

V(H=sup  sup S [f(a) ~ o)

n 0<zrp<r1<--<rp<l

Theorem 5 (Koksma) If f has bounded total variation, i.e., V(f) < oo, on I, and the sequence
xjel,j=1,--- N, has discrepancy D, then

N 1
NS S = [ fa)de| < D) (9.2.5)
j=1
Can generalize variation to multivariate functions, VA (f).

Theorem 6 (Hlawka) If VIR (f) is finite and {2’} C I* has discrepancy Dy, then

¥ 26~ [ fayde 1< V(D

Product rules use lattice sets, which have discrepancy O (N -l d), not as good as some other sets

with discrepancy O (N~179)



Monte Carlo versus Quasi-Monte Carlo

Table 9.2: Integration Errors for [, d~! Z;l:l | dx; — 2 | dx

N(1000s) MC Weyl Haber Niederreiter

d = 10:
1 1(-3) 3(-4) 4(-4) 4(-4)
10 2(-4) 6(-5) 1(-3) 3(-5)
100 1(-3) 7(-6) 2(-4) 2(-6)
1000 4(-5) 6(-7) 2(-4) 2(-7)

d = 40:
1 3(-3) 4(-4) 3(-3) 2(-4)
10 3(-4) 6(-5) 1(-3) 2(-6)
100 4(-6) 5(-6) 3(-4) 9(-6)
1000 1(-4) 6(-7) 1(-5) 4(-7)
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Fourier Analytic Methods
e Consider fol cos 2z do = 0 and its approximation N~} Zf,:le COS 27Xy,

— Choose z,, = {na}, a Weyl sequence
— Periodicity of cos z implies cos 2m{na} = cos 2mna

— Periodicity of cos 2mz implies Fourier series representation

1 . |
COS 2mx = 5(627”35 + e 2

— Error analysis: error is approximation, and

% 27]1\[:1 %(62772'7104 i 6—2772'7104)
N ; N — i
_ ﬁ anl (627Tza)n + ﬁ anl (6 2moz)n

2 2 C
2N (’627Tia_1| + ’6—27Ti()é_1|> S N

IA

627TiNa_1 ‘

6—2771'Na_1 ‘) (931)

62771'04_1 6—27Tia_1

IA
|~

for a finite C' as long as €™ =£ 1, which is true for any irrational .

— So, convergence rate is N1,

— (9.3.1) applies to a finite sum of e*™** terms; can be generalized to arbitrary Fourier series.



e The following theorem summarizes results reported in book.

Theorem 7 Suppose, for some integer k, that f : [0,1]Y — R satisfies the following two conditions:
1. All partial derivatives

exist and are of bounded variation in the sense of Hardy and Krause, and
2. All partial derivatives

are periodic on [0, 1]%.
Then, the error in integrating f € C* with Korobov or Keast good lattice point set with sample size
N is O(N7*(In N)*).

e Key observation:

—If f is C* we can find rules with O(N %) convergence.
— For smooth functions, there are deterministic rules which far outperform MC

— gqMC asymptotics may not kick in until NV is impractically large.



Estimating Quasi-Monte Carlo Errors

e MC rules have standard errors
e Quasi-MC rules do not have standard errors

e Add “randomization” to construct standard errors

e Suppose
~ For cach 5 1) = QUf: B
—For 6~ U [0, 1] 1) = /Df(@ dr = ELO(f: )} (9.5.1)
S e [= %i Q(f; 8)) (9.5.2)

is an unbiased estimator of I(f) with standard error o; approximated by

 _ Z;L(Q(f; Bﬂ — 1) (9.5.3)

2
I m— 1

e Example: Random shifts to Weyl rules, because if z; is equidistributed on [0, 1], then so is x; + 3
for any random (.



Conclusion

e All sampling methods use deterministic sequences
e Probability theory does not apply to any practical sampling scheme
e Pseudorandom schemes seem to have O (N -l 2) convergence; this is proven for LCM

e There are O (N _1) schemes for continuously differentiable functions - use equidistributional se-
quences

e There are O(N~*) schemes for C* functions - use Fourier analytic schemes
e ¢MC methods have done well in some problems with hundreds of dimensions

e Pseudorandom sequences appear to have finite sample advantages for very high dimension problems



