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Quasi-Monte Carlo Methods

• Observation:

— MC uses “random” sequences to satisfy i.i.d. premise of LLN

— Integration only needs sequences which are good for integration

— Integration does not care about i.i.d. property

• Idea of quasi-Monte Carlo methods

— Explicitly construct a sequence designed to be good for integration.

— Do not leave integration up to mindless random choices

• Pseudorandom sequence are not random.

— von Neumann: “Anyone who considers arithmetical methods of producing random digits is, of
course, in a state of sin.”

— “pseudo” means “false, feigned, fake, counterfeit, spurious, illusory”

— Neither LLN nor CLT apply

— Visual similarities are not mathematically relevant
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• Monte Carlo Propaganda

— Best deterministic methods converge at rate N!1/d

— MC converges at rate N!1/2 for any dimension d

— So, MC is far better than any deterministic scheme

• Observations about Monte Carlo Propaganda

— Implementations of MC use pseudorandom (hence, deterministic) sequences instead of random
numbers

— Implementations of MC converge at rate N!1/2 for any dimension d

— Therefore, there exist deterministic methods which converge at rate N!1/2 for any dimension
d.

— Therefore, under MC propaganda logic, 1/2 = 1/d for all d > 1
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• Questions

— What is rate of convergence when using pseudorandom numbers?

— Why do deterministic pseudorandom methods converge at rate N!1/2 in practice?

• Answer: MC propagandists pull a bait-and-switch

— They use worst-case analysis in “Best deterministic methods for integrating C0 functions con-
verge at rate N!1/d”

— They use probability-one criterion when they say “MC methods converge at rateN!1/2”

• Mathematical Facts:

— MC worst-case convergence rate is N!0 - no convergence - there is some sequence where MC
does not converge

— Some pseudorandommethods converge atN!1/2 for smooth functions in worst case; proofs are
number-theoretic.

— If f is Ck and periodic, then there are deterministic rules converging at rateN!k independent
of dimension

• Practical facts

— qMC has been used for many high-dimension (e.g., 360) problems.

— pMC asymptotics kick in early; qMC asymptotics take longer

— Therefore, pMC methods have nite sample advantages, not asymptotic advantages.

— “quasi-MC” is bad name since qMC methods have no connection to probability theory
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Equidistributed Sequences

Denition 1 A sequence {xj}"j=1 # R is equidistributed over [a, b] if

lim
n$"

b! a
n

n!

j=1

f(xj) =

" b

a

f(x) dx (9.1.1)

for all Riemann-integrable f(x). More generally, a sequence {xj}"j=1 # D # Rd is equidistributed over
D i!

lim
n$"

µ(D)

n

n!

j=1

f(xj) =

"

D

f(x) dx (9.1.2)

for all Riemann-integrable f(x) : Rd $ R, where µ(D) is the Lebesgue measure of D.

• Examples:

— 0, 1/2, 1, 1/4, 3/4, 1/8, 3/8, 5/8, 7/8, etc., is not equidistributed over [0, 1] since b!an
#n

j=1 xj,

the approximation to
$ 1
0 x dx, oscillates.

— Weyl sequence: for ! irrational

xn = {n!}, n = 1, 2, · · · , (9.1.3)

where {x} is fractional part of x and dened by

{x} % x!max{k & Z | k ' x}

is equidistributed
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Figure 1: Weyl function
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First 1500 Weyl points
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1500 Points generated by LCM
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Table 9.1: Equidistributed Sequences in Rd

Name: Formula for xn:

Weyl
%&
np

1/2
1

'
, · · · ,

&
np

1/2
d

'(

Haber
%&

n(n+1)
2 p

1/2
1

'
, · · · ,

&
n(n+1)
2 p

1/2
d

'(

Niederreiter
)*
n 21/(d+1)

+
, · · · ,

*
n 2d/(d+1)

+,

Baker ({ner1} , · · · , {n erd}), rj rational and distinct

• MC vs qMC

— qMC are not serially uncorrelated

— Similar iterations for Weyl since xn+1 = (xn + !)mod 1, but slope term is 1, not some big
number.
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Discrepancy

We want measures of deviation from uniformity for sets of points

Denition 2 The discrepancy DN of the set X % {x1, · · · , xN} # [0, 1] is

DN(X) = sup
0'a<b'1

|card([a, b] (X)
N

! (b! a)|.

Denition 3 If X is a sequence x1, x2, · · · # [0, 1], then DN(X) is DN(XN) where XN = {xj & X |
j = 1, · · · , N}.
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• Small discrepancy sets

— On [0, 1], the set with minimal DN is
*

1
N+1,

2
N+1, · · · ,

N
N+1

+

— Discrepancy of lattice point set

Ud,m =

-.
2m1 ! 1
2m

, · · · , 2md ! 1
2m

/
| 1 ' mj ' m, j = 1, · · · , d

0

is O(m!1) = O
)
N!1/d

,

— Star discrepancy of N random points is O(N!12(log logN)1/2), a.s.

— Roth (1954) and Kuipers and Niederreiter (1974):

D)N > 2
!4d ((d! 1) log 2)(1!d)/2 N!1 (logN)(d!1)/2. (9.2.1)

which is much lower than the Chung-Kiefer result on randomly generated point sets.

— The Halton sequence in Id has discrepancy

DN <
d

N2
+
1

N

d1

j=1

.
pj ! 1
2 log pj

logN +
pj + 1

2

/
(9.2.4)

*
(logN)d

N
' O

)
N!1+",

— Bound not good for moderate N and large d.
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Variation and Integration

Theorem 4 The total variation of f , V (f), on [0, 1] is

V (f) = sup
n

sup
0'x0<x1<···<xn'1

n!

j=1

|f(xj)! f(xj!1)|

Theorem 5 (Koksma) If f has bounded total variation, i.e., V (f) < ", on I, and the sequence
xj & I, j = 1, · · · , N , has discrepancy D)N , then

222222
N!1

N!

j=1

f(xj)!
" 1

0

f(x) dx

222222
' D)N V (f) (9.2.5)

Can generalize variation to multivariate functions, V HK(f).

Theorem 6 (Hlawka) If V HK(f) is nite and {xj}Nj=1 # Id has discrepancy D)N , then

| 1
N

N!

j=1

f(xj)!
"

Id
f(x) dx |' V HK(f)D)N.

Product rules use lattice sets, which have discrepancy O
)
N!1/d

,
, not as good as some other sets

with discrepancy O
)
N!1+"

,
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Monte Carlo versus Quasi-Monte Carlo

Table 9.2: Integration Errors for
$
Id d

!1 #d
j=1 | 4xj ! 2 | dx

N(1000s) MC Weyl Haber Niederreiter

d = 10:
1 1(-3) 3(-4) 4(-4) 4(-4)
10 2(-4) 6(-5) 1(-3) 3(-5)
100 1(-3) 7(-6) 2(-4) 2(-6)
1000 4(-5) 6(-7) 2(-4) 2(-7)

d = 40:
1 3(-3) 4(-4) 3(-3) 2(-4)
10 3(-4) 6(-5) 1(-3) 2(-6)
100 4(-6) 5(-6) 3(-4) 9(-6)
1000 1(-4) 6(-7) 1(-5) 4(-7)
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Table 9.3: Integration Errors for
$
Id !

d
j=1

)
#
2 sin #xj

,
dx

N(1000s) MC Weyl Haber Niederreiter

d = 10:
1 1(-2) 6(-2) 8(-2) 9(-3)
10 3(-2) 8(-3) 5(-3) 5(-4)
100 9(-3) 2(-3) 1(-3) 6(-4)
1000 2(-3) 3(-5) 6(-3) 2(-4)

d = 40:
1 4(-1) 5(-1) 5(-2) 7(-1)
10 2(-1) 4(-1) 4(-1) 8(-2)
100 1(-2) 2(-1) 3(-3) 5(-2)
1000 3(-2) 2(-1) 3(-2) 4(-3)
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Fourier Analytic Methods

• Consider
$ 1
0 cos 2#x dx = 0 and its approximation N

!1#N
n=1 cos 2#xn

— Choose xn = {n$}, a Weyl sequence
— Periodicity of cosx implies cos 2#{n$} = cos 2#n$
— Periodicity of cos 2#x implies Fourier series representation

cos 2#x =
1

2
(e2#ix + e!2#ix)

— Error analysis: error is approximation, and

1
N

#N
n=1

1
2(e

2#in$ + e!2#in$)

= 1
2N

#N
n=1

)
e2#i$

,n
+ 1
2N

#N
n=1

)
e!2#i$

,n

' 1
2N

%222e
2!iN"!1
e2!i"!1

222 +
222e
!2!iN"!1
e!2!i"!1

222
(

' 1
2N

%
2

|e2!i"!1| +
2

|e!2!i"!1|

(
' C

N

(9.3.1)

for a nite C as long as e2#i$ += 1, which is true for any irrational $.

— So, convergence rate is N!1.

— (9.3.1) applies to a nite sum of e2#ikx terms; can be generalized to arbitrary Fourier series.
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• The following theorem summarizes results reported in book.

Theorem 7 Suppose, for some integer k, that f : [0, 1]d$ R satises the following two conditions:
1. All partial derivatives

%m1+ ···+mdf

%xm11 · · · %xmdd
, 0 ' mj ' k ! 1, 1 ' j ' d

exist and are of bounded variation in the sense of Hardy and Krause, and
2. All partial derivatives

%m1+ ···+mdf

%xm11 · · · %xmdd
, 0 ' mj ' k ! 2, 1 ' j ' d

are periodic on [0, 1]d.
Then, the error in integrating f & Ck with Korobov or Keast good lattice point set with sample size

N is O(N!k(lnN)kd).

• Key observation:

— If f is Ck we can nd rules with O(N!k+") convergence.

— For smooth functions, there are deterministic rules which far outperform MC

— qMC asymptotics may not kick in until N is impractically large.
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Estimating Quasi-Monte Carlo Errors

• MC rules have standard errors

• Quasi-MC rules do not have standard errors

• Add “randomization” to construct standard errors

• Suppose

— For each &,
I(f)

.
= Q(f ;&)

— For & * U [0, 1]

I(f) %
"

D

f(x) dx = E{Q(f ;&)} (9.5.1)

— Then

Î %
1

m

m!

j=1

Q(f ;&j) (9.5.2)

is an unbiased estimator of I(f) with standard error 'Î approximated by

'̂2
Î
%
#m

j=1(Q(f ;&j)! Î)
2

m! 1
(9.5.3)

• Example: Random shifts to Weyl rules, because if xj is equidistributed on [0, 1], then so is xj + &
for any random &.
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Conclusion

• All sampling methods use deterministic sequences

• Probability theory does not apply to any practical sampling scheme

• Pseudorandom schemes seem to have O
)
N!1/2

,
convergence; this is proven for LCM

• There are O
)
N!1

,
schemes for continuously di!erentiable functions - use equidistributional se-

quences

• There are O(N!k) schemes for Ck functions - use Fourier analytic schemes

• qMC methods have done well in some problems with hundreds of dimensions

• Pseudorandom sequences appear to havenite sample advantages for very high dimension problems

18


