
Dynamic Programming with Piecewise Linear

Interpolation

Kenneth Judd and Yongyang Cai

April 8, 2011

Abstract

1 Introduction

The multi-stage decision-making problems are numerically challenging. When
the problems are time-separable, dynamic programming (DP) is a popular method
to solve them. In DP problems, if state variables and control variables are con-
tinuous such that value functions are also continuous, then we have to use some
approximation for the value functions, since computers cannot model the entire
space of continuous functions. Discretization of state variables can approximate
the value functions, but it is very time consuming to get a good approxima-
tion. Polynomial or spline approximation will save much time, but computa-
tional errors may accumulate through the value function iterations. However, if
the value functions are concave and their approximation preserves the concavity,
then computational error accumulation problem could be solved, see Santos and
Vigo-Aguiar [3], and Maldonado [2].

2 Numerical Methods for DP

In DP problems, if state variables and control variables are continuous such that
value functions are also continuous, then we have to use some approximation for
the value functions, since computers cannot model the entire space of continuous
functions. We focus on using a finitely parameterizable collection of functions to
approximate value functions, V (x) ≈ V̂ (x;b), where b is a vector of parameters.
The functional form V̂ may be a linear combination of polynomials, or it may
represent a rational function or neural network representation, or it may be some

1

other parameterization specially designed for the problem. After the functional
form is fixed, we focus on finding the vector of parameters, b, such that V̂ (x;b)
approximately satisfies the Bellman equation. Numerical DP with value function
iteration can solve the Bellman equation approximately (see Judd [1]).

A general DP model is based on the Bellman equation:

Vt(x) = max
a∈D(x,t)

ut(x, a) + βE{Vt+1(x
+) | x, a},

where Vt(x) is called the value function at stage t, x+ is the next-stage state (may
be random) conditional on the current-stage state x and the action a, D(x, t) is
a feasible set of a, and ut(x, a) is the utility function at time t. The following is
the algorithm of parametric DP with value function iteration for finite horizon
problems.

Algorithm 1. Numerical Dynamic Programming with Value Function Iteration

for Finite Horizon Problems

Initialization. Choose the approximation nodes, Xt = {xit : 1 ≤ i ≤ mt} for
every t < T , and choose a functional form for V̂ (x;b). Let V̂ (x;bT) ≡
uT (x). Then for t = T − 1, T − 2, . . . , 0, iterate through steps 1 and 2.

Step 1. Maximization step. Compute

vi = max
ai∈D(xi,t)

ut(xi, ai) + βE{V̂ (x+i ;b
t+1) | xi, ai}

for each xi ∈ Xt, 1 ≤ i ≤ mt.

Step 2. Fitting step. Using an appropriate approximation method, compute the
bt such that V̂ (x;bt) approximates (xi, vi) data.

There are three main components in numerical DP: optimization, approxima-
tion, and numerical integration. In the following we focus on discussing approx-
imation and omit the introduction of optimization and numerical integration.

A linear approximation scheme consists of two parts: basis functions and ap-
proximation nodes. Approximation methods can be classified as either spectral
methods or finite element methods. A spectral method uses globally nonzero
basis functions φj(x) and defines V̂ (x; c) =

∑n
j=0 cjφj(x) to be the degree n

approximation. In our examples, we use Chebyshev polynomial interpolation,
which is a spectral method. In contrast, a finite element method uses locally
basis functions φj(x) that are nonzero over sub-domains of the approximation
domain. Examples of finite element methods include piecewise linear interpola-
tion, Schumaker interpolation, cubic splines, and B-splines. See Judd (1998), Cai
(2009), and Cai and Judd (2010) for more details.

2

Piecewise linear interpolation is a common way applied by many scholars be-
cause of its simplicity and shape-preservation. But piecewise linear interpolation
has its disadvantage: it is a challenge for optimization software to find the opti-
mal solution in the maximization step of the numerical DP algorithm, because
the approximation V̂ (x) is only continuous but not differentiate at the nodes xi.

2.1 Piecewise Linear Interpolation

If Lagrange data {(xi, vi) : i = 1, . . . ,m} is given, then its piecewise linear
interpolation is

V̂ (x) = bj,0 + bj,1x, if x ∈ [xj , xj+1],

where

bj,1 =
vj+1 − vj
xj+1 − xj

,

bj,0 = vi − bj,1xi,

for j = 1, . . . ,m− 1.
In the maximization step of numerical DP algorithms, a naive way is to let

optimization software to directly solve the maximization problem

vti = max
ai∈D(xi,t)

ut(xi, ai) + βE{V̂ (x+i ;b
t+1) | xi, ai},

where x+i is the next-stage state (may be random) conditional on the current-
stage state x and the action a. Let the transition function from state x to x+ be
given as x+ = g(x, a, z), where z is the random part to make x+ random (e.g.,
the random return R in the portfolio optimization problem).

When z is a discrete random variable, we assume that z = z1, . . . , zn with
probabilities p1, . . . , pn. When z is a continuous random variable and a numerical
quadrature formula is chosen to compute E{V̂ (x+i ;b

t+1) | xi, ai}, we assume that
its discretization is z = z1, . . . , zn with weights p1, . . . , pn. See Judd (1998) and
Cai (2009) for detailed discussion of numerical quadrature formulas.

Let {xt+1
j : j = 1, . . . ,m} be the pre-specified nodes at stage t + 1. Let

parameters bt+1 of piecewise linear interpolation be b
(t+1)
j,0 , b

(t+1)
j,1 on [xt+1

j , xt+1
j+1]

for j = 1, . . . ,m− 1. So the above model becomes

vti = max
ai∈D(xi,t),x

+

ik

ut(xi, ai) + β

n
∑

k=1

pkV̂ (x+ik;b
t+1), (1)

s.t. x+ik = g(xi, a, zk), 1 ≤ k ≤ n.

3

2.2 Min-Function Approach

Since this piecewise linear interpolation V̂ (x;bt+1) is not differentiable at the

nodes x
(t+1)
j , it will be difficult for most optimization methods to find optimal

solutions of the above model.
This challenge could be solved by modifying the problem (1) as follows:

vti = max
ai∈D(xi,t),yik,x

+

ik

ut(xi, ai) + β

n
∑

k=1

pkyik, (2)

s.t. x+ik = g(xi, a, zk), 1 ≤ k ≤ n,

yik ≤ b
(t+1)
j,0 + b

(t+1)
j,1 x+ik, 1 ≤ j < m, 1 ≤ k ≤ n.

The objective function is smooth and inequality constraints are linear and sparse
so that we can apply fast Newton type optimization algorithms to solve this
problem if g is also smooth. Although this new model adds (m − 1)n linear
inequality constraints, only several of them will be active, such that optimization
softwares can still solve the new model quickly.

Moreover, this way does not need to find the interval where x+ik locates, while
the naive way has to. It has more advantages for multi-dimensional approxima-
tion, because it is harder to find the polytope where x+ik locates.

2.3 Convex-Set Approach

Both model (1) and (2) need to calculate coefficients explicitly, and this is com-
plicated for multi-dimensional piecewise linear interpolation.

The following model has no need to compute the coefficients explicitly:

vti = max
ai∈D(xi,t),µjk≥0,yik,x

+

ik

ut(xi, ai) + β
n
∑

k=1

pkyik, (3)

s.t. x+ik = g(xi, a, zk), 1 ≤ k ≤ n,

x+ik ≤

m
∑

j=1

µjkx
(t+1)
j , 1 ≤ k ≤ n,

yik =

m
∑

j=1

µjkv
(t+1)
j , 1 ≤ k ≤ n.

m
∑

j=1

µjk = 1, 1 ≤ k ≤ n.

4

In comparison with the model (2), this model has mn more control variables
(µjk), but has many fewer constraints (not counting box constraints for control
variables).

Since this model does not need values of b(t+1), it saves the hard fitting
step for multi-dimensional piecewise linear interpolation. Moreover, in multi-
dimensional cases this model will preserve concavity of value functions, but the
other two models can only at great cost. The disadvantage of this model is that
it may be slower.

3 Example for Multi-stage Portfolio Optimization Prob-

lems

We illustrate our methods with a multi-stage portfolio optimization problem.
Let Wt be an amount of money planned to be invested at stage t. Assume that
available assets for trading are n stocks and a bond, where the stocks have a
random return vector R = (R1, . . . , Rn) and the bond has a riskfree return Rf

for each period. If St = (St1, . . . , Stn)
⊤ is a vector of money invested in the n

risky assets at time t, then money invested in the riskless asset is Bt = Wt−e⊤St,
where e is a column vector of 1s. Thus, the wealth at the next stage is

Wt+1 = Rf (Wt − e⊤St) +R⊤St, (4)

for t = 0, 1, . . . , T − 1.
A simple multi-stage portfolio optimization problem is to find an optimal

portfolio St at each stage t such that we have a maximal expected terminal
utility, i.e.,

V0(W0) = max
Xt,0≤t<T

E{u(WT)},

where WT is the terminal wealth derived from the recursive formula (4) with a
given W0, and u is the terminal utility function, and E{·} is the expectation
operator.

The DP model of this multi-stage portfolio optimization problem is

Vt(W) = max
S

E{Vt+1(Rf (W − e⊤S) +R⊤S)},

for t = 0, 1, . . . , T −1, where W is the state variable and S is the control variable
vector, and the terminal value function is VT (W) = u(W).

In the portfolio optimization problem, if we discretize the random returns of
n stocks as R = R(j) = (R1,j, . . . , Rn,j) with probability pj for 1 ≤ j ≤ m, then

5

it becomes a tree model:

max
mT
∑

k=1

PT,ku(WT,k),

where
Pt+1,k = Pt,(k−1)/m+1p(k mod m)+1, P0,j = 1,

and

Wt+1,k = Wt,(k−1)/m+1(RfBt,(k−1)/m+1 +
n
∑

i=1

Ri,(k mod m)+1Si,t,(k−1)/m+1),

for 1 ≤ k ≤ mt+1 and 0 ≤ t < T .
The disadvantage of the tree method is that whenm or T is large, the problem

size will exponentially increase and it will be a big challenge for an optimizer to
find an accurate solution.

This numerical example assumes that there are one stock and one bond avail-
able for investment , the number of periods is T = 6, the bond has a riskfree
return Rf = 1.04, and the stock has a discrete random return

R =

{

0.9, with probability 1/2,

1.4, with probability 1/2.

Let the range of initial wealth W0 as [0.9, 1.1]. The terminal utility function is

u(W) = −(W − 0.2)−1

so that the terminal wealth should be always bigger than 0.2. Moreover, we
assume that borrowing or shorting is not allowed in this example, i.e., Bt ≥ 0
and St ≥ 0 for all t.

Since this example is not large for the above tree model, the exact optimal
allocations can be calculated by the tree model and MINOS optimization package
(Murtagh and Saunders (1978)) in AMPL code. Figure 1 shows the optimal bond
allocation Bt and stock allocation St, for t = 0, 1, . . . , 5. Note that the ranges of
wealth are expanding over t. Since we do not allow shorting or borrowing and R
is bounded in this example, the ranges [W t,W t] can be computed in an iterative
way:

W t+1 = min(R)W t = 0.9W t,

W t+1 = max(R)W̄t = 1.4W t,

where W 0 = 0.9 and W 0 = 1.1.

6

0.8 1 1.2

0.09

0.095

0.1

bond at stage t=0

0.8 1 1.2

0.8

0.85

0.9

0.95

1

stock at stage t=0

0.8 1 1.2 1.4 1.6
0.06

0.07

0.08

0.09

0.1

0.11

0.12

bond at stage t=1

0.8 1 1.2 1.4 1.6

0.8

1

1.2

1.4

stock at stage t=1

1 1.5 2

0.02

0.04

0.06

0.08

0.1

0.12

0.14
bond at stage t=2

1 1.5 2
0.5

1

1.5

2

stock at stage t=2

1 2 3

0

0.05

0.1

0.15

bond at stage t=3

1 2 3

0.5

1

1.5

2

2.5

3

stock at stage t=3

1 2 3 4

0

0.05

0.1

0.15

bond at stage t=4

1 2 3 4

1

2

3

4

stock at stage t=4

2 4 6

0

0.05

0.1

0.15

bond at stage t=5

2 4 6
0

1

2

3

4

5

6

stock at stage t=5

Figure 1: Exact optimal allocation and value functions

7

After obtaining these exact optimal allocations, we use them to test our
algorithms’ accuracy. The computational results of numerical DP algorithms are
given by our Fortran code using NPSOL (see Gill, Murray, Saunders and Wright
(1994)). And the ranges [W t,W t] are given in the previous iterative way.

We ran numerical DP algorithm with piecewise linear interpolation on 100
equally spaced nodes using model (1), (2) and (3) respectively. Figure 2 shows
relative errors of the computed optimal stock allocations by the algorithms in
comparison with the exact solutions. We omit the figure of relative errors of
model (3) using the convex-set approach, because its errors are almost the same
with the model (2) using the min-function approach. We see that the min-
function approach really helps to improve the accuracy of the solutions.

8

0.9 0.95 1 1.05 1.1

0

0.02

0.04

0.06

0.08

0.1

Wealth
0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Wealth

Errors of S0 Errors of S1

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Wealth
0.5 1 1.5 2 2.5 3

0

0.05

0.1

0.15

0.2

0.25

Wealth

Errors of S2 Errors of S3

 Errors by Piecewise
 Linear Interpolation

 Errors by Min−Function
 Approach

Figure 2: Relative Errors of Optimal Stock Allocations from Numerical DP with
Piecewise Linear Interpolation vs Min-Function Approach

9

References

[1] Kenneth Judd. Numerical Methods in Economics. The MIT Press, 1998.

[2] Wilfredo Leiva Maldonado and Benar Fux Svaiter. On the accuracy of the
estimated policy function using the Bellman contraction method. Economics

Bulletin, 3(15):1–8, 2001.

[3] Manuel S. Santos and Jesus Vigo-Aguiar. Analysis of a numerical dy-
namic programming algorithm applied to economic models. Econometrica,
66(2):409–426, 1998.

10

