
Shape-Preserving Dynamic Programming

Kenneth Judd and Yongyang Cai

April 7, 2011

Abstract

1 Introduction

The multi-stage decision-making problems are numerically challenging. When
the problems are time-separable, dynamic programming (DP) is a popular method
to solve them. In DP problems, if state variables and control variables are con-
tinuous such that value functions are also continuous, then we have to use some
approximation for the value functions, since computers cannot model the entire
space of continuous functions. Discretization of state variables can approximate
the value functions, but it is very time consuming to get a good approxima-
tion. Polynomial or spline approximation will save much time, but computa-
tional errors may accumulate through the value function iterations. However, if
the value functions are concave and their approximation preserves the concavity,
then computational error accumulation problem could be solved, see Santos and
Vigo-Aguiar (1998), and Maldonado and Svaiter (2001).

In this paper, we present a shape-preserving DP algorithm with value func-
tion iteration for solving the discrete-time decision-making problems with con-
tinuous states. The paper is constructed as follows. Section 2 introduces the
parametric DP algorithm and describes numerical methods in the algorithm.
Section 3 presents the shape-preserving DP algorithm with value function iter-
ation. Section 4 discusses the method to compute slopes of value functions and
uses the Hermite information to get a closer and better approximation. Section
5 and Section 6 give some numerical examples for optimal growth problems and
multi-stage portfolio optimization problems respectively to show the power of the
shape-preserving DP.

1

2 Numerical Methods for DP

In DP problems, if state variables and control variables are continuous such that
value functions are also continuous, then we have to use some approximation for
the value functions, since computers cannot model the entire space of continuous
functions. We focus on using a finitely parameterizable collection of functions to
approximate value functions, V (x) ≈ V̂ (x;b), where b is a vector of parameters.
The functional form V̂ may be a linear combination of polynomials, or it may
represent a rational function or neural network representation, or it may be some
other parameterization specially designed for the problem. After the functional
form is fixed, we focus on finding the vector of parameters, b, such that V̂ (x;b)
approximately satisfies the Bellman equation. Numerical DP with value function
iteration can solve the Bellman equation approximately (see Judd (1998)).

A general DP model is based on the Bellman equation:

Vt(x) = max
a∈D(x,t)

ut(x, a) + βE{Vt+1(x
+) | x, a},

s.t. x+ = g(x, a),

where Vt(x) is called the value function at stage t, x+ is the next-stage state (may
be random) conditional on the current-stage state x and the action a, D(x, t) is
a feasible set of a, and ut(x, a) is the utility function at time t. The following is
the algorithm of parametric DP with value function iteration for finite horizon
problems.

Algorithm 1. Numerical Dynamic Programming with Value Function Iteration
for Finite Horizon Problems

Initialization. Choose the approximation nodes, Xt = {xit : 1 ≤ i ≤ mt} for
every t < T , and choose a functional form for V̂ (x;b). Let V̂ (x;bT) ≡
uT (x). Then for t = T − 1, T − 2, . . . , 0, iterate through steps 1 and 2.

Step 1. Maximization step. Compute

vi = max
ai∈D(xi,t)

ut(xi, ai) + βE{V̂ (x+i ;b
t+1) | xi, ai}

s.t. x+i = g(xi, ai),

for each xi ∈ Xt, 1 ≤ i ≤ mt.

Step 2. Fitting step. Using an appropriate approximation method, compute the
bt such that V̂ (x;bt) approximates (xi, vi) data.

2

There are three main components in numerical DP: optimization, approxima-
tion, and numerical integration. In the following we focus on discussing approx-
imation and omit the introduction of optimization and numerical integration.

A linear approximation scheme consists of two parts: basis functions and ap-
proximation nodes. Approximation methods can be classified as either spectral
methods or finite element methods. A spectral method uses globally nonzero
basis functions φj(x) and defines V̂ (x; c) =

∑n
j=0 cjφj(x) to be the degree n

approximation. In our examples, we use Chebyshev polynomial interpolation,
which is a spectral method. In contrast, a finite element method uses locally
basis functions φj(x) that are nonzero over sub-domains of the approximation
domain. Examples of finite element methods include piecewise linear interpola-
tion, Schumaker interpolation, cubic splines, and B-splines. See Judd (1998), Cai
(2009), and Cai and Judd (2010) for more details.

Piecewise linear interpolation is a common way applied by many scholars be-
cause of its simplicity and shape-preservation. But piecewise linear interpolation
has its disadvantage: it is a challenge for optimization software to find the opti-
mal solution in the maximization step of the numerical DP algorithm, because
the approximation V̂ (x) is only continuous but not differentiate at the nodes xi.

Here we give a brief introduction of Chebyshev polynomials. Chebyshev ba-
sis polynomials on [−1, 1] are defined as Tj(x) = cos(j cos−1(x)), while general
Chebyshev basis polynomials on [a, b] are defined as Tj((2x− a− b)/(b− a)) for
j = 0, 1, 2, The degree n Chebyshev polynomial approximation for V (x) is

V̂ (x; c) =
∑

0≤|α|≤n

cαTα (x) ,

where |α| denotes
∑d

i=1 αi for the nonnegative integer vector α = (α1, . . . , αd).
With a set of Chebyshev nodes xi and the Lagrange data set {(xi, vi) : i =
1, . . . ,m}, the coefficients cα can be calculated easily by Chebyshev regression
algorithm

3 Shape-preserving DP

In economics and finance, many DP models have the monotone and/or con-
cave/convex value functions such that objective functions in their optimiza-
tion models preserve the shape property theoretically. So if we can have the
shape-preserving value function approximation in the fitting step, then it will
be very helpful to get good optimal solutions as the local optimizer will be also
the global optimizer for convex optimization problems. Discretization method
and piecewise linear interpolation method preserve the shape property. Another

3

shape-preserving method is the so-called Schumaker shape-preserving interpola-
tion method (Schumaker (1983)). A revised version of Schumaker interpolation
is given in Cai (2009) and Cai and Judd (2011). Fiorot and Tabka (1991), and
Steven Pruess (1993) gave some other shape-preserving splines approximation
methods. Judd and Solnick (1994) discussed some theoretical properties of the
shape-preserving splines in numerical DP and applied them in optimal growth
problems. Wang and Judd (2000) applied a bivariate shape-preserving spline in-
terpolation method in numerical DP to solve a savings allocation problem. Here
we will extend them to a more general shape-preserving approximation method
and its application in numerical DP.

3.1 Shape Correction and Preserving

For a univariate approximation problem, Schumaker interpolation method pre-
serves the shape properties including monotonicity and concavity. But many ap-
proximation methods such as Chebyshev approximation do not have the shape-
preserving property. Moreover, we also need a shape-preseving approximation
method for a general multivariate problem. So we can use least-squares ap-
proximation with shape constraints to guarantee the shape-preservation. For
example, if we know that the value function is strictly increasing and concave,
then we could try to find the optimal parameters b in the following model:

min
b

m
∑

i=1

(

V̂ (xi;b)− vi

)2

s.t. V̂ ′(yj;b) > 0, j = 1, . . . ,m′,

V̂ ′′(yj;b) < 0, j = 1, . . . ,m′,

with a sufficiently dense set of points yj to check shape. Sometimes the shape
constraints may bind, which is not desirable. In this case, we use more basis
functions in the approximation until the shape constraints do not bind.

Before doing the shape-preserving fitting, we should modify the values of vi
such that the discrete set of vi have the same properties of value function. For
example, if value function is strictly increasing, then we should have vi < vj
when xi < xj, which can not be guaranteed by the optimization solvers due to
the numerical errors (e.g., the optimization solver returns a local optimizer which
is not global). This step is called shape correction.

3.2 Shape-preserving Chebyshev Approximation

One problem for Chebyshev approximation is the absence of shape-preservation
in the algorithm. To solve this, one way is to modify the Chebyshev coefficients

4

such that the concavity and monotonicity of the value function can be preserved
at the interpolation nodes. That is, we could solve the following new least-squares
problem which has a quadratic objective and linear inequality constraints:

min
cj

m
∑

i=1

1

2
c0 +

n
∑

j=1

cjTj (zi)− vi

2

s.t.

n
∑

j=1

cjT
′
j (yi) > 0, i = 1, . . . ,m′,

n
∑

j=1

cjT
′′
j (yi) < 0, i = 1, . . . ,m′,

for a degree-n Chebyshev approximation, where zi =
2xi−a−b

b−a (i = 1, . . . ,m) are
the Chebyshev nodes in [−1, 1], and yi (i = 1, . . . ,m′) are chosen nodes in [−1, 1]
for shape-preserving constraints. In our numerical examples in Section 5, we
choose m′ = m and yi = zi for i = 1, . . . ,m.

We can use the following recursive formula to evaluate Tj(yi), T ′
j(yi) and

T ′′
j (yi) for i = 1, . . . ,m′:

T0(y) = 1,

T1(y) = y,

Tj+1(y) = 2yTj(y)− Tj−1(y), j = 1, 2, . . . ,

and

T ′
0(y) = 0,

T ′
1(y) = 1,

T ′
j+1(y) = 2Tj(y) + 2yT ′

j(y)− T ′
j−1(y), j = 1, 2, . . . ,

and

T ′′
0 (y) = 0,

T ′′
1 (y) = 0,

T ′′
j+1(y) = 4T ′

j(y) + 2yT ′′
j (y)− T ′′

j−1(y), j = 1, 2,

4 Shape-preserving Hermite Interpolation in DP

Cai and Judd (2011) introduces an easy and computation-free way to get slopes
of value functions at nodes in DP, and then uses the Hermite data in shape-
preserving Schumaker interpolation to produce a more accurate approximation

5

such that the solution given by numerical DP methods are better than those
without using slope information. The basic idea to compute slopes of value
function is based on the envelope theorem discussed in the following.

4.1 Envelope Theorem

The conventional DP algorithm uses the maximization step to compute

vi = Vt(xi) = max
ai∈D(xi,t)

ut(xi, ai) + βE{Vt+1(x
+
i) | xi, ai},

s.t. x+i = g(xi, ai),

for each pre-specified node xi, i = 1, . . . ,m. Then it applies the Lagrange data
set {(xi, vi) : i = 1, . . . ,m} in the fitting step to construct the approximated
value function V̂t(x). If the fitting step uses a Hermite interpolation method
requiring slope information at nodes xi of Vt(x), such as Schumaker interpolation
method, then it seems that we have to estimate the slopes, si, by use of finite
difference methods. But if we can get the slope information directly, then it
will save computation time and make the function approximation more accurate,
such that the numerical DP algorithm with Hermite interpolation will be more
efficient and accurate.

The following lemma tells us how to calculate the first derivative of a function
which is defined by a maximization operator.

Lemma 1. Let

V (x) = max
y

f(x, y) (1)

s.t. g(x, y) = 0.

Suppose that y∗(x) is the optimizer of (1), and that λ∗(x) is the corresponding
shadow price vector. Then

∂V (x)

∂x
=

∂f

∂x
(x, y∗(x)) + λ∗(x)⊤

∂g

∂x
(x, y∗(x)). (2)

Thus, it is not necessary to compute ∂y∗(x)/∂x term in order to get ∂V (x)/∂x.
The shadow price vector could be reported by optimization packages, so we do
not need to calculate it by ourselves.

Note that some optimization packages may report −λ∗(x) as their shadow
price vector, we should adapt it in the formula to compute ∂V (x)/∂x. In the
above lemma, we are assuming that the Lagrange function of the model (1) is

L(y, λ;x) = f(x, y) + λ(x)g(x, y),

6

such that λ∗(x) is the corresponding shadow price vector, so we can use the
formula 2 to compute ∂V (x)/∂x . However, if one optimization package define
the Lagrange function as

L(y, λ;x) = f(x, y)− λ(x)g(x, y),

and still call λ(x) as its shadow price, then we should adapt the formula 2 into
the following formula:

∂V (x)

∂x
=

∂f

∂x
(x, y∗(x))− λ∗(x)⊤

∂g

∂x
(x, y∗(x)),

where λ∗(x) is the corresponding shadow price defined in the optimization pack-
age.

Lemma 1 only gives the formula to compute ∂V (x)/∂x while there are only
equality constraints. But an optimization model often has bound constraints for
control variables and other inequality constrains. If some inequality constraints,
h(x, y) ≥ 0, are added into the model (1), one way is to simply add a slack
variable s to transform the inequality constraints into equality constraints, i.e.,
h(x, y) − s = 0 with s ≥ 0, then use the above lemma to compute ∂V (x)/∂x,
as the constraint s ≥ 0 is not directly related with x. We assume that the
corresponding Lagrange function is

L(y, λ, µ, τ ;x) = f(x, y) + λ(x)g(x, y) + µ(x)(h(x, y) − s) + τ(x)s,

where λ(x), µ(x) and τ(x) are respectively the corresponding shadow price vec-
tors of g(x, y) = 0, h(x, y) − s = 0 and s ≥ 0. Then the formula to compute
∂V (x)/∂x is

∂V (x)

∂x
=

∂f

∂x
(x, y∗(x)) + λ∗(x)⊤

∂g

∂x
(x, y∗(x)) + µ∗(x)⊤

∂h

∂x
(x, y∗(x)).

In the above formula, we have to calculate the gradient of objective function
and constraint functions. However, when the objective function or constraint
functions are very complicated, it is not simple to get their gradients. Moreover,
when there are many constraints, it may be painful to get an explicit formula to
compute ∂V (x)/∂x.

In fact, no matter how many constraints there are, or how much complicated
the objective or constraints are, there is a direct and simple way to solve the
headache and then compute the slopes, ∂V (x)/∂x, in a very simple and clean
formula, by only adding one trivial control variable and one trivial constraint
and simply substituting x by the trivial control variable in the objective and
contraints.

7

Theorem 1. (Envelope theorem) For an optimization problem,

V (x) = max
y

f(x, y)

s.t. g(x, y) = 0,

h(x, y) ≥ 0,

we can modify it as

V (x) = max
y,z

f(z, y) (3)

s.t. g(z, y) = 0,

h(z, y) ≥ 0,

x− z = 0,

by adding a trivial control variable z and a trivial constraint x−z = 0. Therefore,

∂V (x)

∂x
= λ∗(x),

where λ∗(x) is the corresponding shadow price vector of the trivial constraint
x− z = 0.

The theorem is directly followed by Lemma 1. In the theorem, we assume
that the Lagrange function of the model (3) is

L(y, λ, µ, τ ;x) = f(z, y) + λ(x)g(z, y) + µ(x)h(z, y) + τ(x)(x− z),

where λ(x), µ(x) and τ(x) are respectively the corresponding shadow price vec-
tors of g(z, y) = 0, h(z, y) ≥ 0 and x−z = 0. Note that we only need the shadow
price vector of the trivial constraint x− z = 0 to get ∂V (x)/∂x, we do not need
to know the gradients of the objective function or other constraint functions, and
we also do not need to know the shadow prices of other constraints except the
trivial constraint x− z = 0.

Thus, we can apply Lemma 1 or Envelope theorem 1 in the DP model, so that
all slopes can be obtained easily and directly from the maximization step of the
DP algorithm to construct an approximation method with Hermite information.

4.2 Shape-preserving Rational Function Spline Interpolation

The slope information can be used in the shape-preserving Schumaker interpo-
lation or Chebyshev interpolation with Hermite information, so that numerical
DP methods with Hermite interpolation is more efficient and more accurate than

8

those without Hermite interpolation, see Cai and Judd (2011). Here we intro-
duce a shape-preserving rational function spline interpolation on Hermite data
{xi, vi, si : i = 1, . . . ,m}:

V̂ (x; c) = ci1 + ci2(x− xi) +
ci3ci4(x− xi)(x− xi+1)

ci3(x− xi) + ci4(x− xi+1)
, when x ∈ [xi, xi+1],

where

ci1 = vi,

ci2 =
vi+1 − vi
xi+1 − xi

,

ci3 = si − ci2,

ci4 = si+1 − ci2,

for i = 1, . . . ,m− 1.
We can verify that V̂ (x; c) is in C∞. Moreover, when x ∈ (xi, xi+1), if the

value function is increasing and concave, i.e., si > ci2 > si+1 > 0, then from
ci3 = si − ci2 > 0 and ci4 = si+1 − ci2 < 0, we have

V̂ ′(x; c) = ci2 +
ci3ci4(ci3(x− xi)

2 + ci4(x− xi+1)
2)

(ci3(x− xi) + ci4(x− xi+1))2

=
si+1c

2
i3(x− xi)

2 + sic
2
i4(x− xi+1)

2 + 2ci2ci3ci4(x− xi)(x− xi+1)

(ci3(x− xi) + ci4(x− xi+1))2

> 0,

V̂ ′′(x; c) =
−2c2i3c

2
i4(xi+1 − xi)

2

(ci3(x− xi) + ci4(x− xi+1))3
< 0.

That is, the rational function spline interpolation is also increasing and concave
in each (xi, xi+1).

Our numerical examples show that the rational function spline interpolation
performs very well in DP.

5 Examples for Optimal Growth Problems

We first illustrate our methods with a discrete-time optimal growth problem with
one good and one capital stock. It is to find the optimal consumption function
and the optimal labor supply function such that the total utility over the T -

9

horizon time is maximal, i.e.,

V0(k0) = max
c,l

T−1
∑

t=0

βtu(ct, lt) + βTuT (kT), (4)

s.t. kt+1 = F (kt, lt)− ct, 0 ≤ t < T,

where kt is the capital stock at time t with k0 given, ct is the consumption, lt
is the labor supply, β is the discount factor, F (k, l) = k + f(k, l) with f(kt, lt)
the aggregate net production function, and u(ct, lt) is the utility function, and T
could be finite or infinite. This objective function is time-separable.

The DP version of the discrete-time optimal growth problem is

Vt(k) = max
c,l

u(c, l) + βVt+1(F (k, l) − c), (5)

which is the Bellman (1957) equation. Here k is the state variable and (c, l) are
the control variables, and VT (k) = uT (k).

In the infinite horizon optimal growth problem 5 (T = ∞), there is a steady
state kss and its corresponding optimal control variables (css, lss) satisfying the
following equations:

kss = F (kss, lss)− css,
ul(css, lss) + uc(css, lss)Fl(kss, lss) = 0,
βFk(kss, lss) = 1.

(6)

By solving the above equations, we can get the exact solution and value at the
steady states, but not at other states. We will use them as indicators for accuracy
of numerical DP algorithms for the infinite horizon optimal growth problem.

We use two numerical examples of the infinite horizon optimal growth model
to illustrate the importance of the shape-preserving property. In the following
examples, we let α = 0.25, β = 0.9, A = (1− β)/(αβ) = 4/9, u(c, l) = c1−γ/(1−
γ)−Bl1+η/(1+ η) with B = (1−α)A1−γ . According to the system of equations
(6), we know that the steady state is k∗ = 1 while the corresponding optimal
labor is l∗ = 1 and optimal consumption is c∗ = f(k∗, l∗) = 0.444. Moreover,
V (k∗) = u(c∗, l∗)/(1− β).

5.1 Example 1

In the first example, we let γ = 4 and η = 1, then the value at the steady state
is V (k∗) = −80.6836.

Let the range of k be chosen as [0.1, 2]. We use the value function iteration
method. The initial guess of the value function is 0 everywhere. The stopping

10

rule for the infinite horizon variant of numerical DP algorithm is

max
k

|V̂n+1(k)− V̂n(k)|

1 + |V̂n(k)|
< 10−6.

The optimization solver is chosen as KNITRO (see Byrd, Nocedal and Waltz
(2006)) and the program code is written in AMPL. The approximation method
is chosen as the degree-40 Chebyshev polynomial interpolation method with 41
Chebyshev nodes.

At first, we try the standard Chebyshev polynomial interpolation method
without shape constraints. After 634 iterations, the value function iteration
method converges. When the capital state is k∗ = 1, the corresponding computed
optimal l̂∗ = 3.08035, ĉ∗ = 0.241709 and V̂ (1) = −74.0949. All of these are far
away from the exact optimal labor, consumption and value at the steady state.
The approximated optimal control functions and value functions are shown with
dashed lines in Figure 1. We see that all three functions have many large wiggles.

Next, we try the shape-preserving Chebyshev polynomial approximation method
with positive gradient and negative Hessian constraints. The value function it-
eration method converges at the 78-th step. When the capital state is k∗ = 1,
the corresponding computed optimal l̂∗ = 0.999998, ĉ∗ = 0.444445 and V̂ (1) =
−80.6836. All of these are very close to the exact optimal labor, consumption
and value at the steady state. The approximated optimal control functions and
value functions are shown with solid lines in Figure 1. We see that all three
functions are smooth, monotone and concave.

5.2 Example 2

In this example, we let γ = 7 and η = 1, then the value at the steady state is
V (k∗) = −702.7927.

Let the range of k be chosen as [0.1, 10]. We use the value function iteration
method. The initial guess of the value function is 0 everywhere. The stopping
rule for the DP method is ‖Vn+1−Vn‖ < 10−6. The optimization solver is chosen
as NPSOL (see Gill, Murray, Saunders and Wright (1994)), and the program code
is written in Fortran.

For the approximation step of the value function iteration method, we try
the following four ways respectively: (1) the standard degree-19 Chebyshev poly-
nomial interpolation method with 20 Chebyshev nodes; (2) order-4 B-splines
method with 60 equally spaced nodes in [0.1, 10]; (3) the shape-preserving degree-
19 Chebyshev polynomial approximation method with positive gradient and neg-
ative Hessian constraints, while the number of Chebyshev nodes is 20; (4) the

11

0 0.5 1 1.5 2
0

1

2

3
optimal labor supply

0 0.5 1 1.5 2
0.2

0.4

0.6

0.8

1

1.2
optimal consumption

0 0.5 1 1.5 2
−150

−100

−50

0
value function

Converged solutions
given by VFI with
ordinary degree−40
Chebyshev approximation
Converged solutions
given by VFI with shape−
preserving degree−40
Chebyshev approximation
steady states

Figure 1: Example 1 of Numerical DP w/o shape-preserving approximation

revised Schumaker shape-preserving interpolation with 60 equally spaced nodes
in [0.1, 10];

Our results show that the value function iteration with either of the first two
approximation methods diverges. However, the value function iteration with
either of the last two shape-preserving approximation converges at the 133-
rd step, their approximated optimal control functions and value functions are
shown in Figure 2. We see that two converged value functions and the cor-
responding optimal control functions are very close to each other, and all the
functions are smooth, monotone and concave. Moreover, when the capital state
is k∗ = 1, from the VFI with the shape-preserving Chebyshev polynomial approx-
imation, the corresponding computed optimal l̂∗C = 1.00388, ĉ∗C = 0.44414 and

V̂ (1)C = −694.7552. From the VFI with revised Schumaker shape-preserving
interpolation, the corresponding computed optimal l̂∗S = 0.98826, ĉ∗S = 0.44538

and V̂ (1)C = −702.7005. All of these are very close to the exact optimal labor,
consumption and value at the steady state.

12

0 5 10
0.2

0.3

0.4

0.5

0.6

0.7
optimal consumption

0 5 10
0

1

2

3
optimal labor supply

0 5 10
−1500

−1000

−500

0
value function

solutions given by
shape−preserving
degree−19 Chebyshev
approximation
solutions given by
Schumaker shape−
preserving interpolation
with 60 nodes
steady states

Figure 2: Example 2 of Numerical DP with shape-preserving approximation

6 Example for Multi-stage Portfolio Optimization Prob-

lems

We also illustrate our methods with a multi-stage portfolio optimization problem.
Let Wt be an amount of money planned to be invested at stage t. Assume that
available assets for trading are n stocks and a bond, where the stocks have a
random return vector R = (R1, . . . , Rn) and the bond has a riskfree return Rf

for each period. If St = (St1, . . . , Stn)
⊤ is a vector of money invested in the n

risky assets at time t, then money invested in the riskless asset is Bt = Wt−e⊤St,
where e is a column vector of 1s. Thus, the wealth at the next stage is

Wt+1 = Rf (Wt − e⊤St) +R⊤St, (7)

for t = 0, 1, . . . , T − 1.
A simple multi-stage portfolio optimization problem is to find an optimal

portfolio St at each stage t such that we have a maximal expected terminal

13

utility, i.e.,
V0(W0) = max

Xt,0≤t<T
E{u(WT)},

where WT is the terminal wealth derived from the recursive formula (7) with a
given W0, and u is the terminal utility function, and E{·} is the expectation
operator.

The DP model of this multi-stage portfolio optimization problem is

Vt(W) = max
S

E{Vt+1(Rf (W − e⊤S) +R⊤S)},

for t = 0, 1, . . . , T −1, where W is the state variable and S is the control variable
vector, and the terminal value function is VT (W) = u(W).

In the portfolio optimization problem, if we discretize the random returns of
n stocks as R = R(j) = (R1,j, . . . , Rn,j) with probability pj for 1 ≤ j ≤ m, then
it becomes a tree model:

max
mT
∑

k=1

PT,ku(WT,k),

where
Pt+1,k = Pt,(k−1)/m+1p(k mod m)+1, P0,j = 1,

and

Wt+1,k = Wt,(k−1)/m+1(RfBt,(k−1)/m+1 +

n
∑

i=1

Ri,(k mod m)+1Si,t,(k−1)/m+1),

for 1 ≤ k ≤ mt+1 and 0 ≤ t < T .
The disadvantage of the tree method is that whenm or T is large, the problem

size will exponentially increase and it will be a big challenge for an optimizer to
find an accurate solution.

This numerical example assumes that there are one stock and one bond avail-
able for investment , the number of periods is T = 6, the bond has a riskfree
return Rf = 1.04, and the stock has a discrete random return

R =

{

0.9, with probability 1/2,

1.4, with probability 1/2.

Let the range of initial wealth W0 as [0.9, 1.1]. The terminal utility function is

u(W) = −(W − 0.2)−1

14

so that the terminal wealth should be always bigger than 0.2. Moreover, we
assume that borrowing or shorting is not allowed in this example, i.e., Bt ≥ 0
and St ≥ 0 for all t.

Since this example is not large for the above tree model, the exact optimal
allocations can be calculated by the tree model and MINOS optimization package
(Murtagh and Saunders (1978)) in AMPL code. Figure 3 shows the optimal bond
allocation Bt and stock allocation St, for t = 0, 1, . . . , 5. Note that the ranges of
wealth are expanding over t. Since we do not allow shorting or borrowing and R
is bounded in this example, the ranges [W t,W t] can be computed in an iterative
way:

W t+1 = min(R)W t = 0.9W t,

W t+1 = max(R)W̄t = 1.4W t,

where W 0 = 0.9 and W 0 = 1.1.
After obtaining these exact optimal allocations, we use them to test our

algorithms’ accuracy. The computational results of numerical DP algorithms
are given by our AMPL code using MINOS optimization package (Murtagh and
Saunders (1978)). And the ranges [W t,W t] are given in the previous iterative
way. Figure 4 shows the accuracy of rational function spline interpolation.

7 Conclusion

This paper presents a general shape-preserving DP algorithm and shows that
shape-preserving property of the value function approximation is critical in con-
vergence of the iteration methods and obtaining good solutions from numerical
dynamic programming.

15

0.8 1 1.2

0.09

0.095

0.1

bond at stage t=0

0.8 1 1.2

0.8

0.85

0.9

0.95

1

stock at stage t=0

0.8 1 1.2 1.4 1.6
0.06

0.07

0.08

0.09

0.1

0.11

0.12

bond at stage t=1

0.8 1 1.2 1.4 1.6

0.8

1

1.2

1.4

stock at stage t=1

1 1.5 2

0.02

0.04

0.06

0.08

0.1

0.12

0.14
bond at stage t=2

1 1.5 2
0.5

1

1.5

2

stock at stage t=2

1 2 3

0

0.05

0.1

0.15

bond at stage t=3

1 2 3

0.5

1

1.5

2

2.5

3

stock at stage t=3

1 2 3 4

0

0.05

0.1

0.15

bond at stage t=4

1 2 3 4

1

2

3

4

stock at stage t=4

2 4 6

0

0.05

0.1

0.15

bond at stage t=5

2 4 6
0

1

2

3

4

5

6

stock at stage t=5

Figure 3: Exact optimal allocation and value functions

16

0.9 0.95 1 1.05 1.1

−7

−6.8

−6.6

−6.4

−6.2

−6

−5.8

−5.6

−5.4

−5.2

−5

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

−7

−6.8

−6.6

−6.4

−6.2

−6

−5.8

−5.6

−5.4

−5.2

−5

log10 (errors) of S0 log10 (errors) of S1

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

−7

−6.8

−6.6

−6.4

−6.2

−6

−5.8

−5.6

−5.4

−5.2

−5

0.5 1 1.5 2 2.5 3

−7

−6.5

−6

−5.5

−5

−4.5

log10 (errors) of S2 log10 (errors) of S3

0.5 1 1.5 2 2.5 3 3.5 4 4.5

−7

−6.5

−6

−5.5

−5

−4.5

−4

−3.5

log10 (errors) of S4

Figure 4: Relative Errors of Optimal Stock Allocations from Numerical DP with
Rational Function Spline Interpolation

17

References

[1] Bellman, Richard (1957). Dynamic Programming. Princeton University Press.

[2] Byrd, Richard H., and Jorge Nocedal and Richard A. Waltz (2006). “KNI-
TRO: an integrated package for nonlinear optimization”.

[3] Cai, Yongyang (2009). Dynamic Programming and Its Application in Eco-
nomics and Finance. PhD thesis, Stanford University.

[4] Cai, Yongyang, and Kenneth Judd (2010). “Stable and efficient computa-
tional methods for dynamic programming”. Journal of the European Economic
Association, Vol. 8, No. 2-3, 626–634.

[5] Cai, Yongyang, and Kenneth Judd (2011). “Dynamic programming with Her-
mite information”.

[6] Fiorot, J.C., and J. Tabka (1991). “Shape-preserving C2 cubic polynomial
interpolating splines”. Mathematics of Computation, 57(195), 291–298.

[7] Gill, Philip, Walter Murray, Michael Saunders, and Margaret Wright (1994).
“Users Guide for NPSOL 5.0: a Fortran Package for Nonlinear Programming”.
Technical report, SOL, Stanford University.

[8] Gill, Philip, Walter Murray, and Michael Saunders (2005). “SNOPT: An SQP
algorithm for largescale constrained optimization”. SIAM Review, 47(1), 99–
131.

[9] Judd, Kenneth (1998). Numerical Methods in Economics. The MIT Press.

[10] Judd, Kenneth, and Andrew Solnick (1994). “Numerical dynamic program-
ming with shape-preserving splines”.

[11] Maldonado, Wilfredo L., and Benar Fux Svaiter (2001). “On the accuracy
of the estimated policy function using the Bellman contraction method”. Eco-
nomics Bulletin, 3(15), 1–8.

[12] Murtagh, Bruce, and Michael Saunders (1978). “Large-scale linearly con-
strained optimization”. Mathematical Programming, 14, 41–72.

[13] Pruess, Steven (1993). “Shape-preserving C2 cubic spline interpolation”.
IMA Journal of Numerical Analysis, 13, 493–507.

[14] Rust, John (2008). “Dynamic Programming”. In: New Palgrave Dictionary
of Economics, ed. by Steven N. Durlauf and Lawrence E. Blume. Palgrave
Macmillan, second edition.

18

[15] Santos, Manuel S., and Jesus Vigo-Aguiar (1998). “Analysis of a numerical
dynamic programming algorithm applied to economic models”. Econometrica,
66(2), 409426.

[16] Schumaker, Larry (1983). “On Shape-Preserving Quadratic Spline Interpo-
lation”. SIAM Journal of Numerical Analysis, 20, 854–864.

[17] Wang, Sheng-Pen, and Kenneth L. Judd (2000). “Solving a savings alloca-
tion problem by numerical dynamic programming with shape-preserving inter-
polation”. Computers & Operations Research, 27(5), 399408.

19

