
Dynamic Programming with Hermite Interpolation

Kenneth Judd and Yongyang Cai

April 6, 2011

Abstract

1 Introduction

A conventional dynamic programming (DP) algorithm uses the Lagrange data set
to construct the approximated value function V̂t(x). If we want to use a Hermite
interpolation method requiring slope information of Vt(x), such as Schumaker
interpolation method, then it seems that we have to estimate the slopes, by use
of finite difference methods. But if we can get the slope information directly,
then it will save computation time and make the function approximation more
accurate, such that numerical DP algorithms with Hermite interpolation will be
more efficient and accurate.

In this paper, we present a DP algorithm with Hermite interpolation for solv-
ing discrete-time finite horizon decision-making problems with continuous states.
The paper is constructed as follows. Section 2 gives application of DP in optimal
growth problems and multi-stage portfolio optimization problems. Section 3 in-
troduces the parametric DP algorithm and describes numerical methods in the
algorithm. Section 5 presents the DP algorithm with Hermite interpolation. Sec-
tion 6 and Section 7 give some numerical examples for optimal growth problems
and multi-stage portfolio optimization problems respectively to show the power
of the DP algorithm with Hermite interpolation.

2 Application

We first illustrate our methods with a discrete-time optimal growth problem with
one good and one capital stock. It is to find the optimal consumption function

1

and the optimal labor supply function such that the total utility over the T -
horizon time is maximal, i.e.,

V0(k0) = max
c,l

T−1
∑

t=0

βtu(ct, lt) + βTuT (kT), (1)

s.t. kt+1 = F (kt, lt)− ct, 0 ≤ t < T,

where kt is the capital stock at time t with k0 given, ct is the consumption, lt
is the labor supply, β is the discount factor, F (k, l) = k + f(k, l) with f(kt, lt)
the aggregate net production function, and u(ct, lt) is the utility function. This
objective function is time-separable.

The DP version of the discrete-time optimal growth problem is

Vt(k) = max
k+,c,l

u(c, l) + βVt+1(k
+), (2)

s.t. F (k, l)− c− k+ = 0,

which is the Bellman (1957) equation. Here k is the state variable, (k+, c, l) are
the control variables, and VT (k) = uT (k).

We also illustrate our methods with a multi-stage portfolio optimization prob-
lem. Let Wt be an amount of money planned to be invested at stage t. Assume
that available assets for trading are n stocks and a bond, where the stocks have
a random return vector R = (R1, . . . , Rn) and the bond has a riskfree return Rf

for each period. If St = (St1, . . . , Stn)
⊤ is a vector of money invested in the n

risky assets at time t, then money invested in the riskless asset is Bt = Wt−e⊤St,
where e is a column vector of 1s. Thus, the wealth at the next stage is

Wt+1 = RfBt +R⊤St, (3)

for t = 0, 1, . . . , T − 1.
A simple multi-stage portfolio optimization problem is to find an optimal

portfolio St at each stage t such that we have a maximal expected terminal
utility, i.e.,

V0(W0) = max
Xt,0≤t<T

E{u(WT)},

where WT is the terminal wealth derived from the recursive formula (3) with a
given W0, and u is the terminal utility function, and E{·} is the expectation
operator.

The DP model of this multi-stage portfolio optimization problem is

Vt(W) = max
B,S

E{Vt+1(RfB +R⊤S)}, (4)

s.t. W −B − e⊤S = 0,

2

for t = 0, 1, . . . , T − 1, where W is the state variable, B and S are the control
variables, and the terminal value function is VT (W) = u(W).

3 Numerical Methods for DP

In DP problems, if state variables and control variables are continuous such that
value functions are also continuous, then we have to use some approximation for
the value functions, since computers cannot model the entire space of continuous
functions. We focus on using a finitely parameterizable collection of functions to
approximate value functions, V (x) ≈ V̂ (x;b), where b is a vector of parameters.
The functional form V̂ may be a linear combination of polynomials, or it may
represent a rational function or neural network representation, or it may be some
other parameterization specially designed for the problem. After the functional
form is fixed, we focus on finding the vector of parameters, b, such that V̂ (x;b)
approximately satisfies the Bellman equation. Numerical DP with value function
iteration can solve the Bellman equation approximately (see Judd (1998)).

A general DP model is based on the Bellman equation:

Vt(x) = max
a∈D(x,t)

ut(x, a) + βE{Vt+1(x
+) | x, a},

s.t. x+ = g(x, a),

where Vt(x) is called the value function at stage t, x+ = g(x, a) is the next-
stage state conditional on the current-stage state x and the action a, D(x, t) is
a feasible set of a, and ut(x, a) is the utility function at time t. The following is
the algorithm of parametric DP with value function iteration for finite horizon
problems.

Algorithm 1. Numerical Dynamic Programming with Value Function Iteration
for Finite Horizon Problems

Initialization. Choose the approximation nodes, Xt = {xit : 1 ≤ i ≤ mt} for
every t < T , and choose a functional form for V̂ (x;b). Let V̂ (x;bT) ≡
uT (x). Then for t = T − 1, T − 2, . . . , 0, iterate through steps 1 and 2.

Step 1. Maximization step. Compute

vi = max
ai∈D(xi,t)

ut(xi, ai) + βE{V̂ (x+i ;b
t+1) | xi, ai}

s.t. x+i = g(xi, ai),

for each xi ∈ Xt, 1 ≤ i ≤ mt.

3

Step 2. Fitting step. Using an appropriate approximation method, compute the
bt such that V̂ (x;bt) approximates (xi, vi) data.

There are three main components in numerical DP: optimization, approxima-
tion, and numerical integration. In the following we focus on discussing approx-
imation and omit the introduction of optimization and numerical integration.

4 Approximation

An approximation scheme consists of two parts: basis functions and approxi-
mation nodes. Approximation nodes can be chosen as uniformly spaced nodes,
Chebyshev nodes, or some other specified nodes. From the viewpoint of basis
functions, approximation methods can be classified as either spectral methods or
finite element methods. A spectral method uses globally nonzero basis functions
φj(x) such that V̂ (x) =

∑n
j=0 cjφj(x) is the degree-n approximation. In this

section, we present examples of spectral methods such as ordinary polynomial
approximation and (tensor/complete) Chebyshev polynomial approximation. In
contrast, a finite element method uses locally basis functions φj(x) that are
nonzero over sub-domains of the approximation domain. Examples of finite ele-
ment methods include piecewise linear interpolation, Schumaker shape-preserving
interpolation, cubic splines, and B-splines.

A linear approximation scheme consists of two parts: basis functions and
approximation nodes. Approximation nodes can be chosen as uniformly spaced
nodes, Chebyshev nodes, or some other specified nodes. From the viewpoint of
basis functions, approximation methods can be classified as either spectral meth-
ods or finite element methods. A spectral method uses globally nonzero basis
functions φj(x) and defines V̂ (x; c) =

∑n
j=0 cjφj(x) to be the degree n approxi-

mation. Examples of spectral methods include ordinary polynomial approxima-
tion and (tensor/complete) Chebyshev polynomial approximation. In contrast,
a finite element method uses locally basis functions φj(x) that are nonzero over
sub-domains of the approximation domain. Examples of finite element methods
include piecewise linear interpolation, Schumaker interpolation, cubic splines,
and B-splines. See Judd (1998), Cai (2009), and Cai and Judd (2010) for more
details In our examples in this paper, we applied Chebyshev polynomials and
Schumaker interpolation respectively.

4.1 Chebyshev Polynomials and Interpolation

Chebyshev basis polynomials on [−1, 1] are defined as Tj(z) = cos(j cos−1(z)),
while general Chebyshev basis polynomials on [a, b] are defined as Tj((2x − a−

4

b)/(b − a)) for j = 0, 1, 2, These polynomials are orthogonal under the

weighted inner product: 〈f, g〉 =
∫ b
a f(x)g(x)w(x)dx with the weighting func-

tion w(x) =

(

1−
(

2x−a−b
b−a

)2
)−1/2

. The polynomials Tj(z) on [−1, 1] can be

recursively evaluated:

T0(z) = 1,

T1(z) = z,

Tj+1(z) = 2zTj(z) − Tj−1(z), j = 1, 2,

A degree n Chebyshev polynomial approximation for V (x) on a, b] is

V̂ (x; c) =
1

2
c0 +

n
∑

j=1

cjTj((2x− a− b)/(b − a)),

where cj are the Chebyshev coefficients.
If we know the values of V at some specific nodes, then we can approximate V

by interpolation. That is, we find a function V̂ such that V̂ (xi; c) = V (xi) at the
given nodes xi, i = 1, . . . ,m. Thus, we can compute the Chebyshev coefficients
by solving the system of m linear equations for a general set of nodes.

But we can easily get the Chebyshev coefficients without solving a system
of linear equations, if we choose the Chebyshev interpolation nodes on [a, b]:

xi = (zi + 1)(b − a)/2 + a where zi = − cos
(

(2i−1)π
2m

)

, i = 1, . . . ,m. With these

Chebyshev nodes xi and the Lagrange data set {(xi, vi) : i = 1, . . . ,m}, the
coefficients cj can be calculated easily by Chebyshev regression algorithm (see
Judd (1998)), i.e.,

cj =
2

m

m
∑

i=1

viTj(zi), j = 0, . . . , n,

where Tj(zi) can be given by the following recursive formula:

T0(z) = 1,

T1(z) = z,

Tj+1(z) = 2zTj(z) − Tj−1(z), j = 1, 2, . . . ,

4.2 Chebyshev Interpolation with Hermite Information

Sometimes slopes of V (x) are available at the given nodes {xi : i = 1, . . . ,m}, but
the above Chebyshev interpolation method does not use these slope information.
A more efficient way is to apply these slopes to get a closer approximation.

5

If we have Hermite data {(xi, vi, si) : i = 1, . . . ,m} on [a, b], then the fol-
lowing system of 2m linear equations can produce coefficients for degree 2m− 1
Chebyshev polynomial interpolation on the Hermite data:

1

2
c0 +

2m−1
∑

j=1

cjTj(zi) = vi, i = 1, . . . ,m,

2

b− a

2m−1
∑

j=1

cjT
′
j(zi) = si, i = 1, . . . ,m,

where zi =
2xi−a−b

b−a (i = 1, . . . ,m) are the Chebyshev nodes in [−1, 1], and Tj(z)
are Chebyshev basis polynomials. In the system of linear equations, Tj(zi) can
be calculated by the recursive formula in the above section, and T ′

j(zi) has also
a recursive formula:

T ′
0(z) = 0,

T ′
1(z) = 1,

T ′
j+1(z) = 2Tj(z) + 2zT ′

j(z)− T ′
j−1(z), j = 1, 2,

4.3 A Revised Schumaker Interpolation Method

We revise the Schumaker procedure to improve its numerical stability. We first
review the Schumaker interpolation as presented in Schumaker (1983) and Judd
(1998), and then describe our improvement.

Let us consider the problem on a single interval [x1, x2]. The basic Hermite
problem on the interval takes the data v1, v2, s1, s2, and constructs a piecewise-
quadratic function s ∈ C1[x1, x2] such that

s(xi) = vi, s′(xi) = si, i = 1, 2.

Here is the interpolation algorithm.

Algorithm 2. Schumaker Shape-Preserving Interpolation

Step 1. Compute δ = (v2 − v1)/(x2 − x1). If (s1 + s2)/2 = δ, then

s(x) = v1 + s1(x− x1) +
(s2 − s1)(x− x1)

2

2(x2 − x1)
,

and STOP.

6

Step 2. If (s1 − δ)(s2 − δ) ≥ 0, set ξ = (x1 + x2)/2; Else if |s2 − δ| < |s1 − δ|,
then let

ξ̄ = x1 +
2(x2 − x1)(s2 − δ)

(s2 − s1)
,

and let ξ = (x1 + ξ̄)/2; Else let

ξ = x2 +
2(x2 − x1)(s1 − δ)

(s2 − s1)
,

and let ξ = (x2 + ξ)/2. Then

s(x) =

{

v1 + s1(x− x1) +C1(x− x1)
2, x ∈ [x1, ξ],

A2 + s̄(x− ξ) + C2(x− ξ)2, x ∈ [ξ, x2],

where C1 = (s̄ − s1)/(2a), A2 = v1 + as1 + a2C1, C2 = (s2 − s̄)/(2b),
s̄ = [2(v2 − v1)− (as1 + bs2)]/(x2 − x1), a = ξ − x1, and b = x2 − ξ.

The reader can refer to Judd (1998) and Schumaker (1983) for detailed dis-
cussion.

Notice that a and b are used as denominators for C1 and C2. This may give
rise to the overflow problem when a or b is close to 0, i.e., ξ is close to x1 or x2.
In addition, when s1 is close to s2, the overflow problem will happen again in
computing ξ̄ or ξ.

Here we will propose a new version of the algorithm. In this new version (Al-
gorithm 3), we consider the computational roundoff errors more carefully to avoid
the overflow problem in Algorithm 2, such that the new version is more stable
and accurate. Moreover, this new version has less computation than Algorithm
2.

From the step 2 of Algorithm 2, we know that if (s1 − δ)(s2 − δ) < 0 and
|s2 − δ| < |s1 − δ| then

ξ = (x1 + ξ̄)/2 = x1 +
(x2 − x1)(s2 − δ)

(s2 − s1)
,

else if |s2 − δ| ≥ |s1 − δ| then

ξ = (x2 + ξ)/2 = x2 +
(x2 − x1)(s1 − δ)

(s2 − s1)
.

Note that

x1 +
(x2 − x1)(s2 − δ)

(s2 − s1)
= x2 +

(x2 − x1)(s1 − δ)

(s2 − s1)
,

7

we just need to set

ξ = x1 +
(x2 − x1)(s2 − δ)

(s2 − s1)
,

if (s1 − δ)(s2 − δ) < 0. This saves the distinction of computing ξ under the
comparison between |s2 − δ| and |s1 − δ| in Algorithm 2. Thus,

a = ξ − x1 = (s2 − δ)/λ, b = x2 − ξ = (δ − s1)/λ,

where λ = (s2 − s1)/(x2 − x1). It follows that

s̄ =
2(v2 − v1)− (as1 + bs2)

(x2 − x1)

= 2δ −
(s2 − δ)

λ

s1
(x2 − x1)

−
(δ − s1)

λ

s2
(x2 − x1)

= 2δ −
(s2 − δ)s1 + (δ − s1)s2

(s2 − s1)
= 2δ − δ = δ,

by δ = (v2 − v1)/(x2 − x1) if (s1 − δ)(s2 − δ) < 0.
By C1 = (s̄ − s1)/(2a), we have

A2 = v1 + as1 + a2C1 = v1 + a(s1 + s̄)/2.

Moreover, if (s1 − δ)(s2 − δ) ≥ 0, then from ξ = (x1 + x2)/2 we have a = b =
(x2 − x1)/2, and then

s̄ =
2(v2 − v1)− (as1 + bs2)

(x2 − x1)
= 2δ −

s1 + s2
2

.

From the above computational formulas, we see that numerically there are
several special cases we need to worry about : s1 ≃ s2, s1 ≈ δ, or s2 ≈ δ. These
problems will be solved in the step 2 of Algorithm 3 by replacing (s1−δ)(s2−δ) ≥
0 by (s1 − δ)(s2 − δ) ≥ −ǫ for some given tolerance ǫ > 0.

Algorithm 3. Revised Schumaker Shape-Preserving Interpolation

Step 1. Compute δ = (v2 − v1)/(x2 − x1). If |(s1 + s2)/2− δ| < ǫ, then

s(x) = v1 +

(

δ +
s1 − s2

2

)

(x− x1) +
(s2 − s1)(x− x1)

2

2(x2 − x1)
,

and STOP.

8

Step 2. If (s1 − δ)(s2 − δ) ≥ −ǫ, set

ξ = (x1 + x2)/2, a = b = ξ − x1, s̄ = 2δ −
s1 + s2

2
.

Else let

λ =
s2 − s1
x2 − x1

, a = (s2 − δ)/λ, b = (δ − s1)/λ, ξ = x1 + a, s̄ = δ.

Then

s(x) =

{

v1 + s1(x− x1) +C1(x− x1)
2, x ∈ [x1, ξ],

A2 + s̄(x− ξ) + C2(x− ξ)2, x ∈ [ξ, x2],

where C1 = (s̄− s1)/(2a), A2 = v1+ a(s1+ s̄)/2, and C2 = (s2− s̄)/(2b).

This revised algorithm not only has less computation in step 2, but also
is more stable and accurate than the original version by taking account of the
numerical roundoff errors.

Now we consider a general interpolation problem. If we have Hermite data
{(xi, vi, si) : i = 1, . . . ,m}, we then apply the interpolant algorithm to each
interval to find ξi ∈ [xi, xi+1]. If we have Lagrange data, {(xi, vi) : i = 1, . . . ,m},
we must first add estimates of the slopes and then proceed as we do with Hermite
data. Schumaker suggests the following formulas for estimating slopes s1 through
sn:

L =
[

(xi+1 − xi)
2 + (vi+1 − vi)

2
]1/2

, δi =
vi+1 − vi
xi+1 − xi

, i = 1, . . . ,m− 1,

si =

{

Li−1δi−1+Liδi
Li−1+Li

, if δi−1δi > 0,

0, if δi−1δi ≤ 0,
i = 2, . . . ,m− 1,

s1 =
3δ1 − s2

2
, sm =

3δm−1 − sm−1

2
.

5 DP with Hermite Interpolation

The conventional DP algorithm uses the maximization step to compute

vi = Vt(xi) = max
ai∈D(xi,t)

ut(xi, ai) + βE{Vt+1(x
+
i) | xi, ai},

s.t. x+i = g(xi, ai),

for each pre-specified node xi, i = 1, . . . ,m. Then it applies the Lagrange data
set {(xi, vi) : i = 1, . . . ,m} in the fitting step to construct the approximated
value function V̂t(x). If the fitting step uses a Hermite interpolation method

9

requiring slope information at nodes xi of Vt(x), such as Schumaker interpolation
method, then it seems that we have to estimate the slopes, si, by use of finite
difference methods. But if we can get the slope information directly, then it
will save computation time and make the function approximation more accurate,
such that the numerical DP algorithm with Hermite interpolation will be more
efficient and accurate.

The following lemma tells us how to calculate the first derivative of a function
which is defined by a maximization operator.

Lemma 1. Let

V (x) = max
y

f(x, y) (5)

s.t. g(x, y) = 0.

Suppose that y∗(x) is the optimizer of (5), and that λ∗(x) is the corresponding
shadow price vector. Then

∂V (x)

∂x
=

∂f

∂x
(x, y∗(x)) + λ∗(x)⊤

∂g

∂x
(x, y∗(x)). (6)

Thus, it is not necessary to compute ∂y∗(x)/∂x term in order to get ∂V (x)/∂x.
The shadow price vector could be reported by optimization packages, so we do
not need to calculate it by ourselves.

Note that some optimization packages may report −λ∗(x) as their shadow
price vector, we should adapt it in the formula to compute ∂V (x)/∂x. In the
above lemma, we are assuming that the Lagrange function of the model (5) is

L(y, λ;x) = f(x, y) + λ(x)g(x, y),

such that λ∗(x) is the corresponding shadow price vector, so we can use the
formula 6 to compute ∂V (x)/∂x . However, if one optimization package define
the Lagrange function as

L(y, λ;x) = f(x, y)− λ(x)g(x, y),

and still call λ(x) as its shadow price, then we should adapt the formula 6 into
the following formula:

∂V (x)

∂x
=

∂f

∂x
(x, y∗(x))− λ∗(x)⊤

∂g

∂x
(x, y∗(x)),

where λ∗(x) is the corresponding shadow price defined in the optimization pack-
age.

10

Lemma 1 only gives the formula to compute ∂V (x)/∂x while there are only
equality constraints. But an optimization model often has bound constraints for
control variables and other inequality constrains. If some inequality constraints,
h(x, y) ≥ 0, are added into the model (5), one way is to simply add a slack
variable s to transform the inequality constraints into equality constraints, i.e.,
h(x, y) − s = 0 with s ≥ 0, then use the above lemma to compute ∂V (x)/∂x,
as the constraint s ≥ 0 is not directly related with x. We assume that the
corresponding Lagrange function is

L(y, λ, µ, τ ;x) = f(x, y) + λ(x)g(x, y) + µ(x)(h(x, y) − s) + τ(x)s,

where λ(x), µ(x) and τ(x) are respectively the corresponding shadow price vec-
tors of g(x, y) = 0, h(x, y) − s = 0 and s ≥ 0. Then the formula to compute
∂V (x)/∂x is

∂V (x)

∂x
=

∂f

∂x
(x, y∗(x)) + λ∗(x)⊤

∂g

∂x
(x, y∗(x)) + µ∗(x)⊤

∂h

∂x
(x, y∗(x)).

In the above formula, we have to calculate the gradient of objective function
and constraint functions. However, when the objective function or constraint
functions are very complicated, it is not simple to get their gradients. Moreover,
when there are many constraints, it may be painful to get an explicit formula to
compute ∂V (x)/∂x.

In fact, no matter how many constraints there are, or how much complicated
the objective or constraints are, there is a direct and simple way to solve the
headache and then compute the slopes, ∂V (x)/∂x, in a very simple and clean
formula, by only adding one trivial control variable and one trivial constraint
and simply substituting x by the trivial control variable in the objective and
contraints.

Theorem 1. (Envelope theorem) For an optimization problem,

V (x) = max
y

f(x, y)

s.t. g(x, y) = 0,

h(x, y) ≥ 0,

we can modify it as

V (x) = max
y,z

f(z, y) (7)

s.t. g(z, y) = 0,

h(z, y) ≥ 0,

x− z = 0,

11

by adding a trivial control variable z and a trivial constraint x−z = 0. Therefore,

∂V (x)

∂x
= λ∗(x),

where λ∗(x) is the corresponding shadow price vector of the trivial constraint
x− z = 0.

The theorem is directly followed by Lemma 1. In the theorem, we assume
that the Lagrange function of the model (7) is

L(y, λ, µ, τ ;x) = f(z, y) + λ(x)g(z, y) + µ(x)h(z, y) + τ(x)(x− z),

where λ(x), µ(x) and τ(x) are respectively the corresponding shadow price vec-
tors of g(z, y) = 0, h(z, y) ≥ 0 and x−z = 0. Note that we only need the shadow
price vector of the trivial constraint x− z = 0 to get ∂V (x)/∂x, we do not need
to know the gradients of the objective function or other constraint functions, and
we also do not need to know the shadow prices of other constraints except the
trivial constraint x− z = 0.

Thus, we can apply Lemma 1 or Envelope theorem 1 in the DP model, so that
all slopes can be obtained easily and directly from the maximization step of the
DP algorithm to construct an approximation method with Hermite information.
We have the following numerical DP algorithm with Hermite interpolation.

Algorithm 4. Numerical Dynamic Programming with Value Function Iteration
and Hermite Interpolation for Finite Horizon Problems

Initialization. Choose the approximation nodes, Xt = {xit : 1 ≤ i ≤ mt} for
every t < T , and choose a functional form for V̂ (x;b). Let V̂ (x;bT) ≡
uT (x). Then for t = T − 1, T − 2, . . . , 0, iterate through steps 1 and 2.

Step 1. Maximization step. For each xi ∈ Xt, 1 ≤ i ≤ mt, compute

vi = max
ai∈D(yi,t),yi

ut(yi, ai) + βE{V̂ (x+i ;b
t+1) | yi, ai},

s.t. x+i = g(yi, ai),

xi − yi = 0,

and
si = λ∗

i ,

where λ∗
i is the shadow price of the constraint xi − yi = 0.

12

Step 2. Hermite fitting step. Using an appropriate approximation method, com-
pute the bt such that V̂ (x;bt) approximates (xi, vi, si) data.

This is an algorithm for general problems. For specific cases, the maximiza-
tion step in Algorithm 4 could have other equivalent models to compute vi and
si. This depends on whether slopes si can be computed in a simple form.

For example, for the optimal growth DP model (2), we can get the slopes of
Vt(k) by Lemma 1 such that

V ′
t (k) = λ∗(k)Fk(k, l

∗),

where l∗ is the optimal labor supply for the given k, and λ∗(k) is the shadow price
for the constraint F (k, l) − c − k+ = 0, which is given directly by optimization
packages.

For the DP model (4) of the multi-stage portfolio optimization problem, we
have

V ′
t (W) = λ∗(W),

where λ∗(W) is the shadow price for the constraint W −B−e⊤S = 0. If shorting
stocks or borrowing bond is not allowed, i.e., S ≥ 0 and/or B ≥ 0, we will still
have the same formula to get the slopes of Vt(W) even if the constraints S ≥ 0
and/or B ≥ 0 are binding, because these constraints do not include any terms
with W .

6 Examples for Optimal Growth Problems

This section uses several numerical examples in finite horizon optimal growth
problems to illustrate the improvement of Hermite interpolation in DP.

In these examples, the discount factor is β = 0.95, the aggregate net produc-
tion function is f(k, l) = Akαl1−α with α = 0.25 and A = (1 − β)/(αβ). The
state range of capital stocks is set as [0.2, 3].

6.1 Scaling Technique

A typical utility function in optimal growth problems is a power utility with the
following form

u(c, l) =
c1−γ

1− γ
−B

l1+η

1 + η

where B = (1−α)A1−γ , while the aggregate net production function is f(k, l) =
Akαl1−α with A = (1 − β)/(αβ). Thus the steady state of the infinite horizon

13

deterministic optimal growth problems is kss = 1 while the optimal consumption
and the optimal labor supply at kss are respectively css = A and lss = 1.

However, when β is close to 1 and γ is large, A will be small and the optimal
consumption at various levels of capital k will also be small, such that the utility
function will have a large magnitude. We know a large magnitude in computer
will often incur numerical errors in computation and optimization. An appropri-
ate scaling will improve the computational accuracy, while the scaling does not
affect the optimal solutions.

In the following finite horizon optimal growth examples, we will choose a
scaled power utility function

u(c, l) =
(c/A)1−γ − 1

1− γ
− (1− α)

l1+η − 1

1 + η
.

We know this scaling will have the same optimal solutions for consumption and
labor supply.

6.2 Solve Exactly with Large-Scale Optimizers

For the finite horizon optimal growth problem (1), when T is small, we can
use a good large-scale optimization package to solve the problem directly, and its
solution could be better than the solution of (2) given by numerical DP algorithms
because of the numerical approximation errors. But when T is large, the solution
of (2) given by numerical DP algorithms is usually better than the solution of
(1) given by a large-scale numerical optimization package directly. In addition,
if the problem becomes stochastic, i.e., the value function form becomes Vt(x, θt)
where θt is a discrete time Markov chain, then it usually becomes infeasible for
an optimization package to solve the stochastic problem directly when T > 10.
But numerical DP algorithms can still solve it well, see Cai (2009).

In the examples of this section, we choose to solve finite horizon deterministic
optimal growth problems with T ≤ 100, so we will use the solutions of the model
(1) given by SNOPT (Gill, Murray and Saunders (2005)) in AMPL code as the
“true” solutions.

The scaling technique discussed in the above section is very helpful in getting
good solutions from large-scale optimizers when γ is large. For example, when
γ = 8 and SNOPT is applied as the large-scale optimizer, the solution without
using the scaling technique is not as good as the one using the scaling technique.

6.3 DP Solution

The computational results of numerical DP algorithms with/without Hermite
information are given by our Fortran code. And in the maximization step of DP,

14

we use NPSOL (see Gill, Murray, Saunders and Wright (1994)), a set of Fortran
subroutines for minimizing a smooth function subject to linear and nonlinear
constraints.

Tables 1 and 2 list errors of optimal solutions computed by numerical DP
algorithms with/without Hermite information when T = 100 and terminal value
function uT (k) ≡ 0. In Table 1, on the same m Chebyshev nodes, Algorithm 1
uses degree m− 1 Chebyshev polynomial interpolation on Lagrange data, while
Algorithm 4 uses degree 2m− 1 Chebyshev polynomial interpolation on Hermite
data. In Table 2, Algorithms 1 and 4 apply Schumaker interpolation on the same
m equally spaced nodes, using Lagrange data and Hermite data respectively.

The errors for optimal consumptions at stage 0 are computed by

max
k∈[0.2,3]

|c∗0,DP (k)− c∗0(k)|

1 + |c∗0(k)|
,

where c∗0,DP is the optimal consumption at stage 0 computed by numerical DP
algorithms, and c∗0 is the optimal consumption directly computed by SNOPT
(Gill, Murray and Saunders (2005)) in AMPL code on the model (1). The errors
for optimal labor supply at stage 0, l∗0,DP , have the similar computation formula.

From the comparison of these errors, we see that the solutions computed by
Algorithm 4 using Hermite data are more accurate than those from Algorithm 1
using Lagrange data, with about one or two digits accuracy improvement. We
also have similar results for different T = 2, 3, 5, 10, 50 and/or different termi-
nal value functions uT (k) = u(f(k, 1), 1)/(1 − β) and uT (k) = −100(k − 1)2.
Moreover, we found that when T increases, the errors did not accumulate. This
follows that the backward value function iterations are stable for these examples.
The approximated value functions have similar accuracy results. For stochastic
optimal growth problems with a Markov chain θt as an additional state variable,
we still have similar results.

Moreover, after comparing the m = 2J rows under Algorithm 1 with the
corresponding m = J rows for J = 5 or 10 in Table 1, we found that the
errors are close. That tells us that if Algorithm 1 needs 2J Chebyshev nodes
to reach a desired accuracy, then Algorithm 4 only needs J Chebyshev nodes
to reach the almost same accuracy, when both algorithms use degree 2J − 1
Chebyshev polynomial interpolation. Similar observation can be seen in Table 2
for Schumaker quadratic spline interpolation.

Since the slope information of value functions can be obtained almost freely
in computation cost, Algorithm 4 has almost twice efficiency of Algorithm 1. The
computation times of both numerical DP algorithms also showed that they are
almost proportional to number of nodes, i.e., number of optimization problems in

15

Table 1: Errors of optimal solutions computed by numerical DP algorithms with
Chebyshev interpolation onm Chebyshev nodes using with Lagrange vs. Hermite
data

Lagrange Hermite

γ η m

0.5 0.1 5
10
20

0.5 1 5
10
20

2 0.1 5
10
20

2 1 5
10
20

8 0.1 5
10
20

8 1 5
10
20

error of c∗0 error of l∗0
2.3(−2) 1.0(−1)
1.1(−3) 5.0(−3)
3.4(−6) 1.3(−5)
2.4(−2) 3.1(−2)
1.3(−3) 1.6(−3)
4.1(−6) 5.0(−6)
1.1(−2) 1.6(−1)
5.9(−4) 1.0(−2)
2.5(−6) 4.0(−5)
2.0(−2) 7.0(−2)
9.7(−4) 4.7(−3)
4.9(−6) 2.1(−5)
3.6(−3) 2.0(−1)
2.0(−4) 1.4(−2)
1.7(−6) 6.3(−5)
1.2(−2) 1.3(−1)
5.2(−4) 1.0(−2)
3.3(−6) 5.9(−5)

error of c∗0 error of l∗0
2.0(−3) 9.0(−3)
6.6(−6) 2.4(−5)

0 4.5(−6)
2.2(−3) 2.8(−3)
7.4(−6) 9.9(−6)
7.6(−7) 0
1.1(−3) 1.9(−2)
4.1(−6) 6.1(−5)
8.1(−7) 1.0(−6)
2.0(−3) 8.7(−3)
7.4(−6) 3.2(−5)
8.8(−7) 4.9(−6)
3.9(−4) 2.6(−2)
1.7(−6) 9.2(−5)
8.1(−7) 4.5(−6)
1.3(−3) 2.0(−2)
5.0(−6) 8.5(−5)
8.2(−7) 1.0(−6)

Note: a(k) means a× 10k.

16

Table 2: Errors of optimal solutions computed by numerical DP algorithms with
Schumaker interpolation on m nodes using Lagrange vs. Hermite data

Lagrange Hermite

γ η m

0.5 0.1 10
20
40

0.5 1 10
20
40

2 0.1 10
20
40

2 1 10
20
40

8 0.1 10
20
40

8 1 10
20
40

error of c∗0 error of l∗0
1.8(−2) 1.6(−1)
4.8(−3) 5.5(−2)
5.3(−4) 5.1(−3)
2.2(−2) 5.0(−2)
6.6(−3) 1.9(−2)
9.1(−4) 2.7(−3)
7.8(−3) 2.2(−1)
2.1(−3) 6.7(−2)
2.8(−4) 7.5(−3)
1.4(−2) 1.1(−1)
5.1(−3) 4.3(−2)
1.3(−3) 1.1(−2)
2.3(−3) 2.5(−1)
6.6(−4) 7.1(−2)
1.4(−4) 1.5(−2)
6.1(−3) 1.7(−1)
2.2(−3) 6.4(−2)
6.3(−4) 1.8(−2)

error of c∗0 error of l∗0
2.3(−3) 2.0(−2)
2.4(−4) 1.8(−3)
9.3(−5) 9.1(−4)
3.6(−3) 8.9(−3)
3.2(−4) 9.3(−4)
1.3(−4) 2.9(−4)
9.7(−4) 2.7(−2)
1.0(−4) 2.9(−3)
2.7(−5) 7.0(−4)
2.3(−3) 1.7(−2)
3.0(−4) 2.0(−3)
6.1(−5) 4.9(−4)
3.4(−4) 3.4(−2)
3.2(−5) 3.2(−3)
1.6(−5) 1.6(−3)
9.9(−4) 2.6(−2)
1.2(−4) 3.0(−3)
4.2(−5) 1.1(−3)

Note: a(k) means a× 10k.

17

the maximization step of numerical DP algorithm, regardless of approximation
using Lagrange or Hermite data.

7 Multi-stage Portfolio Optimization Problems

In this section, we present a numerical example of DP with Hermite interpolation
to solve multi-stage portfolio optimization problems, and show the advantages
of DP with Hermite interpolation in comparison with the results given by DP
without Hermite interpolation.

This numerical example assumes that there are one stock and one bond avail-
able for investment , the number of periods is T = 6, the bond has a risk-free
return Rf = 1.04, and the stock has a discrete random return

R =

{

0.9, with probability 1/2,

1.4, with probability 1/2.

Let the range of initial wealth W0 as [0.9, 1.1]. The terminal utility function is

u(W) = −(W − 0.2)−1

so that the terminal wealth should be always bigger than 0.2. Moreover, we
assume that borrowing or shorting is not allowed in this example, i.e., Bt ≥ 0
and St ≥ 0 for all t.

7.1 Tree Method

In the portfolio optimization problem discussed in Section 2, if we discretize the
random returns of n stocks as R = R(j) = (R1,j , . . . , Rn,j) with probability qj for
1 ≤ j ≤ m, then it becomes a tree model:

max
mT

∑

k=1

PT,ku(WT,k),

where
Pt+1,k = Pt,[(k−1)/m]+1qmod(k,m)+1,

is the probability of scenario k at stage t+ 1, and

Wt+1,k = Wt,[(k−1)/m]+1(RfBt,[(k−1)/m]+1 +

n
∑

i=1

Ri,mod(k,m)+1Si,t,[(k−1)/m]+1),

18

W
0

P
0,1

q
1

q
2

W
1,1

P
1,1

W
1,2

P
1,2

q
1

q
2

q
1

q
2

W
2,1

P
2,1

W
2,2

P
2,2

W
2,3

P
2,3

W
2,4

P
2,4

Figure 1: A binary tree with two periods

is the wealth at scenario k and stage t + 1, for 1 ≤ k ≤ mt+1 and 0 ≤ t < T .
Here, W0,1 = W0 is a given initial wealth, P0,1 = 1, mod(k,m) is the remainder
of division of k by m, and [(k− 1)/m] is the quotient of division of (k− 1) by m.

Figure 1 shows one simple tree with m = 2 and T = 2 for a portfolio with one
bond and one stock (n = 1). The stock’s random return has a probability q1 to
have a return R1,1, and the probability q2 = 1−q1 to have a return R1,2. So there
are two scenarios at stage 1: (W1,1, P1,1) and (W1,2, P1,2), and four scenarios at
stage 2: (W2,1, P2,1), . . ., (W2,4, P2,4).

The disadvantage of the tree method is that whenm or T is large, the problem
size will exponentially increase and it will be a big challenge for an optimizer to
find an accurate solution. But the disadvantage will disappear if we use DP
algorithms to solve the problem.

Since our example is not large for the above tree model, the exact optimal
allocations can be calculated by the tree model and MINOS optimization package
(Murtagh and Saunders (1978)) in AMPL code. Figure 2 shows the optimal bond
allocation Bt, for t = 0, 1, . . . , 5. Note that the ranges of wealth are expanding
over t. Since we do not allow shorting or borrowing and R is bounded in this

19

0.8 1 1.2

0.09

0.095

0.1

Wealth

bond at stage t=0

0.8 1 1.2

0.8

0.85

0.9

0.95

1

Wealth

stock at stage t=0

1 1.5
0.06

0.08

0.1

0.12

Wealth

bond at stage t=1

1 1.5

0.8

1

1.2

1.4

Wealth

stock at stage t=1

1 1.5 2
0.02

0.04

0.06

0.08

0.1

0.12

0.14

Wealth

bond at stage t=2

1 1.5 2
0.5

1

1.5

2

Wealth

stock at stage t=2

Figure 2: Exact optimal bond allocation

example, the ranges [W t,W t] can be computed in an iterative way:

W t+1 = min(R)W t = 0.9W t,

W t+1 = max(R)W̄t = 1.4W t,

where W 0 = 0.9 and W 0 = 1.1.
After obtaining these exact optimal allocations, we use them to test our

numerical DP algorithms’ accuracy.

7.2 DP Solutions

The computational results of numerical DP algorithms with/without Hermite
information are given by MINOS in AMPL code. And the ranges [W t,W t] are
given in the previous iterative way.

20

We ran Algorithm 1 and 4 with Schumaker interpolation method on 30 equally
spaced nodes using Lagrange data or Hermite data correspondingly. Figure 2
shows relative errors of the computed optimal stock allocations by these two al-
gorithms in comparison with the exact solutions, in which the square points are
errors from Algorithm 1 using Lagrange data, and the mark points are errors
from Algorithm 4 using Hermite data. We see that the errors are about O(10−2)
for interpolation using Lagrange data, while they are about O(10−3) for Schu-
maker interpolation using Hermite data. So Hermite interpolation really helps to
improve the accuracy of the solutions. Note that the errors become smaller when
t goes to 0. This means that the errors are not accumulating at all when the
number of value function iterations increases. One reason of this phenomenon is
that the impact of kinks and binding constraints (Bt = 0) over some wealth Wt

are disappearing along the backward value function iteration, which was shown
in Figure 2: when t ≥ 3, there are kinks and binding constraints for big wealths,
but when t < 3, there are no kinks or binding constraints.

8 Conclusion

This paper presents a numerical DP algorithm with Hermite interpolation and
shows that the Hermite information in the value function approximation is very
helpful in obtaining good solutions from numerical DP.

21

0.9 0.95 1 1.05 1.1
−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

Wealth
0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

Wealth

log10 (errors) of S0 log10 (errors) of S1

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

Wealth
0.5 1 1.5 2 2.5 3

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

Wealth

log10 (errors) of S2 log10 (errors) of S3

0.5 1 1.5 2 2.5 3 3.5 4 4.5
−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

Wealth

 Errors for Lagrange Data

 Errors for Hermite Data

log10 (errors) of S4

Figure 3: Relative Errors of Optimal Stock Allocations from Numerical DP with
Schumaker interpolation using Lagrange vs Hermite data

22

References

Bellman, Richard (1957). Dynamic Programming. Princeton University Press.

Cai, Yongyang (2009). Dynamic Programming and Its Application in Eco-
nomics and Finance. PhD thesis, Stanford University.

Cai, Yongyang, and Kenneth Judd (2010). “Stable and efficient computational
methods for dynamic programming”. Journal of the European Economic As-
sociation, Vol. 8, No. 2-3, 626–634.

Gill, Philip, Walter Murray, Michael Saunders, and Margaret Wright (1994).
“Users Guide for NPSOL 5.0: a Fortran Package for Nonlinear Programming”.
Technical report, SOL, Stanford University.

Gill, Philip, Walter Murray, and Michael Saunders (2005). “SNOPT: An SQP
algorithm for largescale constrained optimization”. SIAM Review, 47(1), 99–
131.

Judd, Kenneth (1998). Numerical Methods in Economics. The MIT Press.

Murtagh, Bruce, and Michael Saunders (1978). “Large-scale linearly con-
strained optimization”. Mathematical Programming, 14, 41–72.

Rust, John (2008). “Dynamic Programming”. In: New Palgrave Dictionary
of Economics, ed. by Steven N. Durlauf and Lawrence E. Blume. Palgrave
Macmillan, second edition.

Schumaker, Larry (1983). “On Shape-Preserving Quadratic Spline Interpola-
tion”. SIAM Journal of Numerical Analysis, 20, 854–864.

23

