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1 Introduction

2 Parametric Dynamic Programming

An infinite horizon optimal decision-making problem has the following general
form:

V (x0) = max
at∈D(xt)

E

{

∞
∑

t=0

βtE{u(xt, at)
}

,

where xt is the state process with initial state x0, and 0 ≤ β < 1.
The dynamic programming (DP) model for the infinite horizon problems is

V (x) = max
a∈D(x)

u(x, a) + βE{V (x+) | x, a},

where x is called the state variable (or vector), a is called the action variable (or
vector), x+ is the next-stage state conditional on the current-stage state x and
the action a, and V (x) is called the value function.

In DP problems, if state variables and control variables are continuous such
that value functions are also continuous, then we have to use some approxima-
tion for the value functions, since computers cannot model the entire space of
continuous functions. We focus on using a finitely parameterizable collection of
functions to approximate value functions, V (x) ≈ V̂ (x;b), where b is a vector of
parameters. The functional form V̂ may be a linear combination of polynomials,
or it may represent a rational function or neural network representation, or it
may be some other parameterization specially designed for the problem. After
the functional form is fixed, we focus on finding the vector of parameters, b, such
that V̂ (x;b) approximately satisfies the Bellman equation.
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3 Approximation

An approximation scheme consists of two parts: basis functions and approxi-
mation nodes. Approximation nodes can be chosen as uniformly spaced nodes,
Chebyshev nodes, or some other specified nodes. From the viewpoint of basis
functions, approximation methods can be classified as either spectral methods or
finite element methods. A spectral method uses globally nonzero basis functions
φj(x) such that V̂ (x) =

∑n
j=0 cjφj(x) is the degree-n approximation. Here we

present Chebyshev polynomial approximation as an example of spectral meth-
ods. In contrast, a finite element method uses locally basis functions φj(x) that
are nonzero over sub-domains of the approximation domain. See Judd [2] and
Cai [1] for detailed discussion of approximation methods.

3.1 Chebyshev Polynomial Approximation

Chebyshev polynomials on [−1, 1] are defined as Tj(x) = cos(j cos−1(x)), while
general Chebyshev polynomials on [a, b] are defined as Tj((2x − a − b)/(b − a))
for j = 0, 1, 2, . . .. These polynomials are orthogonal under the weighted in-
ner product: 〈f, g〉 =

∫ b
a f(x)g(x)w(x)dx with the weighting function w(x) =

(

1−
(

2x−a−b
b−a

)2
)−1/2

. The polynomials Tj(x) on [−1, 1] can be recursively eval-

uated:

T0(x) = 1,

T1(x) = x,

Tj+1(x) = 2xTj(x)− Tj−1(x), j = 1, 2, . . . .

Using the above orthogonal polynomials, we have the least-squares polyno-
mial approximation of V with respect to the weighting function

w(x) =

(

1−
(

2x− a− b

b− a

)2
)−1/2

,

i.e., a degree-n polynomial V̂n(x), such that V̂n(x) solves

min
deg(V̂ )≤n

∫ b

a
(V (x)− V̂n(x))

2w(x)dx.

Thus, we know that the least-squares degree-n polynomial approximation
V̂n(x) on [−1, 1] has the form

V̂n(x) =
1

2
c0 +

n
∑

j=1

cjTj(x),
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where

cj =
2

π

∫ 1

−1

V (x)Tj(x)√
1− x2

dx, j = 0, 1, . . . , n,

are the Chebyshev least-squares coefficients. It is difficult to compute the coeffi-
cients because the above integral generally does not have an analytic solutions,
even if we know the explicit form of V .

4 Optimal Growth Problems

There are plenty of applications of dynamic programming (DP) method in eco-
nomics. In this section we present the application to optimal growth models.

4.1 Deterministic Optimal Growth Problems

An infinite-horizon economic problem is the discrete-time optimal growth model
with one good and one capital stock, which is a deterministic model. The aim
is to find the optimal consumption function such that the total utility over the
infinite-horizon time is maximal, i.e.,

V (k0) = max
c

∞
∑

t=0

βtu(ct)

s.t. kt+1 = F (kt)− ct, t ≥ 0,

where kt is the capital stock at time t with k0 given, ct is the consumption, β is the
discount factor, F (k) = k+f(k) with f(kt) the aggregate net production function,
and u(ct) is the utility function. This objective function is time-separable.

If we add a new control variable l as the labor supply in the above model, it
becomes

V (k0) = max
c,l

∞
∑

t=0

βtu(ct, lt)

s.t. kt+1 = F (kt, lt)− ct, t ≥ 0,

where F (k, l) = k + f(k, l) with f(kt, lt) the aggregate net production function,
and u(ct, lt) is the utility function. This objective function is still time-separable.

4.2 Stochastic Optimal Growth Problems

We consider the stochastic optimal growth model now. Let θ denote the cur-
rent productivity level and f(k, l, θ) denote net income. Define F (k, l, θ) =
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k+f(k, l, θ), and assume that θ follows θt+1 = g(θt, εt), where εt are i.i.d. distur-
bances. Then the infinite-horizon discrete-time optimization problem becomes

V (k0, θ0) = max
k,c,l

E

{

∞
∑

t=0

βtu(ct, lt)

}

s.t. kt+1 = F (kt, lt, θt)− ct,

θt+1 = g(θt, εt), t ≥ 0,

where x0 and θ0 are given. The parameter θ has many economic interpretations.
In the life-cycle interpretation, θ is a state variable that may affect either asset
income, labor income, or both. In the monopolist interpretation, θ may reflect
shocks to costs, demand, or both.

Its DP formulation is

V (k, θ) = max
c,l

u(c, l) + βE{V (F (k, l, θ)− c, θ+) | θ},

where θ+ is next period’s θ realization.
In the above model, kt+1 is a deterministic variable that is fully dependent

on kt, lt, θt and ct. But we can extend it to a stochastic capital stock case:

V (k0, θ0) = max
k,c,l

E

{

∞
∑

t=0

βtu(ct, lt)

}

s.t. kt+1 = F (kt, lt, θt)− ct + ǫt,

θt+1 = g(θt, εt), t ≥ 0,

where ǫt are i.i.d. disturbances, and independent of εt. Its DP formulation is

V (k, θ) = max
c,l

u(c, l) + βE{V (k+, θ+) | θ}

s.t. k+ = F (k, l, θ)− c+ ǫ,

θ+ = g(θ, ε).

5 Nonlinear Programming Method to Solve Bellman

Equations

There are many ways to solve Bellman equations, such as value function iteration
and policy iteration methods. Here we give one nonlinear programming method
to solve Bellman equations for optimal growth problems. We call this method as
DPNLP in the following. For a given set of capital points {ki : i = 1, . . . ,m},
and a given approximation form V̂ (k;b), we come to solve the following model:
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max
c,l,b

m
∑

i=1

vi,

s.t. vi ≤ u(ci, li, k
+
i ) + βv+i , i = 1, . . . ,m,

k+i = F (ki, li)− ci, i = 1, . . . ,m,

vi = V̂ (ki;b), i = 1, . . . ,m,

v+i = V̂ (k+i ;b), i = 1, . . . ,m,

ci > 0, li > 0, k ≤ k+i ≤ k̄, i = 1, . . . ,m,

where [k, k̄] is the range of capital for approximation.
We often need to add shape-preservation in the model, as the value function

is increasing and concave:

max
c,l,b

m
∑

i=1

vi,

s.t. vi ≤ u(ci, li, k
+
i ) + βv+i , i = 1, . . . ,m,

k+i = F (ki, li)− ci, i = 1, . . . ,m,

vi = V̂ (ki;b), i = 1, . . . ,m,

v+i = V̂ (k+i ;b), i = 1, . . . ,m,

V̂ ′(k′i;b) ≥ 0, i = 1, . . . ,m′,

V̂ ′′(k′i;b) ≤ 0, i = 1, . . . ,m′,

ci > 0, li > 0, k ≤ k+i ≤ k̄, i = 1, . . . ,m.

where {k′i : i = 1, . . . ,m′} are the set of capital points for shape constraints
in [k, k̄]. Usually the number of points for shape preservation is more than the
number of points for approximation.

Since there are so many constraints, an optimization solver is often hard
to find a feasible solution, so we want to have a higher degree approximation
method while giving penalty in the extra degree of freedom. For example, if we
use degree-n Chebyshev polynomial approximation, then
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max
c,l,b

m
∑

i=1

vi −
n
∑

j=0

1

(j + 1)2
|bj |,

s.t. vi ≤ u(ci, li, k
+
i ) + βv+i , i = 1, . . . ,m,

k+i = F (ki, li)− ci, i = 1, . . . ,m,

vi = V̂ (ki;b), i = 1, . . . ,m,

v+i = V̂ (k+i ;b), i = 1, . . . ,m,

V̂ ′(k′i;b) ≥ 0, i = 1, . . . ,m′,

V̂ ′′(k′i;b) ≤ 0, i = 1, . . . ,m′,

ci > 0, li > 0, k ≤ k+i ≤ k̄, i = 1, . . . ,m.

To cancel the absolute operator in the objective function, we let bj = b+j − b−j
with b+j , b

−
j ≥ 0, so |bj | = b+j + b−j . That is, the model becomes

max
c,l,b

m
∑

i=1

vi −
n
∑

j=0

1

(j + 1)2
(b+j + b−j ),

s.t. vi ≤ u(ci, li, k
+
i ) + βv+i , i = 1, . . . ,m,

k+i = F (ki, li)− ci, i = 1, . . . ,m,

vi = V̂ (ki;b), i = 1, . . . ,m,

v+i = V̂ (k+i ;b), i = 1, . . . ,m,

V̂ ′(k′i;b) ≥ 0, i = 1, . . . ,m′,

V̂ ′′(k′i;b) ≤ 0, i = 1, . . . ,m′,

ci > 0, li > 0, k ≤ k+i ≤ k̄, i = 1, . . . ,m,

b = b
+ − b

−.

For the stochastic problems, the above model becomes
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max
c,l,b

J
∑

j=1

{

m
∑

i=1

vi,j −
n
∑

i=0

1

(i+ 1)2
(b+i,j + b−i,j)

}

,

s.t. vi,j ≤ u(ci,j , li,j, k
+
i,j) + β

J
∑

j′

Pj,j′v
+
i,j,j′, i = 1, . . . ,m; j = 1, . . . , J,

k+i,j = F (ki, li,j , θj)− ci,j, i = 1, . . . ,m; j = 1, . . . , J,

vi,j = V̂ (ki, θj ;b), i = 1, . . . ,m; j = 1, . . . , J,

v+i,j,j′ = V̂ (k+i,j , θj′;b), i = 1, . . . ,m; j, j′ = 1, . . . , J,

V̂ ′(k′i, θj ;b) ≥ 0, i = 1, . . . ,m′; j = 1, . . . , J,

V̂ ′′(k′i, θj ;b) ≤ 0, i = 1, . . . ,m′; j = 1, . . . , J,

ci > 0, li > 0, k ≤ k+i ≤ k̄, i = 1, . . . ,m,

b = b
+ − b

−.

where Pj,j′ is the conditional probability of θ+ = θj′ given θ = θj, for any
j, j′ = 1, . . . , J .

When the utility magnitude is large, the magnitude of value function will be
large, so that it may be a challenge for optimization solvers. In this case, it will
be important to scale the utility function appropriately.

6 Examples

At first, we try to solve deterministic optimal growth problems, in which we
choose

F (k, l) = k +Akαl1−α

with α = 0.25 and A = (1− β)/(αβ). The utility function is set as

u(c, l, k+) =
c1−γ

1− γ
−B

l1+η

1 + η

with B = (1 − α)A1−γ . Thus, we know that the steady state is kss = 1 with
optimal labor supply lss = 1. When γ is large and c is small, the utility has
a large magnitude, so we should scale it appropriately. One good choice is to
divide it by A1−γ and then subtract it by 1/(1 − γ) − (1 − α)/(1 + η). That is,
the utility function is changed as

u(c, l, k+) =
(c/A)1−γ − 1

1− γ
− (1− α)

l1+η − 1

1 + η
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This constant scaling will keep the same optimal controls.
In the DPNLP model, we choose m = 15 Chebyshev nodes in [0.2, 1.8], and

the approximation method is Chebyshev polynomial with degree n = 21. The
number of nodes for shape constraints is chosen as 60. The optimization solver
is CONOPT. We tried β = 0.8, 0.9, 0.95 0.99, 0.995, 0.999, γ = 0.5, 2, 8, and
η = 0.1, 1, all these examples give us good solutions.

We also tried to use SNOPT to solve the above optimal growth problems,
and got almost the same results with CONOPT.

Now we come to solve stochastic optimal growth problems. We will keep the
same utility function as the deterministic one, but the production function is
changed as

F (k, l, θ) = k + θAkαl1−α

where θ is the stochastic state. In the examples, the possible values of θ and θ+

are
θ1 = 0.95, θ2 = 1.0, θ3 = 1.05,

and the probability transition matrix from θ to θ+ is

P =





0.75 0.25 0
0.25 0.5 0.25
0 0.25 0.75



 .

We keep all parameters the same with the deterministic examples, and our
results show that all the examples with stochastic states have good solutions.
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