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The Likelihood Ratio Test

Setup
Model M: Structural parameters θ ∈ Θ, states x ∈ S, “outcomes” y ∈ Y,
policy/endogenous variables σ ∈ Σ
Model solution conditions h(x ;σ, θ) = 0, ∀x ∈ S
Data set {x̂t , ŷt}Tt=1

Log-likelihood function L(θ;σ) ≡ log(PM({x̂t , ŷt}Tt=1;σ, θ))

Estimation of θ (here: MPEC, but “nesting” NFXP):

θ̂, σ̂ = arg max
θ∈Θ,σ∈Σ

L(θ;σ)

s.t. h(x ;σ, θ) = 0, ∀x ∈ S
Likelihood ratio test

Hypothesis function: τ : Θ→ R, τ ∈ C1

Hypotheses: H0 : τ(θ) = 0 against H1 : τ(θ) 6= 0 (two-sided)

Test statistic: If H0 is true, 2(L(θ̂; σ̂)− L(θ0;σ0))
a∼ χ2

1, where

θ0, σ0 = arg max
θ∈Θ,σ∈Σ

L(θ;σ)

s.t. h(x ;σ, θ) = 0, ∀x ∈ S
τ(θ) = 0
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Test Inversion and Confidence Intervals

Set of hypothesis values a which would not be rejected, given L(θ̂; σ̂)

Aα ≡ {a ∈ R : ∃θ, σ : h(x ;σ, θ) = 0 and H0 : τ(θ) = a not rejected at level α}

Convex hull: Aα ⊆ [min(Aα),max(Aα)] ≡ [
¯
a, ā]

A 6= ∅ because τ(θ̂) ∈ Aα; not a singleton if L ∈ C0 and α > 0

Computation of
¯
a (ā analogously as max problem, or min−τ(θ)):

ˆ
¯
a = min

θ∈Θ,σ∈Σ
τ(θ)

s.t. h(x ;σ, θ) = 0, ∀x ∈ S
L(θ;σ) ≥ L(θ̂; σ̂)− 0.5χ2

1(1− α)

Aα forms a (1− α) · 100% confidence interval for τ(θ)

In repeated sampling experiments and estimations of θ, Aα would contain the
“true” value of θ in (1− α) · 100% of the times
“Duality of hypothesis testing and confidence intervals”
Dimension-wise confidence intervals of θ using τ : θ 7→ θk
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The Bus Engine Replacement Model (Rust, 1987)

Dynamic machine renewal problem
Payoff function

u(x , i ; θ) + ε(i) =

{
θRC + ε(1) i = 1

θ1 · x + ε(0) i = 0

Law of motion of the states:
Pr(x ′|x , i ; θ), with Pr(x ′ < x |i = 0; θ) = 0 and Pr(x ′ = 0|x , i = 1; θ) > 0
ε ∼ EV 1 i.i.d.

(Integrated) Bellman equation

EV (x , i) ≡ E[V (x ′, ε′)|x , i ]

=

∫∫
max{u(x ′, i ′; θ) + ε′(i ′) + βEV (x ′, i ′)}Pr(x ′|x , i ; θ)q(ε′)dε′dx ′

≡ T [EV ; θ](x , i)

Estimate θ from data {xt , it}t,i (here: MPEC, but “nesting” NFXP)

θ̂, ÊV = arg max
θ∈Θ,EV

L(θ;EV )

s.t. EV (x , i) = T [EV ; θ](x , i), ∀x ∈ S, i ∈ {0, 1}
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Confidence Intervals

(1− α) · 100% Confidence intervals for τ = (θRC , θ1, θRC/θ1) (and −τ)

min
θ∈Θ,EV

τk

s.t. EV (x , i) = T [EVθ; θ](x , i), ∀x ∈ S, i ∈ {0, 1}

L(θ;EV ) ≥ L(θ̂; ÊV )− 0.5χ2
1(1− α)

Coverage analysis:

Simulate data sets under θ̃
Estimate ˆ̃θ and its confidence intervals
Check for inclusion of θ̃

Comparison:

Two different data set sizes (8,112 and 780)
Various types of confidence intervals

Likelihood ratio confidence intervals (LRCI)
Wald/SE (with delta method for mapped parameters)
Bootstrapping (sample quantiles)
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Confidence Intervals: Coverage Analysis (1)

LRCI

Sample size: 8,112 Sample size: 780
coverage min max coverage min max

θRC 0.961 6.465 21.77 0.958 4.333 153.7
θ1 0.953 0.558 7.888 0.938 7e-16 73.33
θRC/θ1 0.942 2.348 12.07 0.911 1.305 4e07

Wald/SE (with delta method)

θRC 0.952 6.367 20.85 0.955 -42.53 132.8
θ1 0.928 0.450 7.404 0.935 -22.60 61.00
θRC/θ1 0.962 2.212 10.30 0.791 -8e04 8e04

Bootstrap (sample quantiles)

θRC 0.928 5.736 20.56 0.675 4.709 350.0
θ1 0.939 0.273 7.723 0.813 1e-12 167.4
θRC/θ1 0.939 2.231 11.11 0.880 1.181 5e12

LRCI Wald Bootstrap

time (sec) 288 12 6,305
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Confidence Intervals: Coverage Analysis (2)
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Counter-Factuals: Demand Estimation in Rust (1987)

Counter-factual: Use estimated model to carry out “policy experiments”, e.g.
by simulating/integrating the model variants to obtain and compare some
derived quantity.

Assumption: Structural parameters are policy-invariant.
Goal: Analyze how estimation error propagates to derived quantities.

Counter-factual is a map of the parameters, but its derivative is not
always straightforward to compute (needed for delta method)

Demand function estimation in Rust (1987)

d(θRC ) ≡
∫
πθ(x , i = 1)dx

where the stationary distribution is defined as

π(x , i) =

∫∫
Pr(i |x ;EVθ)Pr(x |x ′, i ′; θ)π(x ′, i ′)dx ′di ′,
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Demand Curve in Rust (1987)

AN EMPIRICAL MODEL OF HAROLD ZURCHER 1031 

value of mean mileage given that replacement hasn't yet occurred is 159,305 
which is also within half a standard deviation of the actual value of 134,862. 
Thus, use of a stationary distribution to compute replacement demand does not 
appear to be greatly at odds with the data. 

By parametrically varying replacement costs, I can trace out the equilibrium 
distribution ir, as a function of RC. In particular, using formula (6.3) I can 
compute the expected demand curve for replacement investment. Figure 7 presents 
the expected demand function d (RC) for model 11 for a fleet containing a single 
bus, M = 1. For comparison, I also present the implied demand curve for the 
static model with ,3 = 0. We can see significant differences in the predictions of 
the two models. As one might expect, the demand curve for the myopic model 
is much more sensitive to the cost of replacement bus engines, overpredicting 
demand at low prices, underpredicting demand at high prices. Notice, however, 
that the maximum likelihood procedure insures that both models generate the 
same predictions at the actual replacement cost of $4343. 

Figure 7 summarizes the value of the "bottom-up" approach to replacement 
investment. Since engine replacement costs have not varied much in the past, 
estimating replacement demand by a "reduced-form" approach which, for 
example, regresses engine replacements on replacement costs, is incapable of 
producing reliable estimates of the replacement demand function. In terms of 
Figure 7, all the data would be clustered in a small ball about the intersection 
of the two demand curves: obviously many different demand functions would 

Expected Replacement Demand Function 
Annual Replacement Demand for Model 11 

0.4 

0.35 
3=0 

0.30 - 

e 0.25 - 

U~0.2- 

0.15 [399 

Uo 0.1I 

0.05 

0.00 - 
0 2 4 6 8 10 12 

(Thousands) 
Parts cost of replacement bus engine 

FIGURE 7 

This content downloaded  on Thu, 7 Feb 2013 08:57:45 AM
All use subject to JSTOR Terms and Conditions

Reich and Judd Likelihood Ratio Confidence Intervals ESWC 2020 8 / 11



Confidence Intervals for Demand Curve (1)

Confidence interval for d(θRC ) (θRC fix)

ˆ
¯
d(θRC ) = arg min

θ1,θ̃RC ,π,EV ,ẼV

∫
π(x , i = 1)dx

s.t. π(x , i) =

∫∫
Pr(i |x ;EV )Pr(x |x ′, i ′; θRC , θ1)π(dx ′, di ′),∀x , i

EV (x , i) = T [EV ; θRC , θ1](x , i), ∀x , i

ẼV (x , i) = T [ẼV ; θ̃RC , θ1](x , i), ∀x , i

L(θ̃RC , θ1; ẼV ) ≥ L(θ̂; ÊV )− 0.5χ2
1(1− α)

Reich and Judd Likelihood Ratio Confidence Intervals ESWC 2020 9 / 11



Confidence Intervals for Demand Curve (2)
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Conclusions

We propose an efficient and easy-to-implement way to compute likelihood
ratio confidence intervals (LRCI) for structural parameters—and mappings
thereof—using constrained optimization

We demonstrate that LRCI have very competitive coverage properties, in
particular for mappings and smaller data sets; runtime performance is
somewhere in between standard error based CIs and bootstrapping approaches

We demonstrate the applicability to counter-factuals—a specific kind of
mapping—which would otherwise be hard to assess for estimation error
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