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The Likelihood Ratio Test

@ Setup
o Model M: Structural parameters 6 € ©, states x € S, “outcomes” y € ),
policy/endogenous variables o € X
o Model solution conditions h(x;0,8) =0, Vx € S
o Data set {&, ¥ }i—1
o Log-likelihood function L(6; o) = log(Pam({%:, 9t }i-1; 0,6))
o Estimation of § (here: MPEC, but “nesting” NFXP):

0,6 =arg aerg’;?(ezL(H; o)
sit. h(x;0,0)=0, VxS

@ Likelihood ratio test
o Hypothesis function: 7:© - R, 7 € ct
o Hypotheses: Hp : 7(0) = 0 against H; : 7(68) # 0 (two-sided)
o Test statistic: If Hy is true, 2(L(§; &) — L(6o; 00)) 2 %3, where

0o, 00 = argoGrgaszL(Q; o)

st. h(x;0,0)=0,VxeS
7(0) =0
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Test Inversion and Confidence Intervals

@ Set of hypothesis values a which would not be rejected, given L(é; )
A*={a€R:30,0: h(x;0,0) =0 and Hp : 7(8) = a not rejected at level a}

o Convex hull: A* C [min(A®), max(A®)] = [a, 3]

o A # ) because 7(#) € A%; not a singleton if L € C° and a >0
e Computation of a (3 analogously as max problem, or min —7(9)):

2=, 8070
sit. h(x;0,0) =0, Vxe S
L(6;0) > L(B; 6) — 0.5x3(1 — a)

e A* forms a (1 — «) - 100% confidence interval for 7(9)
o In repeated sampling experiments and estimations of 6, A would contain the
“true” value of 0 in (1 — «) - 100% of the times
o “Duality of hypothesis testing and confidence intervals”
e Dimension-wise confidence intervals of 0 using 7: 0 — 0
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The Bus Engine Replacement Model (Rust, 1987)

@ Dynamic machine renewal problem
o Payoff function

Orc+e(1) =1

e Law of motion of the states:
o Pr(x'|x,i;8), with Pr(x’ < x|i =0;0) =0 and Pr(x’ =0|x,i =1;6) >0
o e~ EV1iid.

o (Integrated) Bellman equation

EV(x,i) = E[V(X,&")|x,i]
// max{u(x’,i’;0) +&'(i") + BEV (X', i)} Pr(x'|x, i; 0)q(c")de dx’

T[EV;6](x, i)

o Estimate 6 from data {x:, it}+; (here: MPEC, but “nesting” NFXP)
),EV = L(6; EV
g LY (0:EV)
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sit. EV(x,i)= T[EV;0](x,i), ¥x € S,i €{0,1}
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Confidence Intervals

o (1 —«a)-100% Confidence intervals for 7 = (6rc, 01, Orc/61) (and —7)

min 7Tk
0€0O,EV

sit. EV(x,i) = T[EVy; 0](x,i), ¥x € S,i €{0,1}
L(6; EV) > L(6; EV) — 0.5x3(1 — a)

o Coverage analysis:
e Simulate data sets under 6
o Estimate ¢ and its confidence intervals
o Check for inclusion of
o Comparison:
e Two different data set sizes (8,112 and 780)
e Various types of confidence intervals

o Likelihood ratio confidence intervals (LRCI)
e Wald/SE (with delta method for mapped parameters)
@ Bootstrapping (sample quantiles)
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Confidence Intervals: Coverage Analysis (1)

LRCI
Sample size: 8,112 Sample size: 780
coverage min max coverage min max
Orc 0.961 6.465 21.77 0.958 4333 1537
01 0.953 0.558 7.888 0.938 7e-16  73.33
Orc /01 0.942 2348 12.07 0.911 1305  4e07
Wald/SE (with delta method)
Orc 0.952 6.367 20.85 0.955 -42.53 1328
01 0.928 0.450 7.404 0.935 -22.60 61.00
Orc /01 0.962 2212 10.30 0.791  -8e04  8e04
Bootstrap (sample quantiles)
Orc 0.928 5736 20.56 0.675  4.709 350.0
01 0.939 0273 7.723 0.813 le-12 167.4
Orc /61 0.939 2231 11.11 0.880 1.181 5el2

LRCI Wald Bootstrap
time (sec) 288 12 6,305
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Confidence Intervals: Coverage Analysis

LRCI BS/SQ

BS/SQ
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Counter-Factuals: Demand Estimation in Rust (1987)

o Counter-factual: Use estimated model to carry out “policy experiments”, e.g.
by simulating/integrating the model variants to obtain and compare some
derived quantity.

e Assumption: Structural parameters are policy-invariant.
o Goal: Analyze how estimation error propagates to derived quantities.

o Counter-factual is a map of the parameters, but its derivative is not
always straightforward to compute (needed for delta method)

@ Demand function estimation in Rust (1987)

d(Orc) = /m(x, i=1)dx

where the stationary distribution is defined as

m(x, i) = // Pr(i|x; EV)Pr(x|x',i’; 0)m (X', i")dx'di’,
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Demand Curve in Rust (1987)

Expected Replacement Demand Function
Annual Replacement Demand for Model 11
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Confidence Intervals for Demand Curve (1)

e Confidence interval for d(Ogrc) (Orc fix)

d(0rc) = arg min /7r(x,i = 1)dx
601,0rc,7,EV,EV

s.t. w(x, i) = // Pr(i|x; EV)Pr(x|x',i"; Orc, 61)m(dx’, di'), ¥x, i
EV(x,i) = T[EV; Orc, 01](x,i), Vx,i
EV(x,i) = T[EV;brc,01](x. i), ¥x,i
L(fre,01: EV) > L(B; EV) — 0.5x3(1 — o)
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Confidence Intervals for Demand Curve (2)

—~ 0.3

d(@Rc
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Conclusions

@ We propose an efficient and easy-to-implement way to compute likelihood
ratio confidence intervals (LRCI) for structural parameters—and mappings
thereof—using constrained optimization

@ We demonstrate that LRCI have very competitive coverage properties, in
particular for mappings and smaller data sets; runtime performance is
somewhere in between standard error based Cls and bootstrapping approaches

@ We demonstrate the applicability to counter-factuals—a specific kind of
mapping—which would otherwise be hard to assess for estimation error
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