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Abstract 

This essay examines the idea and potential of a ‘computational approach to theory’, 
discusses methodological issues raised by such computational methods, and outlines the 
problems associated with the dissemination of computational methods and the exposition 
of computational results. We argue that the study of a theory need not be confined to 
proving theorems, that current and future computer technologies create new possibilities 
for theoretical analysis, and that by resolving these issues we will create an intellectual at- 
mosphere in which computational methods can make substantial contributions to economic 
analysis. 

Kqwords: Computational approach; Theoretical analysis 

0. Introduction 

The increasing power of computers presents economic science with new oppor- 
tunities and potential. However, as with any new tool, there has been discussion 
concerning the proper role of computation in economics. Some roles are obvious 
and noncontroversial. Most will agree that computation is necessary in economet- 
ric analysis and offers some guidance in policy discussions. Theorists will admit 
that examples are useful in illustrating general results. However, the discussion 
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frequently gets heated when one raises the possibility of using the computer and 
computer-generated ‘examples’ instead of the classical assumption-theorem-proof 
form of analysis for studying an economic theory. In economic terms, the first 
roles for computation are complements to and a useful ingredient in standard 
research activities; however, the activity of computational theory appears to be a 
substitute for conventional theoretical analysis. In this essay, I will focus on the 
potential role of computational methods in economic theory and their relation to 
standard theoretical analysis, asking ‘Are they complements or substitutes?’ 

We should first realize that the issues raised by the recent surge in the use 
of computation in economics also arise in general science; in fact, economic 
science is far behind most sciences. In the past, science proceeded in two fashions. 
First, there were the observational and experimental modes wherein observations 
of actual phenomena were used to determine general patterns. Second was the 
development of theories, wherein formal models of nature were constructed and 
their logical implications explored through abstract mathematical reasoning. The 
objective of such an approach is to summarize the implications of a theory in the 
form of some closed-form expression and/or some general statements, usually 
called theorems. I shall call that mode of theoretical analysis deductiae theory. 
However, the common limitation of such an approach is that only simple cases 
of the general theory can be completely examined in this way. For example, in 
both classical and quantum physics the general n-body problem can be solved 
only for n = 2. Science has always resorted to approximation methods to extend 
its analysis, and as computational power has grown science has exploited a wide 
range of numerical and computational methods to analyze its theories. I shall 
refer to this activity as computational theouy.2 

Economics is also undergoing the same transformation, following in the tracks 
of physics, chemistry, astronomy, and other ‘hard’ sciences. Below, I will give 
some examples of how we may learn from their experience and some common 
problems. However, economics does have idiosyncratic features which limit the 
value of studying how other fields use computation. In particular, physical theories 
are very specific, such as the inverse square law of gravitation and Schrodinger’s 
equation, whereas economic theories often make qualitative assumptions, such as 
concavity, and deduce qualitative implications, such as efficiency of equilibrium. 
Furthermore, the physical behavior studied in physics is presumed to be exact 
- God may or may not throw dice, but physicists assume that God does not 

make any mathematical errors in the execution of natural laws - whereas few 
economists really believe that their objects of study, ordinary economic agents, 
are infinitely intelligent agents acting with infinite precision. These differences 
have important implications generally; the one idea pursued here is that the 

2 Since logic as practiced in economic theorizing is finitistic, computer proofs of theorems in 
economics will surely come to be important in the future. However, this essay ignores this application 
of computation and treats theorem-proving as an exclusively human activity. 
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finite intelligence of economic agents help us interpret the errors which arise 
in any computational method. In the sections below I will discuss ways in which 
computational methods can be used to analyze economic theories. 

While my main focus will be on the potential intellectual and scientific value 
of computational methods in theory, I must also discuss several institutional and 
professional aspects of the economics community which will need to be adjusted 
if we are to realize this potential. The use of computation has been increasing, as 
indicated by the examples I cite and the much larger number of examples I do 
not cite. In preparing this paper I did some literature search and was surprised at 
the extent to which computation has become a common tool. The computational 
literature is clearly growing rapidly. 

However, the progress is uneven. The acceptance of computationally intensive 
research varies across fields. Even where accepted, there is little agreement on 
how to present computational results and techniques. Frequently, authors are not 
allowed to publish the basic computational details of their work, even when the 
computational innovation is of greater interest than the particular economic ap- 
plication, while others are given substantial space for doing nothing more than 
reinventing the wheel. There is also uneven awareness of computational meth- 
ods; in some fields the typical author is acquainted with the latest mathematical 

developments, whereas authors in other fields use decades-old methods much 
less efficient than those currently available in the mathematics literature. There is 
neither a common core of methods nor language. The vocabulary used by some 
economists is inconsistent with mathematical practice and authors often do a poor 
job in describing their methods, making it difficult for readers to understand the 
descriptions and for techniques to disseminate. These problems keep computa- 
tional economics from realizing its potential, particularly in theoretical studies. 

In this essay, we attempt to discuss a variety of methodological issues, and 
indicate ways we can increase the value and acceptance of computational work. 
Since computational methods have been more intensively exploited in other sci- 
ences, we first discuss the role which computational methods have played there. 
We do this also to deal with some misperceptions about the hard sciences which 

may exist among economists. We outline the range of economic problems which 
can now be reasonably solved, showing that computational approaches to eco- 
nomic analyses is not limited by a lack of algorithms. We review what we mean 
by a theory, and argue that theorem-proving is not the only way to examine the 
implications of a theory, arguing that in the absence of theorems the computa- 
tion of numerous ‘examples’ is of substantial interest. We assert that since any 
theoretical analysis is really an approximation of the economic reality which we 
are trying to model, we have to ask which is more important: the development 
of theories simple enough for theorem-proving, or examining more reasonable 
theories using less precise numerical methods. 

These arguments point in the direction of substituting computation for con- 
ventional theorem-proving. We then discuss ways in which computational ideas 
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and theorem-proving work together, complementing each other’s strengths and 
weaknesses. We assert that proving important theorems can be essential to sensi- 
ble computational methods, and computational results can motivate and suggest 

possible theorems. 
We then move on to formulating an approach to theory combining theoretical 

and computational methods. This part of the essay offers one vision of how 
theorem-proving and computation can work together. We also discuss various 
changes in the economics infrastructure which must be made before we can 
realize the potential benefits of computational methods. 

Before continuing, the reader should be warned that this is not meant to be 
a precise, passionless, unbiased analysis of an economic question. This essay 
is intended to be provocative, and to stimulate discussion. Much of what is 
presented below is meant to highlight important issues; they are not meant to 

be a complete treatment of the intellectual history of computational economics. 
The topics and examples we discuss are also idiosyncratic, reflecting my expe- 
rience and limited awareness of the literature. Other commentators have taken 
different positions on some of the issues; for example, Bona and Santos (1995) 
and Canova (1995) present different perspectives. I treat some of these issues 
in a more balanced, detailed, and expansive way in Judd ( 1998). Interested 
readers should also consult Kendrick (1995) Pakes and Maguire ( 1994) Rust 
(1994, 1996), Marcet (1994), Judd ( 1994, 1996), and the papers in the Hund- 
hook qf’ Computationul Economics for other discussions of important issues. 
The purpose here is to dramatize the issues so that we may work to improve 
the quality, soundness, and appreciation of computational work in economic 
analysis. 

1. Computation and science 

There have been many important developments in the physical sciences made 
through computational methods. Some examples have a flavor similar to the prob- 
lems encountered in economics. This section presents a few which I have found 
to be intuitively valuable; reviewing them gives us an idea about what can be 
done in computational economics. 

One of the great mysteries in astronomy is Jupiter’s Red Spot. It is essentially a 
hurricane, a common occurrence in our atmosphere, but the Red Spot is one which 
has continued for centuries. Scientists have long wondered how the Red Spot 
could remain stable for so long. A computer model of Jupiter’s atmosphere was 
run to see if a hurricane of centuries-long duration would arise. The surprising 
result was that nothing exotic was needed for such Red Spots to arise other than 
standard interactions of the fluid, gravitational, and energy properties of Jupiter. 
The importance of the computational approach for this conclusion is obvious 
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since only a computer model could handle the turbulent interactions inherent in 
such phenomena. 

Astronomical and meterological examples of computational modelling are 
appropriate for economists. Since astronomy, meterology, and economics are all 
largely observational sciences, not experimentak3 they all have to take what they 
observe and try to back out the causes. Computer modelling operates as a sub- 
stitute for experimentation in screening possible explanations for plausibility and 
consistency. 

In fact, some of the successes of the computational approach in economics are 
similar to other computational successes. Using computational methods, Kydland 
and Prescott (1982) showed that fairly simple dynamic general equilibrium mod- 
els could display the type of economic fluctuations we observe in the macro- 
economy. Prior to that many argued that macroeconomic data were inconsistent 
with the standard competitive model, just as many thought that the Red Spot 
was due to special causes. While the full Real Business Cycle (RBC) research 
program remains controversial and unfinished, it is a major contender in the cur- 
rent intellectual battles and is an example of research conducted in a largely 
computational manner. 

These examples all use conventional methods of numerical analysis to com- 
pute approximate solutions. Another way to generate such applications is to use 
asymptotic and perturbation methods. The idea is to find some special case where 
the equations are solvable, and then use implicit function theorems to compute 
a series expansion to describe nearby cases. This technique (described more pre- 
cisely below) is very important in quantum theory and general relativity since 
the solvable cases are rare. 

The value of approximation methods, numerical and asymptotic, in the physical 
sciences is undisputed. If theoretical physicists insisted on using only closed-form 
solutions or proofs of theorems to study their models, they would spend their 
time examining the hydrogen atom, universes with one star, and other highly 
simplified cases and ignore most interesting applications of physical theories. 
With computational methods, physicists study complex processes such as collid- 
ing black holes and molecule formation. These observations serve two functions. 
First, they indicate the high cost of staying with closed-form solutions. Second, 
they dispel any notion that staying with closed-form solutions and deductive ap- 
proaches to theoretical analysis is a requirement for doing respectable, rigorous 

science. 

3 The parallel is not exact. The nonexperimental nature of economics research is a political fact, 

not inherent in the field. If economic research were given a budget equal to that given to the search 

for the Higgs boson, top quark, and other exotic particles, economics could also be an experimental 

science. 



912 K.L. JuddlJournal c~f Economic Dynamics and Control 21 (1997) 907-942 

2. What can economists compute? 

The next point which must be made is that there is a wide range of economic 
models which can be computed in reliable and efficient fashions. Some of this 
material is old and standard, but the recent upsurge in interest in computational 
methods has generated a large amount of new work, allowing us to solve mod- 
els previously considered intractable. Any review of this literature indicates the 
substantial potential of computational methods, and the breadth of available meth- 
ods shows that all areas of economic inquiry can profitably use computational 
methods. 4 

First, we should remember that the linear-quadratic approach to modelling 
produces computationally tractable analyses of models of dynamic choice in 
both competitive and game-theoretic contexts, with and without perfect infor- 
mation. Even today, progress is being made in improving the solution methods 
for the Riccati equations that arise in linear-quadratic control problems. The 
excellent manuscript by Hansen and Sargent (1995) presents many of these 
techniques. Despite the fact that these tools are well understood, even this ap- 
proach has been used relatively little in theoretical work. For example, consider 
industrial organization theory. The literatures on imperfect competition, learn- 
ing curves, investment, and informational asymmetries are dominated by static 
(or nearly static) models which can never be reasonably calibrated to yield 
quantitatively sensible discussions of these phenomena. The other common ap- 
proach is to use supergame models in which nearly anything is an equilibrium. 
Dynamic games are easily computed (see the papers by Kydland, 1975), but 
outside of few exceptions (Judd, 1985; Reynolds, 1987) this approach is al- 
most never taken in theoretical industrial organization. In contrast, these meth- 
ods are used extensively in the international policy literature (see Fershtman, 
1987). 

Second, there is the computational general equilibrium literature. This litera- 
ture took off with the development of Scarf’s algorithm thirty years ago; see 
Shoven and Whalley (1984) for a survey. Recent advances include the appli- 
cation of variational inequalities; see the book by Nagurney (1993) for recent 
work in this area and economic applications. Computational general equilibrium 
is the most mature computational area in economics, but it focusses generally 
on policy-related research such as taxation, trade policy, regional development 
and is usually weak on the intertemporal dimension. The recent work of Brown 
et al. (1995) and Schmedders (1996) now makes it possible to compute general 
equilibrium with incomplete asset markets. 

4The following is far from a complete listing. I have focussed on numerical methods which are 

currently on the efficiency frontier of computing. See Judd (1997) for a more complete listing of 
alternative methods. 
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Recent years have seen much work on developing numerical methods for non- 
linear dynamic problems. There has been much effort recently on computing dy- 

namic programming models. Johnson et al. (1993) and Judd and Solnick (1995) 
have demonstrated the usefulness of using approximation methods to solve dy- 
namic programming problems. 

Perfect foresight models have been developed in the past fifteen years to study 
inter-temporal economic equilibrium. These models typically boil down to two- 
point boundary value problems, a class of mathematical problems for which 
there is a wealth of methods. The work of Auerbach and Kotlikoff (1985) and 
Bovenberg and Goulder (1991) are typical examples of this class of models. 

One of the most interesting problems in computational economics has been 
the solution of rational expectations models. The first work was by Gustafson 
( 1958); Wright and Williams (1984) developed efficient methods to compute 
rational expectations equilibrium even in the presence of frequently binding con- 
straints. Tauchen (1986) applied Fredholm integral equation methods to solve 

asset pricing models. Judd (1992) showed how to use projection methods to 
develop efficient schemes for solving complete information rational expectations 
models. Laitner ( 1984) Srikant and Basar ( 199 1 ), Budd et al. ( 1993) Bensoussan 
(1988) Fleming ( 1971), Fleming and Souganides (1986), Judd ( 1996) and Judd 
and Guu (1996) have solved for high-order Taylor expansions of rational expec- 
tations models, including dynamic games. Dixit (1991) Samuelson (1970) and 
Judd and Guu (1996) derived approximation methods for asset problems. Ausubel 
(1990) and Judd and Bernard0 (1995) have solved models of asymmetric infor- 
mation much more general than the ubiquitous but special exponential-Gaussian 
example. 

There has also been much success in developing algorithms for solving for 
Nash equilibria of games. Lemke and Howson (1964) computed Nash equilib- 
ria of two-person games, and Wilson (1971) extended this to general n-person 
games. Wilson (1992) also developed an algorithm to compute stable equilibria. 
Despite the large body of work on this topic, I know of no application of these 
methods to a specific problem. More recently Pakes and Maguire (1994) applied 
computation methods to dynamic games of entry and exit, and Miranda and 
Rui (1994) have applied polynomial approximation methods for computing Nash 
equilibria of general nonlinear dynamic games. Judd and Conklin (1995) have 
developed methods for finding all subgame perfect equilibria in infinite-horizon 
games, including problems with state variables and asymmetric information. 

These examples are general methods which solve general classes of problems. 
Many others have developed solution methods for specific problems; we will 
see some in our discussion below. This quick review shows that we now have 
numerical methods for solving a wide variety of basic problems. In fact, it is 
difficult to think of a problem in economic theory where there does not now exist 
a reasonable algorithm to use. After reviewing the array of available methods, 
I am disappointed with the relatively small role any of them, even the well-known 



914 K. L. Judd1 Journal of Economic Dynamit:~ and Control 21 (1997) 907-942 

old methods, play in theoretical analysis of economic problems. I suspect that 
there are many reasons for this. While part of the explanation is that many 
economists are unaware of these methods, the deeper reason is that even those 
who do know computational methods do not quite know how to use these tools 
in a way generally accepted by the profession, and therefore, in many branches 
of economics, there is little incentive to learn numerical methods. I will return 
to these issues, but first I will discuss the methodological issues. 

3. The advantages of deductive theory 

Just as the last section focussed on what computation can do, we should note 
the many absolute advantages of deductive theory. There are many questions 
which only deductive theory can address. Only deductive methods can prove the 
existence of solutions as conventionally understood; I hedge now because I will 
return to this issue below. More generally, only deductive methods can determine 
the topological and qualitative structure of a model. For example, deductive meth- 
ods tell us if equilibrium depends on parameters in a continuous fashion, or if 
an agent’s equilibrium decision rule is increasing, continuous, and/or concave in 
the agent’s state variable. 

Deductive methods are also necessary for analyzing infinite-dimensional ques- 
tions. The utility functions, production functions, and other structural elements 
which go into any computational analysis will generally be from some finitely 
parameterized family. In contrast, deductive methods can analyze infinite-dimen- 
sional classes of models, such as analyses which derive properties about models 
with arbitrary concave utility functions. Of particular interest to economists is 
the ability of deductive methods to tell us if equilibrium is ‘efficient’ in some 

appropriate sense. 
Sometimes deductive theory can answer important questions without resorting 

to special cases. I claim that deductive theory can seldom answer all important 
questions, and that computation can pick up where deductive theory ends. To 
see how that can be, we must have a broad view of what constitutes theory, 
a question to which we now turn. 

4. Theoretical analysis versus proving theorems 

The comments above indicate that deductive methods and computational meth- 
ods have very different strengths. In this section and the next, we begin to be 
more precise about what we mean by theoretical analysis, argue that theory is 
not synonomous with theorems, and argue that computation may contribute to an 
analysis of a theory. 
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I want to argue that ‘theoretical analysis’ does not necessarily involve the 
statement and proof of theorems. A theory, as generally understood in mathe- 
matics and science, is a collection of concepts, definitions, and assumptions. The 
focus of a theoretical study is to determine the implications of a theory. This is 
conventionally done through proving theorems. Occasionally, we can prove gen- 
eral theorems, such as the existence and welfare theorems of general equilibrium 

theory. The more common situation finds us unable to prove general results, in 
which case we turn to special cases which are tractable. The main point is that 
these special cases are also just collections of examples of the theory, albeit of 
greater cardinality, that they do not always indicate the true general patterns, 
and that computational methods can provide insight by examining collections of 
examples which would otherwise be ignored. 

This may sound heretical, but that is partly due to the intellectual history of 
modem economic analysis. While all of science uses the theorem-proof approach 
to some extent, the emphasis in economic theory on theorem-proving is not typ- 
ical. For example, much of conventional economic theory focuses on existence 
theorems. Existence results are important for any theory since they establish in- 
ternal, logical consistency. Much of the effort in economic theory has been on 
existence proofs, and the professional rewards in that area can be great. For ex- 
ample, when we discuss general equilibrium theory, the names of Arrow, Debreu, 
and McKenzie come to mind, not because they formulated the basic concept of 
general equilibrium but rather because of their contributions to existence theory. 
The activity of providing such proofs is not as well rewarded in physics. For 
example, when we think of general relativity theory, the name Einstein comes 
immediately to mind. His contribution was to list the basic concepts, assumptions 
and equations, and derive some implications of relativity theory. However, he did 
not demonstrate the logical consistency of general relativity theory by proving 
the existence of nontrivial solutions to the critical equations. Nor did Einstein 

present any closed-form examples which in fact he doubted existed; that was 
accomplished later by Schwartzschild, Godel, etc., names which are less honored 
in relativity theory. 

Economists sometimes argue that economics should be a ‘hard’ science, like 
physics. From our exposure to physics in high school and college, many of us 
have a view that physics consists of using basic assumptions to rigourously derive 
complete, generally closed-form, solutions to physical problems. While that may 
have been the nature of our problem sets and examinations, it is not the nature 
of theoretical physics. In physics, there is a sharp distinction between theoretical 
physics and mathematical physics. Theoretical physics often uses mathematical 
techniques which are not logically well-founded. For example, physicists used 
the elements of distribution theory, such as the Dirac delta function, long before 
Schwartz developed distribution theory, and did so despite the contempt which 
pure mathematicians displayed for their methods. Even today, asymptotic methods 
are often used without complete, formal foundations. Theoretical physicists also 
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pursue numerical solutions of equations for which there are no existence theorems. 
These ad hoc and informal methods have often stimulated mathematicians and 
mathematical physicists to provide the formal foundation. 5 

The standard methodology of economic theory reminds one not of the phys- 
ical sciences but of the Bourbaki school of mathematics, a movement which 
insisted on reducing everything in mathematics to pure logic. When mathemati- 
cal methods were introduced into economics, it was perhaps desirable that a pure, 
Bourbaki kind of approach be used since economists were not well-acquainted 
with mathematics. However, now that the profession has matured, an approach 
closer to that of theoretical physics is perhaps more desirable, particularly given 
the power of these tools, and we should also develop the same distinction between 
mathematical economics and economic theory. 

Another important distinction between economics and mathematics is the ar- 
chitecture of a theory. Pure mathematics is a cumulative activity where the result 
of one theorem is used in proving many others. The path from definitions and 
assumptions to final proof is very long for most of mathematics. When the struc- 
ture of a theory is so deep, it is imperative that the foundations and intermediate 

development be completely justified. It is understandable why theorem-proving is 
and will remain the dominant mode of analysis in mathematics. 

This is not the case in economics. The economic portion of any economic 
theory is a ‘shallow’ layer lying on top of a deep, primarily mathematical, edi- 
fice. The usual proof of an economic theorem relies little on previous economic 
theorems. There may be similarities across proofs, but each proof uses few if 
any economic theorems, relying far more on mathematics with a deep logical 
foundation. Therefore, the errors and imprecision of computational methods in 
one economic analysis have much less chance of contaminating and undermining 
later work. 

These observations all emphasize the main point that economics is not mathe- 
matics. While many of us would have preferred being pure mathematicians, we 
should not try to turn economics into a branch of pure mathematics. 

5. Simple models versus the ‘black box’ 

Many theoretical analyses suffer from at least one of two important defects. 
Sometimes deductive analyses make special assumptions which succeed in de- 
livering sharp results, but are of questionable robustness. A related problem is 
that the conclusions are often qualitative in nature, lacking any substantive quan- 
titative guidance. To understand the potential for computational work to make 
a contribution, we consider some examples of these problems. 

5 d’lnvemo (1992, pp. 368-378) discusses this point and many others I raise in this essay but in 
the context of general relativity theory, indicating that much of science is wrestling with these issues. 
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The first criticism applies to the parametric modelling typical of theoretical 

analysis in the applied fields, particularly theoretical industrial organization (see 
any of the author’s papers in industrial organization for examples). Theoretical 
models often make simplifying assumptions so that they can get clear, substantive 
results. The results are often unrealistic since the elements which are sacrificed 
in the interest of simplicity are often of first-order importance. An excellent 
example of this occured recently in the economic literature on executive com- 
pensation. Jensen and Murphy ( 1990) in their study of executive compensation 
found that management earned, at the margin, only three dollars per thousand 
dollars of profits. They argued that this was far too small to create the proper 
incentives for managers. They made reference to the fact that risk-neutral man- 
agers would earn all the residual profits under the optimal contract, and argued, 
without making any computations, that observed incentives were too small to 
be consistent with manager risk-aversion. In response, Haubrich (1994) actually 
computed some optimal contracts and showed that with reasonable estimates of 
risk aversion the optimal contract would give managers much less marginal in- 
centive; in fact, he showed that for many of the examples in Jensen and Murphy, 
the marginal incentive would be three dollurs per thousand! The use of the theo- 
retically simple benchmark model, the risk neutral manager, produced a strong 
implication (that manager pay should be strongly tied to performance) which was 
completely reversed by the use of a computational approach to a more sensible 
model. 

Another good example is the theory of nonlinear pricing. The standard approach 
is to assume that the potential buyers can be described by a one-dimensional 
characteristic. The result has been a rich literature. However, many problems are 
clearly multidimensional. Wilson (1996) discusses this literature and uses com- 
putational methods to solve some two-dimensional problems. He concludes that 
‘the qualitative properties of the [solution] bear little relation to those predicted 
from studies of the one-dimensional case’. 

The other problem with much of deductive theoretical analysis is that the 
results are nonquantitative. This criticism applies to general equilibrium theory, 
an example of what is generally regarded as a great success. The existence of 
equilibrium is an important question, but existence does not tell us much about 
equilibrium. Efficiency results are also important, but they usually come at the 
cost of some assumptions (zero transaction costs, perfect information, etc.) which 
are not considered realistic. When we relax some assumptions, we may end up 
with equilibrium being generically inefficient, but the stark judgement - efficient 
or inefficient - is of little guidance concerning corrective practical policy. It may 
be that equilibrium is inefficient, but if the amount of inefficiency is small then 
equilibrium is essentially efficient. 

Existence theory and efficiency analysis are enormously important since they 
give us important guidance about critical issues and teach us how to approach 
these issues. However, it is a mistake to think that the job is done. 
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While most will agree that theoretical models are generally too simple, they 
will also claim that a computational analysis is not a good alternative. Many 
argue that the results of a computational study are unintuitive and incomprehen- 
sible because the computer program which generates the result is essentially an 
impenetrable ‘black box’. 

These criticisms are valid, but not damning. I will give two responses in this 
essay. First, the black box criticism is often more a comment on the poor fashion 
in which most computational work is exposited and the general lack of sensitivity 

analysis. When a computation gives an answer, we do want to know which 
economic forces and considerations determined the answer. To some extent, the 
only way to address this is to conduct several alternative computations. 

The second response is to recall Einstein’s recommendation - a model should 
be ‘as simple as possible, but not simpler’. We need to remember that we are 
studying complex questions, whether we are macroeconomists or tax economists 
studying national economies and their policies, microeconomists studying firms, 
or labor economists studying decisionmaking in a family. This consideration is 
often ignored in modern applied theory where unicausal analyses dominate. For 
example, the industrial organization literature is filled with models which explore 
one interesting feature of economic interaction in isolation. A typical model may 
study moral hazard OY adverse selection, OY entry or investment or learning or 

R&D, or asymmetric information about cost or demand, or sharing information 
about cost or sharing information about demand, or etc. To see how limiting 
this is, suppose meteorologists took this approach to studying the weather; they 
would ignore complex models and their ‘black box’ computer implementations, 
and instead study evaporation or convection or solar heating or the effects of the 
earth’s rotation. Both the weather and the economy are phenomena greater than 
the sum of their parts, and any analysis which does not recognize that is inviting 
failure. 

This is not to say that the simple focussed studies are unimportant. They do 
give us much insight. But they can only serve as a step in any substantive 
analysis, not the final statement. 

6. The real issue: Where to approximate, not Whether 

When we face up to the complexities of what we are ultimately trying to study 
in economic theory, we see that the issue is not whether we use approximation 
methods, but where in our analysis we make approximations, what kind of ap- 
proximation errors we tolerate and which ones we avoid, and how we interpret 
the inevitable approximation errors. Simple, unicausal models make approxima- 
tion errors by ignoring all but one feature of the real world. They are at best 
instructive parables. While we may be able to prove theorems about those one- 
dimensional models, the results have only approximate, if any, validity concerning 
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the real world. Computational methods can be much more realistic, but bring with 

them approximation errors of a numerical kind. We are generally presented with 

a trade-off: achieve logical purity while sacrificing realism, or bring many ele- 
ments of reality to the analysis and accept imprecision due to numerical error. 
The proper choice will depend on the context. 

Critics will properly point out that ‘more realism’ is not necessarily desir- 
able. While tractable models are limited, the polar opposite of a computer model 
which throws in everything is also of limited value. No feasible model can per- 
fectly analyze any interesting economic phenomenon. If the model being analyzed 
computationally is so complex that we have no understanding of what drives the 
results then the results are of little value in thinking about the real world, and the 
computational results of the complex model are not much more useful than a sim- 
ple, understandable model. Some economists seem to claim that they have the 
correct model and know exactly the correct parameter values, apparently from 
a conversation with God since data analysis cannot accomplish this; if that is 
the case, then they only need solve that model. Most of us have lower quality 
information and are less confident in our models. We recognize that even the 
largest computer model we could construct is a substantial simplification of the 
real world and is still only a parable, not an exact simulation. Therefore, we are 
still primarily concerned with robust results and insights, and must place a high 
premium on the comprehensibility of any model. 

Our purpose in these last sections was to argue that neither the purely deductive 
nor the purely computational mode of analysis is adequate. Both have much to 
offer and both have weaknesses. We will now discuss some of the interesting 
ways in which computational methods and conventional economic theory interact. 

7. Partners in analysis 

We now turn to the many ways in which computation and theory can inter- 
act. We first examine ways in which computational techniques and deductive 
techniques interact as strong complements. The second example is one where 
computational ideas have been used to model economic agents’ decisionmaking. 

7.1. Technical complementarities 

The goal of deductive theory in economics is to describe the nature of economic 
interaction. A complete characterization of even simple cases is often impossi- 
ble using deductive methods. However, deductive analyses can often provide a 
partial characterization, which can then be used by computational methods to pro- 
duce efficient numerical approaches, which then produce economically substantive 
results. 
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A particularly good example of this kind of partnership occurs in the literature 
on dynamic contracts. Spear and Srivastava (1987) studied a moderately gen- 
eral model of dynamic principal-agent contracting under repeated moral hazard. 
A closed-form solution for the optimal contract was not computed. Initially, the 
problem appears intractable from both a theoretical and computational view. Spear 
and Srivastava came up with an ingenius insight which reduced the problem to 
a one-dimensional, dynamic programming problem. This reduction did not make 
pure theory much easier, but it drastically simplified the computational problem. 
At that point, Phelan and Townsend (1991) computed example contracts and 
illustrated many important properties of those contracts. 

Deductive theory can be very useful in reducing extremely complex problems 
to equivalent problems with a much simpler structure. When we combine these 
results with other qualitative properties established by deductive theory, such 
as differentiability and monotonicity, we can develop efficient computational ap- 
proaches. These technical complementarities will become increasingly important 
as economists examine evermore complex economic models. 

7.2. Compututiond considerations in modding rationulity 

One problem which has stimulated a rich interaction of computational ideas 
with economic theory has been the problem of modelling rationality. Many have 
been bothered by the assumption of such perfection on the part of economic 

agents and markets. In this section, we discuss how computational ideas have 
contributed to modelling agent rationality since, first, it is an interesting exam- 
ple of how computational ideas can be used in theory, and, second, notions of 
bounded rationality will help us interpret and deal with the errors which invari- 
ably accompany numerical methods. 

Game theorists, beginning with Rubinstein (1986) have used the Turing 
machine notion of computation to model bounded rationality. This approach as- 
sumes that infinitely rational players choose automata to execute strategies, but 
we assume that there is a cost to using a large, sophisticated automaton which 
forces the players to trade-off the computational cost against the payoffs. Eco- 
nomic theorists sometimes use the concept of the idea of a-equilibrium. Akerlof 
and Yellen (1985) discuss the relation between the agents’ E-rationality and the 
multiplicity of plausible a-equilibria. Related to this are models where the agents 

actually use explicit optimization algorithms to solve their problems; for example, 
Marimon et al. (1990) studies economies wherein agents use genetic algorithms 
to solve their problems. Rational expectations theorists have used the notion that 
agents’ abilities to form conditional expectations are limited to particular forms 
of regression, and then compute rational expectations equilibrium given this limi- 
tation. Examples of this include Anderson and Sonnenschein (1985) Marcet and 
Sargent (1989), and Brock (1995) where agents use regression in forming their 
expectations, a computational approach to modelling behavior. 
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Note the different ways in which these authors have used computational ideas. 
Rubinstein created a model in which the agents behaved as automata, a computa- 
tional idea modelling behavior, and then proceeded to analyze the resulting the- 
ory in a deductive fashion. Anderson and Sonnenschein used deductive methods 
to prove existence, and Marcet and Sargent used deductive methods to analyze 
convergence of learning. In contrast, Marimon et al. studied their theory by simu- 
lating the resulting model. Therefore, the literature contains examples of both de- 

ductive and computational analysis of theoretical models of bounded rationality. 6 
The problem of modelling agent rationality is one where computational ideas 

play critical roles in the theory. The examples given above are a small sampling 
of this growing literature since much of the learning and evolutionary dynamics 
literature also contains computational aspects. Both deductive and computational 
methods have been employed to examine the implications of a wide variety of 
models. The potential applicability of computational methods is not limited to 
contracting problems and issues in agent rationality and learning, but holds more 
generally, a point to which we now return. 

8. Setting priorities: Quantitative tests for importance 

We mentioned above that deductive theory is often weak because of the lack 
of quantitative results. One potential role for computation in theoretical analy- 
sis is testing if the implications of a theory are quantitatively important. This is 
distinct from empirical work: empirical research asks whether the data from ac- 
tual economies are consistent with the theory in some precise statistical fashion, 
whereas computational analyses can indicate if the phenomena being investigated 
by a theory is important for any plausible values of the critical parameters. The 
real business cycle literature frequently evaluates theories on the basis of their 
ability to match quantitative as well as qualitative features of the real world; 

however, these exercises also have an empirical flavor in that they are attempt- 
ing to match a few real world macroeconomies, as opposed to an exploration of 
a broad variety of plausibly calibrated cases. 

Numerical examples can more generally help us identify what is important and 
what is not. For example, consider the theoretical model in Fischer (1979). He in- 
vestigated a Brock-Sidrauski model of money demand and studied whether it dis- 
played the Tobin effect; that is, whether inflation affected growth by encouraging 
agents to save through real investment instead of monetary assets. He showed 

‘1 should also make clear that I am not here trying to define what is and is not computational 
economics. In particular, I am not saying that research which uses deductive methods to analyze 

models of bounded rationality is not computational economics. I just want to make clear the distinction 

between computational assumptions about economic agents in theoretical models and the use of 

computational methods to analyze theories. 
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that a Tobin effect existed in that model. However, Yves Balcer and I once 
computed the Tobin effect in his model for a large range of empirically rea- 
sonable values for the critical parameters in a generalization of Fischer’s mode1 
and found that increasing annual inflation from zero to one hundred per cent 
would increase net investment by at most one-tenth of’s percent. An effect that 
small would not seem worth studying and would be undetectable in the data. 
Furthermore, if we did find a significant relation between inflation and growth in 
real-world data, these quantitative results tell us that the explanation does not lie 
in the elements of Fischer’s model. In light of this, can we consider the Fischer 
analysis a success? Qualitatively, it does deliver the desired result, but not in 
a quantatively significant fashion. 

Another example occurs in the theory of equilibrium with adverse selection. 
Wilson (1980) argued that there may be multiple equilibria in an Akerlof-style 

adverse selection model. However, Rose (1993) showed, via an extensive com- 
puter search, that multiple equilibria was highly unlikely when the critical prob- 
ability distributions were taken from conventional families. He showed that most 
familiar (and quantitatively reasonable) probability distributions implied unique 
equilibria, and that only a few extreme cases using the normal distribution lead 
to multiple equilibria. 

Papers like Rose’s are unusual. The theory literature is full of qualitative anal- 
yses which never consider the quantitative importance of their results. These 
analyses are valuable in providing basic insight and illustrating new concepts. 
However, many of these papers also claim real-world relevance and proclaim 
success when their model produces the desired qzulitatiue correlation only, and 
totally ignore the question of whether the analysis is quantitatiaely plausible. 
Rather little of the theoretical literature is subjected to any such quantitative test- 
ing. It will be interesting to see how much of it survives the kind of scrutiny 
which computational methods now make feasible. 

The division of labor is relatively clear. Deductive theory can establish qualita- 

tive features of a general theory, whereas computational methods can investigate 
the quantitative properties of specific instances of a theory. We now ask how 
these tools are related to our notion of theoretical analysis. 

9. Theory as exploration 

As I asserted earlier, theory is the exploration of implications of a collec- 
tion of assumptions. The claim of this essay is that both conventional deductive 
analysis and computational methods can, for many theories, explore these impli- 
cations with equal validity. In this section, we present a way to think about how 
conventional deductive analysis and computational analysis are related. 

To highlight the relation between deductive and computational methods, I will 
use the analogy of exploration. Theoretical analysis of a model is similar to 



K.L. JuddlJournul of’ Economic, Dpmmics and Control 21 (1997) 907-942 923 

Fig. I. Typical graph of tractable cases 

exploring unknown geographical territory. In the case of a scientific theory, 
the ‘territory’ is defined by the definitions and assumptions of the model. How 
does conventional, deductive theory proceed? Deductive theory usually formulates 
a proposition. Sometimes, the validity of the proposition can be established 
without further restrictions; existence results and welfare theorems of general 
equilibrium are examples of these results. For many propositions, however, the 
analyst then adds assumptions of varying strengths and plausibility (such as lin- 
ear demand, constant costs, etc.) to the basic ones in order to make a proof of 
the proposition possible. With these auxiliary assumptions, one can prove precise 
statements concerning the implications of the augmented theory. It is not that we 
believe that these added assumptions are true, but we proceed in the belief (or, 
more precisely, hope) that the results we get are actually robust. 

If one graphed the tractable territory of a theory, the typical picture is that 
deductive theory can analyze only a piecewise connected continuum of cases 
within the space of all models, and that these cases are not dense in the space of 
all models, just like little rivers. Fig. I displays such a picture for, say, growth 
theory. One thread, say BC, is the linear-quadratic cases; another thread, say DE, 

is the linear production function with isoelastic utility cases; and we may have 
an isolated solvable case, say as point A, such as the log utility and Cobb-Douglas 
production case. There may also be a locally robust collection of solvable cases 
at F. If one wanted to understand growth and asset pricing issues, then one could 
restrict the study to these cases. 

Explorers of unknown geographical territory use a similar strategy. In the case 
of geographical exploration, the initial explorers of an unknown territory do not 
examine the entire territory nor take a random path, but instead follow a path 
in that territory which can be easily traversed. For example, one way to explore 
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a region is by floating down (or rowing up) a river which cuts through it. These 
explorers report their observations and how the unknown territory changes as they 
move along this path. This is a risky strategy since the path is chosen for its 
convenience and not likely to be representative of the total region. Would a trip 
down the Colorado River accurately inform an observer about the geography of 
northern Arizona? Similarly, deductive theory can sometimes say how the results 

vary as we move within the narrow, augmented theory but lead to results lacking 
in robustness. 

In this exploration activity, computational methods have substantial advantages 
because they can approximately solve an arbitrary example of the parameterized 
versions of the theory, and determine the nature of any individual point in that 
territory. Since computational methods do not need as many, if any, auxiliary 
assumptions to compute the equilibrium, they are not restricted to the easily 
traversed paths. The supposed weakness is that they can do this only one example 
at a time with error, and in the end can examine only a finite number of points. 
Computational methods are similar to satellite exploration: it can take a picture 
of any location, but the picture may be fuzzy and there is not enough film to 

photograph each location. 
Theorists sometimes make much of their ability to solve whole continuous 

classes of cases compared to the finite number of numerically solved examples. 
However, a common type of result of deductive analysis is that the important ele- 
ments of a theory, such as the equilibrium relation between parameters and equi- 
librium values, are continuous or piecewise continuous functions. In such cases, 
these cardinality comparisons are substantively empty since piecewise continu- 
ous functions can be arbitrarily well approximated by a finite number of cases. 
Egoroff’s theorem supports a weaker formulation of the same assertion for mea- 
surable relations. 

The excessive simplicity of analytically tractable theoretical models make it 
imperative that economists explore models which are not analytically tractable, 
just as explorers must eventually get off their boats and traverse difficult territory. 
We next discuss distinct ways in which computational methods can accomplish 
this. 

10. Perturbation methods: Common ground 

Deductive theorists generally want proofs concerning the nature of a theory’s 
implications. Some computational methods fulfill these demands. These are called 
usymptotic methods, also known as perturbation methods (see Judd, 1998, for 
an introductory treatment of asymptotic methods). For many economic models, 
equilibrium can be expressed as the solution to an equation f(x, 6, E) =0 where E 
and 6 are parameters of the model. The equation f(x, 6, s) =0 implicitly defines 
the solution relation x(~,E). In particular, E is generally a parameter such that the 
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equation f‘(x, d, 0)=0 can be solved for x in closed form for arbitrary 6. The 

result is a solution set x(&O) parameterized by 6 for the special subclass where 
E= 0. Theoretical analysis will often be able to tell us that the solution manifold 
x(6, E) for general J’ is smooth for small E and all (5, but theory may be unable 
to solve f(x, 6, E) = 0 for small nonzero E. 

In such cases, perturbation methods can often take this smoothness information 
and compute an approximation of the form 

x(&c)-x(&O) $X(S,O)EV’ fx(6,O)c”’ t.. . 

for some increasing sequence vt < ~2 < The case of v; = i is the common 
Taylor series method, but we are not restricted to that special sequence. The 
advantage of this method is that any property of the series which holds as E + 0 
holds for the true solution manifold x(~,E) for sufficiently small E. One can 

thereby solve any case for sufficiently small c and construct proofs concerning 
the nature of the solution. This is a computational method since the series can 

be used as an approximation. 
Perturbation methods underly most theoretical applications of quantum me- 

chanics and relativity theory, theories which are generally intractably complex 
in structure, but relatively easily analyzed through perturbation methods. For ex- 
ample, the only atom which quantum theory can solve completely is the hydro- 
gen atom. Perturbation methods are extensively used throughout applied physics 

and mechanics. Of particular relevance to economics, perturbation methods are 
frequently used in control theory, nonlinear filtering theory, and statistical 
theory. 

Economists do use these ideas, but often in an informal fashion. The quadratic 
loss approximation for the efficiency cost of taxation is an example of such an 
approximation. The single-good version produces the common rule-of-thumb that 
the welfare loss of a tax on a good approximately equals one-half the prod- 
uct of the square of the tax and the elasticity of demand (assuming constant 
cost). 

Fig. 1 displays the typical value of perturbation methods. Begin with one of 
the threads, say BC, of analytically tractable models. Perturbation theory will 
then solve models close to this thread, generalizing the analysis to an open set 
of models, represented by the area inside the broken curve around BC. Per- 
turbation methods can be used to test robustness of the principles derived in 
the simple cases which direct theory can handle. This approach can be used in 

growth models, with and without distortions, in dynamic game models (see Judd, 
1986; Budd et al., 1993; Srikant and Basar, 1991), sunspot theory (Chiappori 
et al., 1992) and in asset market analysis (Samuelson, 1970; Judd and Guu, 
1996). 

Some think of these perturbation methods as theoretical methods since they can 
produce propositions concerning the nature of equilibrium as E goes to zero. That 
may be, but perturbation procedures can be automated. In some sense, theorems 
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concerning local behavior can be computer generated since they follow clear, 
straightforward applications of basic formulae. Furthermore, the expansions which 
results can be taken as numerical approximations to the functions of interest. 
Whether we think of perturbation methods as a theoretical tool or computational 
tool, their value here in theoretical analysis is clear but it is underexploited in 
economic analysis. 

11. Computational analyses in the absence of theorems 

The most controversial use of computers in economic theory would be the use 
of computations instead of proofs to establish general propositions. One example 
is not a proof of a proposition; neither do a million examples constitute a proof. 
However, the latter is far more convincing than one example. Also, what is the 
marginal value of a proof once we have a million confirming examples? In some 
cases, that marginal value is small, and may not be worth the effort. 

In some cases, there may be no comprehensible theorem. A problem may 
have a very complicated pattern of results which defies summarization in a tidy 
theorem. What are we to do then? The following is a good example of what is 
probably not an unusual situation. 

A paper by Quirmbach (1993) is an example of what computation can do and 
displays what I think will become more common. He asked a very basic and im- 
portant question in the economics of innovation and antitrust policy. Suppose that 
several firms can expend R dollars to finance a research and development project 
which will have a probability of success equal to r, independent across firms. 
The successful firms then all produce the new product (patenting is presumed 
unavailable). The issue is how the market structure and conduct of the post-entry 
market affects the ex ante R&D effort and net expected social welfare. For ex- 
ample, some might argue that excessive ex post competition will reduce profits 
among the successful innovators, and discourage ex ante R&D effort. This line 
of argument may lead to the conclusion that antitrust policy should be lax when 
it comes to high tech industries. The basic question addressed by Quirmbach 
is what form of ex post oligopolistic interaction and regulation will lead to the 
greatest social welfare. 

In the typical industrial organization paper, one would make highly specific 
assumptions for the demand function, for the cost function, and for the specifica- 
tion of imperfect competition. In particular, the typical paper has a finite number 
of parameters in the model and makes very special functional form assumptions. 
Few attempts are made to generalize the results for general tastes, technology, or 
mode of competition. Given the finite- and low-dimensional nature of the class 
of models explored, computation has a chance to be as complete as the typical 
paper adopting the deductive approach. 
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EXPECTED WELFARE FOR THE LDCR MODEL WITH R = .04 

Coumot ectuilibrium Be&and 
equilibrium 1 

Joint nmaximizino eouilibrium 

Fig. 2. Quirmbach’s computational results 

Instead of attempting to prove a theorem ranking the ex post market structures, 
Quirmbach computed the social welfare at a wide collection of values for the 
critical parameters. Fig. 2 displays one of his graphs. The one graph I reproduce 
here illustrates many critical facts. First, there are no ‘theorems’ if by ‘theorem’ 
we mean a precise, compact, and understandable statement summarizing the re- 
sults. Note that each market structure dominates the others at some parameters. 
It is not even possible to give ranks conditional on r since Bertrand and Cournot 
ranks switch due to discontinuities in the Bertrand performance. Any ‘theorem’ 
which tries to summarize the results just in Fig. 2 would be a long, twisted, and 
incomprehensible recitation of special cases. 

Second, despite the absence of simple theorems, there are important and ro- 
bust findings illustrated in Fig. 2 and its companions. Even though we cannot 
rank the market structures absolutely, it is clear that perfect collusion is usually 
much worse, and that even when it outperforms Bertrand and Coumot the dif- 
ferences are not significant. Even though the results are muddled, and no simple 
theorem can summarize these facts, these pictures contain much economic con- 
tent and clearly reject the argument that collusion should be tolerated because of 
innovation incentives. 

Quirmbach produced many such graphs, exploring various values for the para- 
meter R, alternative demand curves, and alternative R&D games. Other graphs 
designed to address other questions also showed that there were few if any simple 
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theorems. A total of fifteen graphs were used to illustrate the results of the com- 
putations, all presenting economically interesting patterns, but also demonstrating 

the absence of any general theorems. 
I suspect that the true answers to many important questions in economics look 

like Fig. 2. The normal approach of finding a model simple enough to come up 
with a clean result can easily lead us away from the real truth. Intensive use of 
computational methods can avoid many of these problems. 

12. Numerical error: Estimation and interpretation 

Any approximation scheme has some error; that is a fact of life in computa- 
tional approaches. We need to be able to control that error, and that is legitimately 
of substantial concern. However, it is generally impossible to eliminate the error, 
in which case it would be desirable to have some economic interpretation of that 
error. Only with such an interpretation can we judge the value of any numerical 
procedure. 

Many numerical methods have desirable asymptotic properties. Typically these 
properties do not produce a bound on the error, but just a statement that if the 
algorithm uses a size parameter h then the error is proportional to h” for some 
k > 0. This can be difficult to interpret except for the infrequent case where one 
has a good estimate of the proportionality constant. Economists will often face 
a choice between using slow methods which have good asymptotic properties, 
and alternative procedures which are fast and typically produce results which are 
c-equilibria for small C, but have no known good asymptotic properties. Even if 
one has a convergent scheme, one must still choose a stopping criterion since we 
cannot wait for the infinite sequence to converge. 

One answer to these issues is suggested by the discussion above of bounded 
rationality and computational economics. That discussion focussed on how com- 
putational ideas have filtered into economic analysis, in particular with regard to 
modelling agent rationality. As we point out above, it is unlikely that economic 
agents are perfect when it comes to making decisions. Given the imperfection of 
agent behavior, it is appropriate that we focus on s-equilibrium instead of pure 
equilibrium. 

These considerations of bounded rationality, numerical error, and stopping cri- 
terion lead to some important conclusions. Since it is the convergence criterion 
which defines what is an acceptable end, it is not clear why one demands conver- 
gent methods. Instead, one can just compute a candidate approximation and then 
check to see if the candidate satisfies the stopping criterion. Since the stopping 
criterion determines when we end our search, it is there where we can impose 
our notion of c-equilibrium. I call this approach ‘compute and verify’. 

The connection between bounded rationality and numerical methods is one 
which will be increasingly important. My claim is that in many economic models 
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and computational methods, the numerical error can be related to the optimization 
error of agents. In Judd (1992) I focussed on the magnitude of the Euler equation 
error, a criterion commonly used in the stopping rules of optimization algorithms. 
The result allows one to use reasonable assumptions about agent rationality to set 
standards for the acceptability of numerical approximations. For example, if an 
approximate equilibrium strategy has a consumer making optimization errors of 

a dime per dollar of expenditure, then the approximation is unacceptable if one 
believes that people do better; if the implicit optimization errors are a penny per 
thousand dollars, then the approximation is acceptable if you doubt that people 

can do better. 
At this point, I will go way out on a limb and make a radical proposition: 

once we have agreed to a notion of s-equilibrium, existence theorems may not 
be necessary. It is not generally possible to prove the existence of an equilib- 
rium through computational means, but numerical demonstrations can be suffi- 
cient to prove that a candidate equilibrium is an c-equilibrium. Since agents in 
the real-world economy are likely to make mistakes, the best we may ask of 
them is s-optimality. Therefore, if we can computationally prove the existence of 

e-equilibria for economically sensible choices of E through the construction and 
analysis of numerical approximations, the value of standard existence theorems 
is reduced. That argument, however, I leave for future discussion. 

13. A computational approach to analyzing a theory 

While I have compared deductive and computational theory, I have not yet 
described how a computational approach would work in practice. We all know 
how to proceed with a theoretical analysis: write down assumptions, prove theo- 
rems, interpret the results in a comprehensible fashion. Similarly, a computational 
analysis would begin with assumptions. It would then compute examples, and at- 
tempt to interpret the results. While computing examples is not difficult, the step 
of expressing those findings is not easy. The kind of tabular and graphical pre- 
sentations we often see, such as Fig. 2, can be used for low-dimensional models, 
but when one leaves a two-dimensional universe such tools are difficult to use 
without excessive consumption of paper and a reader’s time. We need to develop 
computational approaches which lead to comprehensible summaries. 

In this section, I offer various schemes which could lead to modes of numerical 
investigation and relatively easy exposition. I will lay out an approach which ties 
together the common deductive methods with the computational methods. I do 
not claim that this is the typical approach used; in fact, the numerical literature 
follows not one general strategy. I argue that the strategy below allows us to 
exploit numerical tools to analyze theories and economic issues in ways which 
satisfy the legitimate methodological concerns of sceptics. Some will find the 
strategy and its requirements too demanding, and think that this is a proposal 



which would deter, not encourage, the use of numerical methods; others will 
find it an attempt to disguise the logical flaws of numerically intensive research. 

In either case, I have succeeded in getting the reader to think about these issues. 
In the discussion below, we let the generic ‘Proposition P’ be a statement 

within some theory. It could be a comparative static, a statement stating the 
relative size of two quantities in equilibrium, or another kind of statement usually 

found in a theorem. For the purposes of specificity, suppose that the theory under 
examination is tax theory and the proposition P is ‘The optimal consumption tax 
results in greater social welfare than the optimal income tax’. To investigate 
this proposition we would like to examine a variety of cases which vary in 
terms of the revenue requirement, the social welfare function, the technology, the 
market structure, and heterogeneity in tastes and endowments. For the purposes 
of this discussion, we will assume that there are computational methods which 
can determine P’s truth in any specific case. 

13. I. Specijj the universe qf models to he unalyzed 

The first step is to precisely describe the class of models to be explored. Typ- 
ically, we will restrict the analysis to parametric forms for tastes and technology. 
While this may be somewhat limiting compared to the class of models examined, 
say, in general equilibrium theory, it will be no more restrictive than the com- 
parable functional form assumptions used in econometric analysis. It will also 
typically be far less restrictive than what is necessary for complete characteriza- 
tion of equilibrium. 

13.2. Pecfi,rm initial deductive unalysis 

Next, we use deductive theory to provide existence and characterization 
theorems within the specified universe. This information gives us confidence that 

the problem is logically coherent. We may also find topological or algebraic re- 
sults concerning the theory which help us formulate efficient numerical strategies. 

13.3. Find exarnplrs w-ith clo.sedTforrn solutions 

The first step in analyzing any theory should be determining cases with closed- 
form solutions, if that is at all possible. Sometimes these examples may be 
quite trivial. For example, in discrete-time dynamic games, if we assume that 
the discount factor is zero then the dynamic game is just a succession of static 
games. Budd et al. (1993) and Judd (1986) begin with the closed-form solution to 
a dynamic game where the payoff was zero, a trivial instance. One may have 
more substantial cases with closed-form solutions. For example, linear-quadratic 
examples can be solved and treated as essentially closed-form solutions since the 
error can be reduced almost to machine zero. There may also be special cases 
with solutions. The result of these special cases will be the threads of tractable 
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cases in Fig. 1. In the case of our proposition P, the special case of zero revenue 
needs and identical agents is easily solved since both the optimal consumption 

and income tax policies which raise zero revenues impose zero taxes and reduce 
to the same competitive equilibrium. Therefore, Proposition P (in its weak form) 
holds for this class of models. Moreover, the Diamond-Mirrlees analysis of opti- 
mal taxation also provides a large number of conditions under which consumption 

taxation dominates. 
The first three steps often comprise a ‘complete’ theoretical analysis. We now 

move to steps which are not so conventional. 

13.4. Perturbation methods around tractable case3 

After theory produces simple analytically tractable cases, one can measure the 

robustness of the properties of these cases by applying perturbation methods to 
determine what happens in ‘nearby’ cases. In our example proposition P, we 

could take the zero revenue, representative agent case and perturb the revenue 
needs and/or add a small amount of agent heterogeneity, or we could take the 
Diamond-Mirrlees conditions and slightly perturb them by adding, say, some pure 
rents. We could do a combination by increasing revenue needs away from zero in 
a Diamond-Mirrlees but impose some restrictions across tax instruments such as 
forcing the tax on apples to equal the orange tax. The tractable examples may 
be silent on some important issues, whereas the perturbation methods may tell 
you interesting answers nearby. Perturbation methods begin with points on the 
tractable threads in Fig. 1 and effectively ‘fatten’ them since it gives us information 
about points near those ‘threads’. The broken lines in Fig. 1 display the results 
of this ‘fattening’ process, representing the expanded class of models for which 
we have essentially closed-form solutions and which we now understand. 

13.5. Test numericml methods on tractable und perturbed cases 

Since tractable cases are isolated and perturbation methods yield only local 
information, we need to examine other cases to obtain a robust picture of our 
theory. However, before computing these other cases, we can use the analytically 
tractable cases and the perturbation results as cases on which we can test the reli- 
ability of candidate numerical methods. By testing possible numerical procedures 
out on these cases, we will have a better idea as to the procedures’ numerical 
errors and speeds, which will help us choose among these possibilities, and allow 
us to fine tune the chosen methods to attain the desired accuracy in these test 
cases. Such information is likely to be useful when applying the procedure to 
other cases. This also gives us more reason to find tractable cases and perform 
perturbation calculations. 

We are now ready to conduct a more global analysis. The following meth- 
ods could be used to generate and summarize global information concerning the 
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validity of proposition P which can complement the local information produced 
by the tractable examples and perturbation methods. 

13.6. &arc/z for counterexamples 

Ultimately the special cases and the local analyses are exhausted, and we must 
move to more global methods of evaluating the question at hand, that is, the truth 
of some proposition P. The next logical step is to search for counterexamples.’ 
In our example, we would form the function SW expressing the social welfare 
of the optimal consumption tax minus that from the optimal income tax, and 
feed SW to a global minimization algorithm. This global optimization approach 

will implicitly produce strategies to find counterexamples to the hypothesis that 
SW > 0 always. The results from the perturbation analysis may indicate which 
directions are most likely to produce cases where SW <O. 

Searching for counterexamples via optimization routines may be a good method 
to test proposition P, and failure to find a counterexample strong evidence for 
proposition P. If we want to make a case for the general validity of proposition P, 

then we need to focus on finding counterexamples. If there are counterexamples, 
the optimization approach is designed to get to them quickly, ignoring confirming 

examples. 
However, the lack of a counterexample is difficult to express. If one reports this 

failure, the reader (journal editors and referees, in particular) may worry that the 
search procedure was not competently executed or that the optimization procedure 
was not appropriate for the problem. If we fail to find a counterexample, we need 
to consider cleaner ways to express the apparent global validity of proposition P. 

13.7. Monte Curl0 sctmpling 

Once one is fairly convinced of a proposition’s truth, then one wants to express 
that in some compact way. Monte Carlo sampling can produce results which are 
easy to report in either classical or Bayesian fashion. 

The first procedure I will describe involves the computing of numerous 
examples of a model and then using statistical inference language to summa- 
rize the finding. 8 Suppose that one wants to investigate a set of parameter- 
ized models of a theory on which one has imposed a probability measure, p. 
Suppose we want to evaluate our proposition P. We could draw N models 
at random according to the measure ,LL, and use computation to determine the 
truth of the proposition in those cases. If computation showed that proposition 
P held in each case, then one could say ‘We reject the hypothesis that the 

’ Scott Page suggested this step to me. 

R This is an idea which I outlined in Judd (1994), have discussed with several colleagues, and 

which many others have proposed. Despite the fairly wide discussion of this idea, 1 am unaware of 

anyone actually implementing this approach. 
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p-measure of counterexamples to proposition P exceeds E at the confidence level 
of 1 - (1 - C)N’. Note the crucial role of the randomization; the fact that we 
randomly drew the cases allows us to use the language of statistical confidence. 

One could also use Bayesian methods to express his beliefs after several com- 
putations. Let p be the probability that a p-measure randomly drawn point sat- 
isfies proposition P, and suppose that one has a uniform prior belief about the 
value of p. Then one’s posterior belief about p after N draws which satisfy 
proposition P can be directly computed. 

The advantage of Monte Carlo sampling methods is the ease of expression and 
interpretation since independent draws are easy to implement and well-understood. 
The ability to express the results in both classical and Bayesian ways make it 
easy to communicate the result. 

13.8. Quasi-Monte Carlo sampling 

Some have told me that they would prefer to use a prespecified, uniform grid 
instead of random draws. This approach would be more efficient since it would 
avoid the clumping and gaps which naturally occur with Monte Carlo sampling. 9 
The disadvantage of any deterministic sampling method would be the inability to 
use statistical language to express ‘confidence levels’. The alternative expression 
would be the maximal size of a ball or cube of counterexamples; that is, if 
proposition P is true at each point on a grid and the largest ball which can miss 
each point on the grid is of diameter 6, then 8 could be used as a measure of 
the strength of proposition P. Sometimes we could do better. Suppose that the 
proposition is ‘,f(x,p) > 0 at equilibrium values of x in model p’. It may be 
possible to show that Ai is bounded by M. Then if we can, via computation, 
prove the truth of proposition P on a grid with mesh (5 < l/M, then we actually 
have a proof of Proposition P for all models p. 

13.9. Regression methods 

Often, the results of computations will be similar to the Quirmbach example 
cited above, that is, there is no definitive result and the patterns we find are 
complex. In those cases, we need other ways to analyze and express the results. 
The graphical approach in Quirmbach is one way, but it is limited by dimension- 
ality. In problems with higher dimensions, we could use curve fitting methods, 
such as regression, to express our findings. In the Quirmbach case, we could 
draw a random number of models and fit a probit expressing the probability that 
one market structure dominates the others, or we could regress computed social 
welfare against the model’s parameters. Since the objective is to determine social 

9 Monte Carlo sampling is ex ante uniform, but ex post it is most likely locally normal by the 
Central Limit Theorem. 
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welfare as a function of the parameters, we could use approximation theory and 
choose a collection of points which are optimal in terms of fitting such functions. 

The main point is that approximation and regression methods could be used to 
summarize the results of a computational study of a theory. As long as the topo- 
logical analysis of the model indicates that the function of interest is smooth (or, 
piecewise smooth at least) then we can implement the appropriate approximation 
method to fit the surface. 

These steps briefly outline one possible strategy which combines the strengths 
of deductive and computational methods to analyze a theory and examine the 
truth of a proposition. 

14. Problems facing computational economics today 

1 have been discussing the potential of computation in economic theory. 

I suspect that few of these ideas are new, as is indicated by the many examples 
I have cited. The question is why computational theory is not exploited more 
fully. Papers like this one generally focus on the unrealized and unappreciated 
value of computational methods. It is common to blame the rigid methodologies 
adopted by journals and others in the profession. However, economists who use 
computational methods are often their own worst enemy. Part of the problem is 
that computational economics has not yet developed the standards, the discipline, 
and the coherent core of techniques which characterize other subdisciplines in 
economics, such as econometrics. Computational economists often do not take 

their computations seriously, inviting others to also discount them. These prob- 
lems make it easy to criticize much of what passes for computational economics. 
Any balanced consideration of computational economics should face up to the 
problems which exist, and develop solutions. In this section, I will focus on these 

problems. ” 
First, many of us are guilty of poor scholarship regarding both the relevant 

mathematical and prior economic literature. There is a tendency to use stan- 
dard mathematical terms in ways inconsistent with the standard mathematical 
concept. This alienates a natural audience for the work; if the mathematically 
well-educated reader is alienated, then we cannot expect others to value and re- 
spect the work. Economists working in one area make little effort to learn what 
has been accomplished in other areas. For example, in our paper on computing 
rational expectations equilibrium, Bizer and Judd (1989), we ignored the relation 
between the methods we used and the earlier work in Agricultural Economics 
by Gustafson, and Wright and Williams, work which did appear in standard 

“Exact citations of the ‘sins’ discussed in this section serve no purpose in this context. Also, 

specific citations would have the unfair feature of pointing to writers who were so clear in their 
writing that their sins are obvious. 
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economics journals and was well known among rational expectations economists. 
Journal editors and referees are equally poorly informed, seldom enforcing min- 
imal standards of scholarship. Ignorance of past work makes it inevitable that 
the wheel is frequently reinvented, often with ‘innovations’ tantamount to trying 
a square wheel, and keeps the field from truly advancing. This poor scholarship 
makes it much more difficult for good work to disseminate properly and for 
a coherent literature to form. 

Part of this scholarship problem is that journals do not take computational 
work as seriously as they do empirical or theoretical work. Theoretical papers 
(i.e., both economic theory and econometric theory) must contain the proofs of 

any proposition. In many cases, the techniques used to prove a theorem are as 
useful and interesting as the actual theorem. Empirical papers must clearly indi- 
cate the statistical procedure used and their properties. Similarly, the empirical 
procedure used in an empirical paper is often its most valuable contribution. In 
both cases, journal editors and referees not only permit but insist on full disclo- 
sure of the details. Experimental work is also allowed to publish the details of 
experiments. The treatment of computationally intensive and innovative work is 
very different. Computational economists are often told to limit severely, if not 
eliminate, the discussion of their methods, even when those methods are as inter- 
esting as the paper’s economic content. I expect that Compututional Economics 

and the Journal of Economic Dynamics and Control, with their declared interest 
in computational methodology, will help to reduce this problem in the future, but 

their existence is no excuse for bad policies at other journals. 
A second (not unrelated) problem is that many economists who use compu- 

tational methods know little about computing. Recently I was at a conference 
where a presenter, a well-regarded professor at a well-regarded department ” , 
discussed how difficult it was to solve his problem, how his solution method 
(commonly used in his subfield) took a long time to converge, and that it was 
therefore unreasonable to ask that he examine a more realistic model. After the 
presentation, a couple of conference attendees discussed these problems with him. 
We first pointed out that he was essentially solving three smooth equations in 
three unknowns, where each equation was easy to evaluate. After he agreed to 
that, we then asked him why he did not use Newton’s method to solve the prob- 
lem. I2 his blank stare told us that he had never heard of Newton’s method for 
solving nonlinear equations! 

This is not limited to a few, bad papers. Numerically intensive papers often 
contain assertions which are inconsistent with the mathematical literature. Some- 
times these assertions are even contradicted by the literature they cite. My favorite 

” Any further identification would be inappropriate since this was by no means a unique incident. 

I2 He was instead using the iteration x k+’ = y(xk) and variations thereof to solve the fixed point 
x=y(x) where XER~. 
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pet peeves are ‘only Monte Carlo methods can be used for high-dimensional in- 
tegration’, ‘to compute a linear approximation to a nonlinear stochastic control 
problem you take a linear approximation of the law of motion and a quadratic 
approximation of the objective at the deterministic steady state’, and ‘you cannot 
generally interpolate data with smooth approximations and impose shape (concav- 
ity, monotonicity) restrictions’. These three statements are often made explicitly, 

and are more often implicit in the techniques authors choose to use. They are 
all misleading today, were known to be misleading even twenty years ago, often 
lead to inefficient methods, and in many economically relevant contexts are just 
plain wrong. 

Another example of sloppiness often occurs in the use of Monte Carlo-based 
simulation solution methods. Many rational expectations methods use realizations 
of random number generators in their algorithms. The result of the computation 

is then a random variable. Sometimes this is exploited usefully, as in the case of 
estimation methods which use simulation. In fact, one of the advantages of Monte 
Carlo methods in simulation methods is that one can fold numerical error into 
the estimate of the standard error. In any case, it is recognized that the Monte 

Carlo simulation produces random errors whose approximate magnitude must be 
reported. Unfortunately, it is more typical for the noneconometric users of such 
methods to just report the computed result for one sample, give no report of the 
standard deviation of the random result, and, when challenged, claim, without 
documentation, that the variation is trivial. In one such case, I got the authors’ 
program, changed the seed in their random number generator, and reran their 
computations. The new results were at least two per cent different and in many 
cases twenty per cent different from the answers the authors computed. Standard 
practice in the empirical literature insist that standard errors be reported with point 
estimates; the same should be demanded of Monte Carlo-based computational 
methods, and of any application where comparable concepts are available.13 

The combination of poor scholarship, poor grasp of basic computational 
methods, and sloppy standards makes computational economics look bad in the 
eyes of those aware of the problems, and invites disaster by risking embaras- 
singly bad results. These problems are interrelated. Ignorance of efficient methods 
leads to inefficient programming which is incapable of meeting high standards. 
The unwillingness of journals to publish the computational details of a paper se- 
riously impedes dissemination of critical computational ideas. The lack of a full 
discussion of computational methodology makes it impossible for peer review to 
impose the usual discipline. The result is that many refuse to take the compu- 

I3 1 mention the Monte Carlo case because it is one which economists can easily understand. 

Similar demands can be made of most numerical methods since procedures to estimate errors are 

often available. For example, condition numbers serve an analogous purpose in linear and nonlinear 

equations, and asymptotic error bounds exist for integration methods. Reporting these diagnostics can 

go a long way in answering criticisms and revealing problems. 
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tational results seriously unless the computational results just serve to illustrate 

theorems. 
These problems are not present equally in all branches of computational eco- 

nomics. More mature areas have worked out these issues. The difficulty is that the 
standards which work, for example, in computable general equilibrium (CGE), 
may not work or apply to, for example, computational methods for rational expec- 
tations models. Also, the extensive mathematical training which the typical CGE 
economist has is not appropriate for solving rational expectations models. The 
development of a common, general core of techniques and a common language, 
such as is done in econometrics, would help greatly. 

While I do believe that the skepticism often expressed towards computational 
work can be successfully addressed, this skepticism is valuable. Any new tool or 
approach will be viewed with skepticism, and that is as it should be. Otherwise, 
we would be whipped by constant motion from one new fad to another. Only 

those new tools and approaches which can successfully meet such skepticism 
deserve to be adopted as part of the core of economic methodology. One of 
the problems in computational economics has been little consideration of how to 
address the skepticism. The expositional tools and research strategies discussed 
above are suggested patterns of research and exposition which help one to com- 
municate across methodological differences. 

Of course, bad practice exists in all areas of economics, and standards must 
be reasonable, tuned to what is practical. Unfortunately, there has been lit- 
tle discussion of these issues, little effort in teaching graduate students a core 
of basic methods, and little effort to set and enforce standards. Computational 
economists have some housecleaning to do. I suspect that we do not agree on 
what those standards should be and what is appropriate graduate training, but it is 
clear that we can do better. Only when computational economists begin follow- 
ing serious standards of scholarship will computational methods be taken more 
seriously. 

15. Computational economics and future technology 

The trends in computational methods and power will intensify the problems 
and potential outlined above. Computational speed is increasing at a steady rate. 
Better yet, computational costs are declining even faster. Some might argue that 
we are fast approaching the limitations of the silicon-based technologies relied 
on in current computing - the etchings can be only so small. This is not likely to 
be a problem. We could go to other materials which allow even smaller compo- 
nents and faster speeds. The other direction is three-dimensional chips. Beyond 
that are optical switching methods, and, possibly, quantum mechanical comput- 
ers. There is little doubt that computational speed will continue to rise at a rapid 
pace. 
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The new directions in supercomputing are also beneficial to computational eco- 
nomics. Supercomputing, as in the Cray series, used to mean vector processing, a 
mode of computation which economists often found difficult to exploit. The new 
mode in supercomputing (also called high performance computing) is massively 
parallel and distributed computing. In these environments, many moderately pow- 
erful processors are networked together to solve a problem. In massively parallel 
machines these processors are all in one computer, whereas distributed computing 
is the strategy of linking several computers in a network to cooperate on solving 
a problem. The power of such computing structures depends on the problem. 
Some problems are not easily decomposed into subproblems. Fortunately, most 
of the methods discussed above can easily make full use of the computational 
power of such systems. 

These items concern the development of faster machines. Equally important 
are the improvements in the algorithms available to solve problems. It is not 
generally appreciated that there has been as much progress in software in the 
past forty years as in hardware. This is particularly true for the multidimen- 
sional problems which naturally arise in models of uncertainty, information, and 
risk. There is no reason to think that progress in numerical analysis will slow. 
This is particularly true in many areas of computational economics where stan- 
dard practice is decades behind the frontier of the numerical analysis literature. 
Even when computational economists catch up with the frontier, it is plausible 

that economists will push out that frontier in directions particularly useful to 
economists. 

The combination of advances in hardware, computer organization, and soft- 
ware all indicate that computing power available for computational economics 
will continue to increase dramatically in the near future. Luckily, the nature 
of computational theory is such that it will be able to efficiently exploit these 
advances. The result will be dramatically faster computing, far beyond current 
practice. The challenge economists face is to make effective use of these amazing 
technologies. 

16. An economic theory of computational economics 

Being economists, we believe that the evolution of practice in economics will 
follow the laws of economics and their implications for the allocation of scarce 
resources. The objective of economic science is understanding economic systems. 
Theories and their models will continue to be used to summarize our understand- 
ing of such systems, and to form the basis of empirical studies. We have argued 
that the implications of these theories can be analyzed by deductive theorem- 
proving, or they can be determined by intensive computations. The inputs of 
these activities include the time of individuals of various skills and the use 
of computers, either as word processors or number cruchers. Theorem-proving 
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intensively uses the time of highly trained and skilled individuals, a resource in 

short supply, whereas computation uses varying amounts of time of individuals 

of various skill levels plus the use of computers. 
The output of economic research will continue to be used to guide decision 

making by governments and firms, and train students. Many of these end-users 
care little about the particular mode of analysis. If a million instances covering 
the space of reasonably parameterized models of a smooth theory all follow a 
pattern, most decisionmakers will act on that information and not wait for an 
analytical theorist to prove a relevant theorem. In the absence of a proof, most 
will agree that the computational examples are better than having nothing. Most 
end-users will agree that the patterns produced by such computations are likely 
to represent general truths and tendencies, and form a reasonable guide until a 
conclusive theorem comes along. 

The picture drawn here is one where alternative technologies, deductive anal- 
ysis and intensive computations, can produce similar services for many deman- 

ders. Economic theory tells us what will likely happen in such a circumstance. 
In the recent past, the theorem-proving mode of theoretical analysis was the 
efficient method; computers were far less powerful and computational methods 
far less efficient. That is all changing rapidly. In many cases, the cost of com- 
putation is dropping rapidly relative to the human cost of theorem-proving. I 
anticipate that in the next decade, it will be typical for an individual to out- 
line a theory, describe it to his desktop computer, and, in a matter of days, 
have the computer produce a summary of the results it found after working 
through a computationally intensive analysis. The clear implication of standard 
economic theory is that the computational modes of theoretical analysis 

will become more common, dominating theorem-proving in many 

cases.14 
Does this make deductive theory obsolete? Absolutely not. In fact, as discussed 

above, the presence of computational methods ruises the value of some kinds 
of deductive analysis. Proving existence theorems, deriving the topological and 
analytical properties of equilibrium correspondences, and finding efficient ways 
to characterize equilibrium will all assist in the computational step. Even the 
ability to come up with special cases with closed-form solutions will be useml in 
giving the computations a beginning point. A computational approach to theory 
may alter the relative value of particular types of deductive analysis, but does 
not reduce the value in general. 

I4 This section owes much to and freely borrows from a George Stigler talk on the mathematization 

of economics. While less dramatic, the computerization of economics may be similar in terms of how 

it affects the style, emphasis, and allocation of effort in economic research. 
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17. Complements or substitutes? 

At the outset, I posed the question ‘are computational and theoretical methods 
complements or substitutes?’ As is typical of economists, my answer is a re- 
sounding and clear ‘both’. In some activities, they are clearly complements with 
their complementary strengths and weaknesses indicating that they can be very 
successful as partners. Deductive theory is necessary in reducing an economic 
question to a finite set of mathematical expressions which a computer can then 
analyze to produce economically useful results. The greater the analytical knowl- 
edge we have of a model, the better we can do in developing computational 

methods for solving instances of the model, and greater computer power allows 
the investigation of more general and complex models. Also, numerical examples 
can help the analytical theorist in determining the likely quantitative importance 

of various features of a theory. 
On the other hand, computation can also be, and will sometimes be, a sub- 

stitute for deductive theory. First, computation can inform us of patterns which 
analytical theory would have great difficulty discerning or expressing. Second, 
it may be cheaper to use computationally intensive methods instead of theorem- 
proving to analyze a theory; given likely technical improvements in computing, 
this controversial direction has great potential for growth if it becomes accepted. 

Whether complements or substitutes in specific activities, theory and computa- 
tion should never be viewed as enemies in the general development of economic 
understanding. Computation cannot achieve its potential without the use of the- 
ory, and theory will become increasingly dependent on computation to answer 
theoretical questions and guide it in directions of greatest economic value. The 
ultimate focus of these discussions should be on what is good for economic sci- 
ence. Clearly, economic science will thrive best by harnessing the power of both 
theory and computation. 
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