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Introduction Model Method Results

Introduction
This paper “started” in the Computational Economics and Finance
course taught by Prof. Karl Schmedders in 2017

Term paper & Semester thesis

Homotopy applied to counterfactual analysis with multiple
equilibria. Developing an interface between Fortran & Matlab.

Master thesis

Identifiability Analysis In Structural Models Using MPEC And
Homotopy Parameter Continuation Methods

Takeaway from this lecture: insightful research through the
combination of various tools you have learned in this course

Mathematical programming with equilibrium constraints
(MPEC)

Constrained Optimization
Dynamic Programming

Homotopy Continuation

Automatic Differentiation
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Introduction
Given Two parameterized models (1, 2) with parameters (θA, θB)

and some observed data.
Estimation Find the maximum likelihood estimates of θA and θB s.t. the

model best explains the data.

Figure: Model 1: Likelihood. Figure: Model 2: Likelihood.
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Introduction

• We focus on dynamic discrete choice models where the
discount parameter β is generally considered to be “poorly”
identified.
• We propose to formulate

• the structural estimation as parameterized constrained
optimization, i.e., parameterized version of Su and Judd [2012]

• and solve this efficiently by homotopy parameter
continuation.

• This novel approach enables the econometrician to
computationally efficiently
• estimate the structural parameters even in models with one

poorly identified parameter and
• perform inference based on the full (profile) likelihood function

(not only point estimates).
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The Bus Engine Replacement Model (Rust, 1987)

John Rust: Optimal replacement of GMC bus engines:
An empirical model of Harold Zurcher. Econometrica, 1987.
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Utility Function

• Agent’s utility + shock for the single period payoff

u(xt , dt ; θ11,RC) + εt(dt) =

{
−c(xt , θ1) + εt(0) if dt = 0

−RC + εt(1) if dt = 1

• dt = 0: performing regular maintenance
• dt = 1: replacing the engine

• State variables
• xt mileage state
• ε i.i.d. gumbel utility shock (only observed by agent)

• Parameters
• θ11 regular maintenance cost parameter
• RC replacement cost parameter
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Value Function - Regenerative Optimal Stopping

Objective The agent wants to maximize his expected discounted utility
over an infinite horizon.

Vθ,β(xt , εt) = max
D(xt)∈D

E

 ∞∑
j=t

βj−t (u(xj ,D(xj); θ1,RC) + ε(D(xj)))
∣∣xt


where θ ≡ (RC, θ1) and D(·) denotes the policy function.

Bellman Vθ,β is the unique solution to the Bellman equation

Vθ,β(x , ε) = max
d∈{0,1}

[u(x , d , θ1) + ε(d) + βE[Vθ,β(x ′, ε′)|x , d ]],

where x ′ and ε′ denote the next period state variables.

Preference β = 1: Maximize the long-run average utility [Bertsekas, 2012].

β > 1: Maximize today’s and future utility - “future-bias”
[Blom Västberg and Karlström, 2017].
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Challenges Arising for β → 1 and β > 1

• Let’s have a look at the definition of the value function

Vθ,β(xt , εt) = max
D(xt)∈D

E

 ∞∑
j=t

βj−t (u(xj ,D(xj); θ1,RC) + ε(D(xj)))
∣∣xt


" V → −∞ for β → 1

• The classic value iteration solves for the discretized (expected) value
by

V = Tθ,β(V ),

with Tθ,β(·) denoting the Bellman operator.

" The contraction mapping fails for β ≥ 1. Note that MPEC
does not rely on the contraction mapping property.
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Relative Value Iteration

Recall We can solve for the optimal value function by solving the
fixed-point equation V = Tθ,β(V ).

Note Even though, the value function V →∞, the difference
between the value at different states might be finite

• Equation (1) solves for the relative value function
h = V − V 1 as

h = Tθ,β(h)− Tθ,β(h)1 (1)

with h ∈ R90 Bertsekas [2012] .
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Structural Estimation

Objective Identify the most likely values for the parameters
θ = (θ11,RC) and β given the observed data.

Data ∼ 8000 observations of the state and control variables
(= mileage states and replacement decisions).

Approach Simultaneously solve the likelihood and fixed-point problem

θ∗, β∗ = arg max
θ,β

L(h, θ, β; {xt , dt})

h = Tθ,β(h)− Tθ,β(h)1|θ=θ∗,β=β∗

• Two popular solution methods are the nested fixed-point
algorithm (NFXP) Rust [1987] and the mathematical
programming with equilibrium constraints by Su and Judd
[2012]
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MPEC

• Su and Judd [2012] formulate the structural estimation as
constrained optimization

max
(h,θ,β)

L(θ, β, h; {xt , dt}),

s.t. h = Tθ,β(h)− Tθ,β(h)1,

with θ ∈ R2, β ∈ R+, and h ∈ R90.
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singular and in turn, the maximum likelihood estimation becomes
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MPEC

• Su and Judd [2012] formulate the structural estimation as
constrained optimization

max
(h,θ,�Aβ)

L(θ, β, h; {xt , dt}),

s.t. h = Tθ,β(h)− Tθ,β(h)1,

with θ ∈ R2, β ∈ R+, and h ∈ R90.

• We refer to β as “poorly identified” if the likelihood is (almost)
flat w.r.t. changes in β. Numerically, its Hessian becomes (nearly)
singular and in turn, the maximum likelihood estimation becomes
numerically hard.

• Thus, β is often calibrated to some value.
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Profile Likelihood

• Instead of calibrating β to some value, we propose to solve for
the maximum likelihood estimates as a function of the
controlled parameter,
i.e., as parametric maximum likelihood estimates

• By setting β as controlled parameter we define

Lp(β) = max
θ,h

L(θ, h; {xt , dt}, β)

s.t. h = Tθ,β(h)− Tθ,β(h)1,

i.e., we optimize w.r.t. all parameters but the controlled
parameter β

• This is equivalent to the notion of a profile likelihood.
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First-Order Necessary Optimality Conditions

• Its Lagrangian L is defined as

L(θ, h,µ) = L(θ, h;β)−
∑
i

µi (h − Tθ,β(h) + Tθ,β(h)1)

• If (θ∗, h∗) is a local optimal solution to Lp(β), where the
LICQ holds, then there exists a unique µ∗ s.t.

∇(θ,h,µ)L(θ∗, h∗, µ∗;β) = 0. (2)
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PMPEC - Summary

• The structural estimation as parametric constrained
optimization

max
(h,θ)

L(θ, β, h; {xt , dt}),

s.t. h = Tθ,β(h)− Tθ,β(h)1,

• First-order necessary conditions (Lagrange) form a parametric
system of equations

∇(θ,h,µ)L(θ∗, h∗, µ∗;β) = 0.

• We are interested in the solution manifold of the parametrized
FOC (profile likelihood as implicit function)

c ≡ {(β, θ, h, µ) : ∇θ,h,µL(β, θ, h, µ) = 0}
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Recap Homotopy Continuation

H(x , λ) = x + λ(x − 4 + sin(2πx))

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Recap Homotopy Continuation: Algorithm

Objective Find the solution to H(x , λ) = 0 for all λ ∈ [0, 1] by tracing
the curve c := {(x , λ) : H(x(s), λ(s)) = 0} with arclength s.

• We have a starting point. To stay on the zero curve as we
“move along”:

∂H(x(s), λ(s))

∂s
= 0 (3)

• The initial and boundary value problem (IBVP) reads

∂H(x(s), λ(s))

∂x
x ′(s) +

∂H(x(s), λ(s))

∂λ
λ′(s) = 0 (4)

x(0) = x0, λ(0) = 0, ||(x ′(s), λ′(s))||22 = 1, (5)
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Recap Homotopy Continuation: Algorithm

Approach Trace c by alternating prediction and correction steps.

Predictor Use e.g., Euler’s explicit step to predict

vi+1 = ui + h · H ′(x(si ), λ(si )).

Corrector Use the predicted point vi+1 and improve prediction by e.g.,
Newton-type methods.

ui

vi+1
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Recap Homotopy Continuation: ODE-based Algorithm

H(x , λ) = x + λ(x − 4 + sin(2πx))
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Source: M-Hompack
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Recap Finite Differences: Accuracy

Apply forward differences to

f (x) = x3

and decrease step size from
1 to 10−16

10-10100
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100

x=10
x=1
x=0.1
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Recap Automatic Differentiation: Scaling
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Software Tools

• Homotopy parameter continuation
• HOMPACK90 by Watson et al. [1997]: a Fortran 90 collection

of homotopy solution methods
• M-Hompack by Müller and Reich [2018]: an interface between

Matlab and HOMPACK90 to easily access and employ the
efficient homotopy solution methods

• Automatic Differentiation
• Especially for the homotopy continuation, fast and accurate

derivatives are mandatory
• AD provides analytic derivatives by source code transformation

via successively utilizing the chain rule. We use CasADi by
Andersson et al. [2018].
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The Bus Engine Replacement Model (Rust, 1987)

John Rust: Optimal replacement of GMC bus engines:
An empirical model of Harold Zurcher. Econometrica, 1987.
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Rust [1987] on the Discount Factor β

“not able to precisely estimate the discount factor β [...]

Changing β to .98 or .9999 produced negligible changes in the
likelihood function and parameter estimates [...]

I did note a systematic tendency for the estimated value of β
to be driven to 1.” Rust [1987]
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Rust [1987]’s Assumed Value for β and Likelihood

“not able to precisely estimate the discount factor β [...]

Changing β to .98 or .9999 produced negligible changes in the
likelihood function and parameter estimates [...]

I did note a systematic tendency for the estimated value of
β to be driven to 1.” Rust [1987]

⇒ We numerically show that β is identified with β̂ = 1.0768. Note
that the relative value iteration is essential to derive this result!
Rust used the value function which diverges for β → 1.
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The Macroeconomic Historical Context
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Figure: Blue line: Real interest rate in the US. Grey: Paul Volcker took
office as chairman of the Federal Reserve. Green: Rust [1987] dataset.
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Structural Break in the Discount Factor

Figure: Homotopy path tracing for each possible time of the structural
break, tβ . Black dots denote the restricted model without structural
break in the discount factor.
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Structural Break in the Discount Factor
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Figure: Profile likelihood Lp(tβ); Discount factor estimate before the

structural break , β̂1, and after the structural break, β̂2. Black vertical
line denotes the month Paul Volcker took office. Orange dashed line the
likelihood of the restricted model, i.e., β1 = β2.
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Discussion: Identification

“ In most applications [the discount factor] is not estimated
because it is poorly identified (e.g., see Rust, 1987).” ?

⇒ Maybe? Many DDCM models we found base on proprietary
data; hence, a replication is not possible.
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Discussion: β > 1

“The intertemporal factor is usually assumed to be between 0 and
1 because it is assumed to be 1 / (1 + interest rate) although
behaviorally this does not have to hold.” ?

⇒ Note that the decision maker is Harold Zurcher,
who, behaviorally, might well have a β > 1

“We first estimated the discount factor as a parameter, and it
turned out to equal 1.001.” ?

Think of yourself and your behavior when paying bills: Would you
rather pay them immediately or postpone it?
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Robustness: Heteroscedasticity

• Is it all just misspecification?
• The utility shock ε is i.i.d. EV1 distributed for all mileage

states

⇒ buses with high mileages are modeled with the same shock
distribution as buses with low mileages

• Fair to assume that the risk of a bad shock increases with
mileage

• We check for heteroscedasticity by adding a second shock
η ∼ N(0, 1) to the utility function u + ε. The resulting utility
reads

u(x ; θ, d) + ε(d) + θhxη (6)

where θh denotes the heteroscedasticity parameter.
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Robustness: Heteroscedasticity
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Figure: Heteroscedasticity plots for tracing the heteroscedasticity θh from
the standard model (θh = 0) to (θh = 0.031). The left plot depicts the
corresponding maximum likelihood estimate β(θh) and the right plot
depicts Lp(θh).

Opposed to the intuition, β(θh) is monotonically increasing
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Robustness: Cost functions
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u(xt , dt ; θ11,RC) + εt(dt) =

{
−c(xt , θ1) + εt(0) if dt = 0

−RC + εt(1) if dt = 1
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Conclusion

Method

• Capable of systematic and efficient structural estimation, even
for models with a poorly identified parameter and in the
presence of multiple equilibria.

• We enable inference on the full (profile) likelihood function.

Model

• Given the original data set and model we can reject that β is
unidentified.

• The estimate for β is unexpectedly even statistically
significantly larger than 1 with β = 1.078 (p = 0.0086).
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Confidence Intervals

The γ-likelihood ratio confidence interval of parameter θj as
function of β reads{

θj : max
θ−j

L(θ;β)−
(
L(θ̂(β);β)− 0.5χ2

1(γ)
)
≥ 0

}
, (7)

θ̂(β) denotes the maximum likelihood estimate in dependence of β.
This naturally integrates into our tracing approach(

L(θ;β)− (L(θ̂(β);β)− 0.5χ2
1(γ))

∇µ,θ−j ,σL(µ, θ, σ;β)

)
= 0. (8)



References

10 20 30 40
-308

-306

-304

-302

-300

-298

-296

0 2 4

-306

-304

-302

-300

-298

-296

10 20 30 40

0.9

1

1.1

1.2

1.3

0

2

4

6

8

10

0 2 4
0.6

0.8

1

1.2

50

100

150


	Introduction
	Model
	Method
	Results
	Appendix
	References




