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Abstract

We develop a method to robustly estimate parameters of structural eco-

nomic models with potential identification issues. Using homotopy path con-

tinuation applied to the MPEC formulation of the estimation problem (Su and

Judd, 2012), we trace the parameter estimates and their confidence intervals

as a function of a controlled parameter. As the discount factor is commonly

assumed to be poorly identified in DDCMs, we trace the parameter estimates

of the bus engine replacement model by Rust (1987) as a function of the dis-

count factor β. Applying methods developed for undiscounted dynamic pro-

gramming, we find that β is well identified and statistically significantly larger

than 1. We establish an economically reasonable qualitative link between the

decision-maker’s discounting and the real interest rates: in an extended model

with an unanticipated structural break in β, the decrease in β qualitatively

agrees with the macroeconomic regime change in the real interest rates during

the great inflation. These rates were low or even negative, and increased after

Paul Volcker took office as chairman of the Fed. In this period of negative
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real interest rates, a time value of money argument cannot reject the estimate

β > 1.

Keywords: Structural estimation, parametric optimization, mathematical pro-

gramming with equilibrium constraints, homotopy path continuation, identification,

multiplicity of equilibria.

1 Introduction

The estimation of the parameters of structural models through maximum likelihood

estimation is known to be very efficient, and thus its application is particularly de-

sirable in situations where, for example, the amount of data is limited. However, the

underlying optimization problem spans a wide range of methodological complexity:

from likelihood-maximizing estimators that allow for closed-form solutions, through

relatively easy to solve smooth convex, unconstrained problems, to non-convex con-

strained problems, potentially with multiple local solutions. The numerical difficulty

within such a class of optimization problems varies greatly and depends heavily on

the problem itself (and potentially the data): for example, a lack of identification of

a subset of the estimated parameters turns the Hessian of the optimization problem

singular; similarly, multiplicity in the solutions to the model can induce—depending

on the estimation method in use—discontinuities in the likelihood function, or fail-

ures of important constraint qualifications, such as the linear independence constraint

qualification.

In this paper, we develop a parametric optimization approach that mitigates a va-

riety of these problems: Suppose we fix a particular parameter of the model referred

to as the controlled parameter—ideally a “troublemaker”—and estimate the remain-

ing free parameters. Standard results from the optimization literature, in particular

the implicit function theorem and the envelope theorem, state rigorous conditions

under which the estimates of the free parameters are continuous (often even smooth)

functions of the controlled parameter in a neighborhood of their initial estimates. If

we restrict ourselves to equality constrained problems, we can apply homotopy contin-

uation to efficiently trace the estimates as a function of the controlled parameter on a

compact interval, and compute their corresponding likelihood function values. These

likelihood values—which are optimal w.r.t. the free parameters only—can be seen

as the profile likelihood in the controlled parameter. Moreover, we demonstrate the
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estimation of confidence interval functions of the controlled and the free parameters

within our approach.

A prototypical example of structural models with identification issues are dynamic

discrete choice models (DDCM), whose discount factor is considered to be notoriously

hard to identify.1 Indeed, the discount factor in these models is non-parametrically

non-identified (Rust, 1987, 1994; Magnac and Thesmar, 2002), and even under strong

assumptions on the utility function, it is often only “poorly” identified (Aguirregabiria

and Mira, 2010). We refer to a parameter as poorly identified if the profile likelihood

function of this parameter is flat, that is, a change in the parameter produces only

a negligible change in its likelihood, although the parameter is identified in theory.

The estimation of such parameters can be cumbersome, and thus they are often

fixed to some a-priori “reasonable” value. In this paper, we will apply our method

to estimate the discount factor—and analyze its identification—in the seminal bus

engine replacement model of Rust (1987); specifically, the author states (Rust, 1987,

p. 1023):

I was not able to precisely estimate the discount factor β. Changing β to

.98 or .999999 produced negligible changes in the likelihood function and

parameter estimates.

The observation by the author motivates the application of our method to the bus

engine replacement model of Rust (1987). Before proceeding to the estimation results,

we briefly present the model and the required numerical tools to solve a dynamic

programming problem with infinite horizon for the discount factor β ≥ 1: In this

model, the decision-maker, Harold Zurcher, inspects the buses monthly and decides

whether to carry out regular maintenance work or to replace the engine which resets

the mileage to 0. While the maintenance costs increase in the mileage driven by the

buses, the engine replacement costs are fixed. The decision-maker acts dynamically

optimally by maximizing the expected discounted utility over an infinite horizon.

The per-period utility equals the negative costs plus an unobserved utility shock.

Crucially, the monthly mileage transitions of the buses are modeled by a stationary

law of motion, and the discount factor is assumed to be constant. While Rust (1987)

could not estimate the cost parameters jointly with the discount factor, he noted

1There has been substantial interest in the estimation of the discount factor in the literature on
two-step estimators (going back to Hotz and Miller, 1993); see, e.g., Abbring and Daljord (2017);
Komarova et al. (2018); Daljord et al. (2018).
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“a systematic tendency for the estimated value of β to be driven to 1” (Rust, 1987,

p. 1023), which is problematic in infinite horizon problems as the value function

diverges unless the cost per state is bounded and there exists a cost-free absorbing

state. The literature refers to the case of β = 1 as average cost per stage problem and

solves for the value function relative to some value—the relative value—instead of the

absolute values by relative value iteration (see, e.g., Bertsekas, 2012). This procedure

also applies for β < 1 (see, e.g., Puterman, 2014) and numerically, the extension to

β ∈ R+ is straightforward. Economically, “discount” factors greater than or equal

to 1 might seem unappealing, because the expected sum of discounted payoffs might

diverge; the policy function, however, still can be well-defined—especially in dynamic

logit models where the policy is calculated by value differences.

We solve Rust (1987) by tracing the estimates as a function of the discount factor

and find that the profile likelihood in the discount factor is well-behaved and features

a locally unique maximum, which implies that the discount factor is actually well

identified. The estimate β̂ is strictly larger than 1 for all subsamples considered in

the original paper, and even statistically significantly greater than 1 for bus groups 1–

4.2 This estimate strikes to be odd at first, as the discount factor is usually restricted

to the half-open interval [0,1) using a time value of money argument.

The surprising results of β > 1 prompts the question if this might be an ar-

tifact of misspecification. The literature widely ignores the context in which the

decision-maker in Rust (1987) acts: first, the individual bus group’s embedding in

the expanding bus fleet, and second, the historical macroeconomic context—the great

inflation. The buses are grouped by their purchase date and bus type into eight bus

groups which are part of the bus fleet managed by the decision-maker. Four of the

eight bus groups were purchased by the company during the sample period, which

evidently affected the transition probabilities of the already existing bus groups. His-

torically, the sample period started during the great inflation in which the US faced

rising inflation rates leading to low or even negative real interest rates. After Paul

Volcker became chairman of the Federal Reserve and introduced new monetary poli-

cies targeting the money supply in 1979, the nominal interest rates increased while

the inflation decreased and in turn, which resulted in increasing real interest rates.

2We recently became aware of Blom Västberg and Karlström (2017, unpublished; available on
request from the authors), which obtains a similar empirical result through a grid search for bus
group 1–4 of Rust’s original data set.
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We find empirical evidence that both contexts affect the decision-maker by esti-

mating an extended version of Rust (1987) with an unanticipated structural break

at an unknown time (i) in the individual bus groups’ transition probabilities and (ii)

in the discount factor. For each possible time of the break, we apply the proposed

estimation method to trace the estimates as a function of the discount factor. We

reject the restricted models without a structural break for (i) and (ii) with a p-value

much lower than 0.0001 using the entire dataset including bus groups 1–8. The re-

sults from both extensions reveal insights into the estimate β̂ > 1: In extension (i),

β̂ falls below 1 with a confidence interval that barely includes 1 suggesting that β

is sensitive to misspecifications in the law of motion. In extension (ii), the optimal

time of the structural break agrees closely with the time Paul Volcker took office as

chairman of the Fed. The estimated discount factor falls from 1.03 before to 1.00 after

the structural break, which, qualitatively, agrees with the rise in real interest rates.

Moreover, in light of the negative real interest rates before the structural break, the

estimate of β > 1 can not be rejected based on a time value of money argument.

The application of homotopy path continuation to solve parametrized systems

of equations is fairly established in economics and operations research: Eaves and

Schmedders (1999) as well as Besanko et al. (2010) use it to trace model solutions

in dependence on a parameter value, in particular, to detect the presence of multiple

solutions of the model for a given parameter value; Judd et al. (2012) use polynomial

homotopy continuation to find (proveably) all solutions to systems of equations arising

from equilibrium equations; for more details on the application of homotopy path

continuation methods in economics, see Judd (1998) and Borkovsky et al. (2010).34

There are several examples of β > 1 in the literature as, for example, in Erdem

and Keane (1996) where the authors derive the discount factor estimate β̂ > 1 in

their model of consumer behavior, and in the New Keynesian literature to allow the

zero lower bound on the nominal interest rates to bind (see e.g., Christiano et al.,

2011). Regardless of the relation to the nominal or real interest rate environment,

Erdem and Keane (1996) argue that there is no inherent behavioral reason to re-

3In a technical report, DiCiccio and Tibshirani (1991) develop a first-order approximation of the
curve of an implicit many-to-one transformation of parameters to obtain its confidence intervals.

4Homotopy path continuation has also been applied to general parametric constrained optimiza-
tion problems, as, e.g., by Tiahrt and Poore (1990) and Poore (1990). Since we restrict ourselves to
equality constrained problems, the necessary mathematical results on parametric optimizations can
also be found in textbooks, like Fiacco and McCormick (1990); Simon and Blume (1996); Klatte
and Kummer (2002); Nocedal and Wright (2006).
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strict the discount factor to [0, 1) . For state-dependent discounting, Stachurski and

Zhang (2021) develop the theory to solve dynamic programming with state-dependent

discount factors while allowing for a positive probability of β ≥ 1.

The remainder of this paper is organized as follows: Section 2 defines the original

estimation problem, formalizes the concept of the profile likelihood problem and its

representation by first-order conditions, briefly outlines homotopy path continuation,

and synthesizes the concepts. Moreover, an extension to likelihood ratio confidence

intervals of the free parameters is given. Section 3 introduces the model of Rust

(1987), introduces relative value iteration for discount factors β > 1, traces the esti-

mates of the model parameters as a function of β, and establishes the qualitative link

between β and the real interest rates. Section 4 concludes.

2 Estimation by Homotopy Path Continuation

2.1 The Economic Model

We closely follow the notation of Su and Judd (2012) due to its generality and con-

sider structural economic models featuring the following three types of variables and

parameters:

Structural parameters A p-dimensional vector of structural parameters, θ ∈ Θ ⊂
Rp and a scalar, real-valued parameter within a compact interval, β ∈ [a, b].

These include parameters of statistical distributions, preference parameters,

cost functions, policy related parameters, and discount factors.

Endogenous variables An m-dimensional vector of endogenous variables, σ ∈ Σ ⊆
Rn.5

State variables An m-dimensional vector of states, x ∈ X ⊆ Rm; note that the

state space does not have to be discrete in order to obtain a finite dimensional

σ.

An economic model further requires specific relations between these variables and pa-

rameters. We subsume these relations into a system of (nonlinear) equations denoted

5Since the aim of this paper is computational, we restrict ourselves to real, finite vectors σ, and
therefore assume that all objects have been discretized and truncated if necessary.
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as h : Σ×Θ× [a, b]→ Rk with h ∈ C2, i.e., twice continusly differentiable, and require

h(σ; θ, β) = 0. (1)

The state vector x might enter h, e.g., in that (1) has to hold for all admissible values

of the state variable or in (conditional) expectation, etc. Like Su and Judd (2012),

we denote an equilibrium outcome of the endogenous variables as σ̇(θ, β). Note that

σ̇(·) is implicitly defined by the structural parameters and the model equations. We

denote the set of all such equilibrium outcomes for a particular parameter value as

Σ̇(θ, β) ≡ {σ ∈ Σ : h(σ; θ, β) = 0}. (2)

At this point, we do not impose any structure on Σ̇ and thus allow it to be a singleton,

a finite set of outcomes—commonly referred to as “multiple equilibria”—or even a

non-trivial connected set if (1) is under-identified.

2.2 The Parameter Estimation Problem

To estimate the structural parameters θ and β, the econometrician obtains data on

the variables predicted by the model. These are usually functions of the state vari-

ables and the endogenous variables.6 We denote the data variables by x̃ ≡ x̃(x, σ)

and a full sample of s concrete observations by x̃1:s ≡ {x̃i}si=1. We utilize the like-

lihood function as measure assessing the degree to which the parameters “explain”

the observations and assume it to be twice continuously differentiable. Two main

approaches to estimation based on the likelihood function exist: The nested fixed

point (NFXP) approach of Rust (1987) maximizes the likelihood over θ and β, while

replacing σ by an implicit function representation,

(θ̂, β̂, σ̂)MLi = arg max
θ∈Θ, β∈[a,b]

L(θ, β, σ̇(θ, β); x̃1:s); (3)

σ̂ can be obtained as σ̇(θ̂, β̂).

Mathematical programming with equilibrium constraints (MPEC) by Su and Judd

(2012) maximizes the augmented likelihood over θ, β, and σ all together, and at the

6Usually only a subset of the variables that the model predicts can be observed; the details of
the treatment of unobserved variables generally depend on the estimation method, but often forms
some kind of expectation and thus an integral; see Reich (2018).
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same time imposes the model equations as constraints:

(θ̂, β̂, σ̂)MLc = arg max
θ∈Θ, β∈[a,b], σ∈Σ

L(θ, β, σ; x̃1:s)

s.t. h(σ; θ, β) = 0.
(4)

To develop our concepts in this paper, we rely on the constrained optimization for-

mulation (4).

2.3 The Profile Likelihood Function

Suppose we are not able or willing to point estimate a function of structural pa-

rameters g(θj, β) on the parameter subset θj ⊂ θ; possible reasons can be its poor

identification and/or multiplicity in the model solutions. Rather, we aim to obtain

a parametric solution to the estimation problem (4) in β on [a, b], as θ̂(β; x̃1:s) and

σ̇(θ̂(β; x̃1:s), β).

Suppose we are not able or willing to point estimate the structural parameter

β; possible reasons can be its poor identification and/or multiplicity in the model

solutions. Rather, we aim to obtain a parametric solution to the estimation problem

(4) in β on [a, b], as θ̂(β; x̃1:s) and σ̇(θ̂(β; x̃1:s), β). We refer to β as the controlled

parameter. The statistical concept to achieve this is the profile likelihood :

Lp(β; x̃1:s) ≡ max
θ∈Θ, σ∈Σ

L(θ, β, σ; x̃1:s)

s.t. h(σ; θ, β) = 0,
(5)

where θ̂(β) and σ̇(θ̂, β) are the maximizers of (5) as a function of β; we skip the

dependency on the sample for notational brevity below.

In principle, each evaluation of the profile likelihood for a particular β requires

solving the nonlinear constrained optimization problem (5). Solving the parametrized

system of nonlinear first-order necessary conditions—and checking the second-order

sufficient conditions—is, however, mathematically equivalent.

Therefore, consider the Lagrangian function L of (5),

L(θ, σ, µ; β) ≡ L(θ, β, σ)− µTh(σ; θ, β), (6)
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with Lagrange multipliers µ ∈ Rk. The gradient of the Lagrangian (6) reads

∇µ,θ,σL(θ, σ, µ; β) ≡

(
−h(σ; θ, β)

∇θ,σL(θ, β, σ)− (µTDθ,σh(σ; θ, β))T

)
. (7)

If the gradients of the constraints are linearly independent—that is, if the Jacobian

Dθ,σh has full rank7—then the Karush-Kuhn-Tucker first-order necessary conditions

hold: Suppose (θ̂, σ̂; β) is a local optimum of the constrained optimization problem

(5) and µ̂ are the corresponding Lagrange multipliers; then:

∇µ,θ,σL(θ̂, σ̂, µ̂; β) = 0. (8)

Note that the first-order necessary conditions only imply stationary points; see Section

A.2 for a discussion on appropriate second-order criteria.

Suppose (θ̂, σ̂, β0) and the corresponding µ̂ satisfy (8) as well as the second-order

sufficient conditions—implying full rank of the Jacobian of (8)—and recall that we

assumed the likelihood function and the constraints to be twice continuously dif-

ferentiable. Then, there exists the maximizer function (θ̂(β), σ̂(β), µ̂(β)) in some

neighborhood N = [β0 − ε, β0 + ε] such that the optimality conditions hold and that

this function is at least once continuously differentiable w.r.t. β for any β ∈ N ; see,

e.g., Fiacco (1976, Thm. 2.1). Furthermore, the envelope theorem yields that the

profile likelihood function exists and is smooth for β ∈ N .

2.4 Homotopy Parameter Continuation

We use homotopy parameter continuation to efficiently solve the parameterized sys-

tem of first-order necessary conditions (8) for β ∈ [a, b]. Homotopy parameter contin-

uation solves the exemplary system of (nonlinear) equations F (x, p) = 0 ∈ RN with

a parameter p ∈ [0, 1] by defining a continuous map—referred to as the homotopy

map—ρ ∈ C2 : RN × [0, 1]→ RN as

ρ(x, λ) = F (x, λ). (9)

7This condition is referred to as the linear independence constraint qualification (LICQ) and
constitutes a constraint qualification to the system of KKT conditions.
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Note that the homotopy parameter λ ∈ [0, 1] parameterizes F (x, ·) 8. By construction,

the desired solution set to F (x, p) = 0 equals the zero set ρ−1(0) ≡ {(x, λ) : ρ(x, λ) =

0}. In the following, we consider the zero set ξ emanating from the initial solution

(x0, 0) — a subset of ρ−1(0) .

To approximate the solution set {(x, p) |F (x, p) = 0}, homotopy parameter contin-

uation starts at the initial solution (x0, 0) and traces ξ. Numerically, the curve ρ(x, λ)

is reparameterized in terms of the arc length and solved for by ordinary differential

equation algorithms. For details, see, e.g., Borkovsky et al. (2010).

2.5 Estimation by Parametric Mathematical Programming

with Equilibrium Constraints

Estimation by parametric mathematical programming with equilibrium constraints ap-

plies homotopy continuation to the parameterized FOCs that represent the profile

likelihood (5) by defining the homotopy map as

ρ((θ, σ, µ), λ) ≡ ∇µ,θ,σL(θ, σ, µ; c(λ)), (10)

where (θ, σ, µ) denotes the model parameters, the endogenous variables, and the cor-

responding Lagrange multipliers, respectively. The controlled parameter β is re-

placed by the linearly transformed homotopy parameter c(λ) ≡ (1−λ)a+λb allowing

for a controlled parameter β ∈ [a, b]. By construction, all points in ρ−1(0) sat-

isfy the first-order necessary conditions and thus, are stationary points denoted as

(θ̂(c(λ)), σ̂(c(λ)), µ̂(c(λ))) for λ ∈ [0, 1].

We denote the subset of ρ−1(0) that emanates from the initial estimate (θ̂(c(0)), σ̂(c(0)), µ̂(c(0)))

by ξ. We obtain the initial estimate by standard constrained optimization algorithms.

Numerically tracing ξ solves efficiently for a discrete and finite subset of the stationary

points ξ̂ ⊆ ξ. If the Jacobian Dxρ(x, λ) is regular for all points on ξ, it is sufficient to

ensure the optimum type at λ = 0 (see, e.g., Poore, 1990). If there exist singularities

along the path as, e.g., turning points, the second-order sufficient conditions must be

checked on the interior of ξ.

The method explicitly does not require identification w.r.t. the controlled param-

eter β, but only w.r.t.̃the parameter vector θ given β. Furthermore, we allow for

8(Non-)linear transformations of λ allow for p ∈ I ⊆ R.
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multiplicity in the solutions of the model as long as the likelihood discriminates the

model solutions properly;9 see Appendix A.1 for a more detailed discussion on iden-

tification and multiplicity.

As a numerical implementation for tracing the path ξ, we propose the homotopy

solution methods included in Hompack 90 (Watson et al., 1997) combined with the

automatic differentiation (AD) tool CasADi (Andersson et al., 2018). We interface

to the Fortran 90 library Hompack 90 through our interface M-Hompack such that

the underlying model can be implemented entirely in Matlab.

2.6 Confidence Interval Functions

Estimating dimension-wise likelihood ratio confidence intervals (LRCI) typically in-

volves finding their boundaries by solving for the roots of two level set problems on

the profile likelihood function. This naturally integrates into our tracing approach

such that we can efficiently trace dimension-wise LRCI of θ̂ as a function of β.

The γ · 100% LRCI of the parameter θj in dependence of β reads

CIγ(θ̂j; β) ≡
{
θj : max

θ−j
L(θ; β)− (L(θ̂(β); β)− 0.5χ2

1(γ)) ≥ 0

}
, (11)

where θ ≡ (θj, θ−j); χ
2
1(γ) is the γ quantile of the χ2 distribution with one degree of

freedom; θ̂(β) denotes the maximum likelihood estimate in dependence of β.

To estimate the boundary of CIγ(θ̂j; β), we consider the following system of equa-

tions: (
L(θ; β)− (L(θ̂(β); β)− 0.5χ2

1(γ))

∇µ,θ−j ,σL(µ, θ, σ; β)

)
= 0. (12)

The first equation of (12) ensures that the level of the likelihood at (θj, θ−j) is equal to

the critical value of the likelihood ratio test statistic.10 While we vary θj to obtain the

critical value of the likelihood, the remaining dimensions must optimize the likelihood;

this is ensured by the first-order conditions of the Lagrangian w.r.t.̃to θ−j (and σ).

9However, for the profile likelihood to be a unique function, a necessary condition for the Hessian
of the Lagrangian (28) is to be nonsingular. This does not hold if the gradients of the constraints
are linearly dependent which can happen at points where the solution is indeed unique but “splits
up” into several solutions corresponding to turning points or bifurcations.

10In order to efficiently evaluate L(θ̂(β);β), we found it useful to interpolate the discrete set ξ̂ of
previously obtained tracing results, e.g. by cubic spline interpolation.
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3 Application: Bus Engine Replacement

This section applies the structural estimation by homotopy continuation approach to

the bus engine replacement model by Rust (1987). We present the model in Section

3.1, the concept of relative value functions in Section 3.2, and estimate the discount

factor β and the other parameters of the original model in Section 3.3. In Section

3.4, we examine our discount factor estimate of β̂ larger than 1 and find empirical

evidence that the context of the decision-maker acts matters: first, the embedding

of bus groups in the expanding bus fleet in Section 3.4.2, and second, the historical

macroeconomic context—the great inflation—in Section 3.4.3.

3.1 The Bus Engine Replacement Model of Rust (1987)

In the bus engine replacement model of Rust (1987), a manager of a fleet of public

transportation buses regularly (monthly) inspects his buses. During this inspection,

he assesses their roadworthiness and quantifies the need for regular maintenance work

and its costs. Finally, for each bus in each period, he decides whether to carry out

the work or completely overhaul (or replace) the most critical part of the bus, its

engine, which would reset its odometer to 0. It is assumed that the cost of regular

maintenance work increases with the bus’s age (measured by its odometer), whereas

engine replacement comes at a cost that is independent of a bus’s age. This will expose

the manager to a dynamic trade-off—namely whether to spend a (usually) larger

amount of money for full replacement but reducing expected future maintenance

costs or to spend less in the current period but incurring higher regular costs with an

aging bus.

To account for cost parameter and transition probability heterogeneity, we parti-

tion the bus groups into partitions p and denote the set of partitions as P . Typically,

a partition comprises bus groups of the same or similar bus model and engine type.

The per-period cost function for one individual bus of partition p reads

u(x, i; θp11, RC
p) + ε(i) ≡

−RCp + ε(1) i = 1

−θp11 · x+ ε(0) i = 0
(13)

where i denotes the decision (1: replacement, 0: no replacement), RCp and θp11 are

scalar, positive parameters to be estimated, and ε ≡ (ε(0), ε(1)) are choice specific,

12
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random utility shocks, which are—as it is common to assume in the discrete choice

literature—modeled as two i.i.d. extreme value type I (Gumbel) random variables;

note that both components of ε are observed by the manager prior to making his

decision. The mileage of a bus is discretized to bins of 5, 000 miles with a maximum of

450,000 miles—with the state variable x ∈ {1, . . . , 90} denoting the index of the bin—

and assumed to follow a Markov process with conditional transition probabilities

θp3 ≡ (θp30, θ
p
31, θ

p
32):

θp3∆ ≡ Pr(xt+1 = (1− it)xt + ∆ | xt, it; θp3), ∆ ∈ {0, 1, 2}, (14)

for xt+1 ∈ {1, . . . , 90}, and zero otherwise. The structural vector θp = (RCp, θp11, θ
p
3)

is to be estimated.

The manager is assumed to act dynamically optimally, i.e., maximizing the sum

of his expected discounted future costs over an infinite time horizon,

Vθp(xt, εt) = sup
fθp (·,·)

E

[
∞∑
j=t

βj−t (u(xj, fθp(xj, εj); θ
p
11, RC

p) + ε(fθp(xj, εj)))

∣∣∣∣∣xt, εt; θp3
]
,

(15)

where β denotes the discount factor, and where the decision rule fθp : x, ε 7→ i maps

states to decisions. If β ∈ [0, 1), the Bellman equation forms a sufficient optimality

condition for (15):

Vθp(x, ε) = max
i∈{0,1}

{u(x, i; θp11, RC
p) + ε(i) + βE [Vθp(x

′, ε′)|x, i; θp3]} (16)

where x′ and ε′ denote next period’s values of the states. When estimating the

discount factor β—which was fixed in the original specification by Rust (1987)—we

have to be aware of the following: The discount factor is a property of the manager;

thus, when estimating β, we can not treat the bus groups separately, but use all

bus groups to estimate the discount factor, while allowing for cost parameter and

transition probability heterogeneity for arbitrary partitions p ∈ P .

In Rust (1987), the author derives from the distributional assumptions on ε a
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(partial) closed-form solution for the expectation over the next period’s value as

EVθp(x, i) ≡ E [Vθp(x
′, ε′)|x, i; θp3] (17)

=
∑

∆∈{0,1,2}

log

( ∑
j∈{0,1}

exp(u((1− i)x+ ∆, j; θp11, RC
p) (18)

+ βEVθp((1− i)x+ ∆, j))

)
θp3∆

≡ T (EVθp)(x, i). (19)

Note that equation (17) defines an operator equation on the function EVθ(·, ·), and

has—for β ∈ [0, 1)—a unique solution (Rust, 1988).

Since the mileage state x is discretized, the function EVθp is discrete, too. By

assuming EVθp(x, 1) = EV p
θ (1, 0) for all x, we can denote the finite vector of values

characterizing the function EVθp by EV
p ∈ R90. A single element of EV

p
corresponds

to state x by EV
p

x. The functional equation reduces to the system

EV
p

x = Tθp(EV
p
)x ∀x ∈ {1, . . . , 90}. (20)

Note that due to the sparsity of the transition matrix implied by the mileage transition

probabilities (14), the Jacobian matrix of (20) is very sparse.

Using data on (partial) states and decisions, the structural parameters of the

model, θp ≡ (RCp, θp11, θ
p
3) can be estimated using maximum likelihood. Rust (1987)

shows that the decision probabilities equal the multinomial logit formula

Pr(it = 1|xt; θp, EVθp) =

(
1 + exp

(
u(xt, 0; θp11, RC

p) + βEVθp(xt, 0) (21)

− u(xt, 1; θp11, RC
p)− βEVθp(xt, 1)

))−1

due to the fact that the difference of two extreme value type 1 random variables is

logistically distributed. As the likelihood for partitions p is mutually independent,

14
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the likelihood for T periods and partition set P can be written as

L(θ; {xt, it}Tt=1, EVθ) =
∏
p∈P

L(θp; {xt, it}Tt=1, EVθp)

=
∏
p∈P

T∏
t=1

Pr(it|xt; θp)Pr(xt|xt−1, it−1; θp3, EVθp).

(22)

After taking the logarithm of the likelihood function (22), we can maximize it over θ

using the mathematical programming with equilibrium constraints approach (MPEC)

by Su and Judd (2012) or the nested fixed-point algorithm by Rust (1987). The

MPEC optimization problem over the partition set P and fixed β reads

max
(θp,EV

p
)p∈P

∑
p∈P

logL(θp, EV
p
; {xt, it}Tt=1)

s.t. EV
p

x = Tθp(EV
p
)x ∀x ∈ {1, . . . , 90}, ∀p ∈ P .

(23)

3.2 Relative Value Function

To allow for β ≥ 1, we introduce a slightly different formulation of the value func-

tion. Rust (1987) formulates the dynamic programming problem (15) as a discounted

Markov decision problem (MDP) with an infinite-horizon and the discounted utility

optimality criterion. In his formulation, the discount factor β is restricted to the

half-open interval [0, 1) as the value function V—as well as the expected value EV—

diverges otherwise; restricting the discount factor to β ∈ [0, 1) leads to a discounting

of future costs and in turn—under mild assumptions—to a finite V .

By global recentering, we can solve for the relative (expected) values evp by

evpx = EV
p

x − EV
p

k, ∀x ∈ {1, . . . , 90}, (24)

with some fixed k ∈ {1, . . . , 90}, which we fix to k = 1. This idea of solving for the

relative values is proposed in White (1963) to solve MDPs with β = 1 where the

absolute (expected) values diverge. Numerically, the extension to β > 1 is reason-

able and recently Blom Västberg and Karlström (2017) (unpublished) have shown

independently the applicability for the model of Rust (1987) for β > 1.11

11Furthermore, Puterman (2014) has shown the applicability of relative values to the standard
problem β < 1.

15

Electronic copy available at: https://ssrn.com/abstract=3303999



Analogously to the (expected) value iteration, the relative (expected) value iter-

ation solves the fixed-point equation

evpx = Tθp(ev
p)x − Tθp(evp)1 ∀x ∈ {1, . . . , 90}. (25)

By reformulating the choice probabilities (21) as

Pr(it = 1|xt; θp) =

1 + exp

u(xt, 0; θp11, RC
p)− u(xt, 1; θp11, RC

p) + β(EV
p

xt − EV
p

1︸ ︷︷ ︸
evpxt

)



−1

(26)

it becomes apparent that the relative expected value vector evp is sufficient to evaluate

the choice probabilities in the likelihood function (22).

3.3 Estimation Results

This section applies the estimation by parametric mathematical programming with

equilibrium constraints to the bus engine replacement model of Rust (1987). The

tracing of the estimates as a function of the discount factor is motivated by the

common belief that discount factors of dynamic models are often poorly identified

(Aguirregabiria and Mira, 2010). For the model at hand, the author states (Rust,

1987, p. 1023):

I was not able to precisely estimate the discount factor β. Changing β to

.98 or .999999 produced negligible changes in the likelihood function and

parameter estimates of (RC, θ11). The reason for this insensitivity is that

β is highly collinear with the replacement cost parameter RC . . . Thus,

if I treated β as a free parameter, the estimated information matrix was

nearly singular, causing difficulties for the maximization algorithm.

At the same time, he notes that (ibid.):

I did note a systematic tendency for the estimated value of β to be driven

to 1. This curious behavior may be an artifact of computer round-off

errors, or it could indicate a deeper result. . . . if Harold Zurcher is actu-

ally minimizing long-run average costs, an estimation algorithm based on

discounted costs would use Abel’s theorem and attempt to drive β to 1.
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In fact, we will confirm both statements by showing that indeed (i) the conditioning

of the Hessian matrix of the estimation problem explodes as β → 1 for absolute

expected values, making a direct estimation of any β close to 1 using the absolute

expected value formulation hard; and (ii) the observed “tendency for the estimated

value of β to be driven to 1” is very real, as the estimate using the relative expected

value formulation is even larger than 1.

To assess Rust’s hypothesis, we trace the profile likelihood for the original data

set as a function of the discount factor β. We consider the bus groups 1–4 in two

distinct settings: (i) the “restricted” model in which the partition set equals the

singleton P = {{1, 2, 3, 4}}, i.e., bus groups 1–4 share the same cost parameters and

transition probabilities, and (ii) the “unrestricted” model in which the partition set

equals P = {{1, 2, 3}, {4}} which allows for cost parameter and transition probability

heterogeneity across the partitions {1, 2, 3} and {4}.
Figure 1 depicts the main estimation results for the restricted model (top) and

the unrestricted model (bottom). On the left, the value of the profile likelihood is

plotted as a function of β as well as the original point estimate of Rust (1987) at

β = .9999 and our point maximum at the peak of the profile likelihood. The other

plots depict the estimates (θ̂p11, R̂C
p
) as functions of β including their 75% and 95%

confidence interval boundary functions.

We interpret the estimation results as follows: First, from the shape of the pro-

file likelihood, we conclude that β is well identified. Its maximizer—and thus the

maximizer of the full likelihood function—is well above 1; indeed, the likelihood ratio

confidence interval reveals that β is significantly larger than 1 in the full sample.

Assessing the original estimates of Rust (1987), we find that both the value of the

likelihood function as well as the estimates for β = 0.9999 match. At the same time,

the cost parameters estimates (θ̂p11(β), R̂C
p
(β)) vanish and diverge, respectively, as

β becomes larger than 1. In particular, given the degree of replacement in the data,

limiting β < 1 is compensated in the estimation by making replacement too cheap

relative to regular maintenance.

Table 1 reports the quantitative estimation results, including their parameter-wise

90% likelihood ratio confidence intervals for the restricted and unrestricted model.

For both models, we estimate β to be greater than 1. For the restricted model, the

likelihood ratio test rejects H0 : β = 1 with a p-value of less than 1%, while for the

unrestricted model, the likelihood ratio test with a p-value of about 15% cannot reject
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Restricted model Unrestricted model
p {1, 2, 3, 4} {1, 2, 3} {4}
β 1.0768 1.0467

[1.0245,∞) [0.9897, 1.1042]

RC 37.7109 18.9955 19.8543
[12.999, 354.896] [10.2491, 397.8716] [9.0370, 426.3007]

θ11 0.0905 1.4711 0.3903
[0.001, 1.029] [0.0366, 6.1420] [0.0068, 2.6053]

LL -6,051.79 -6,011.51

p-value 0.0086 0.1552
(H0 : β = 1)

p-value 0.0000
(H0 : θ{1,2,3} = θ{4})

Table 1: Joint estimation of the main structural parameters, (θ11, RC, β), for the re-
stricted model (P = {{1, 2, 3, 4}}) and the unrestricted model (P = {{1, 2, 3}, {4}});
90% likelihood ratio confidence intervals are reported in brackets (if available; half-
closed interval containing the confidence interval otherwise); p-value is reported for
the likelihood ratio test of H0 : β = 1.

H0 at conventional significance levels. While β > 1 is not statistically significant for

the unrestricted model, it is economically significant.

To verify the results’ numerical accuracy, we report the violation of the first-order

conditions in terms of the L∞ norm as a function of β in Figure 2 (left); we conclude

that the approximation error is well within accepted numerical tolerances. We further

assess the numerical error pattern by investigating the conditioning of the problem.

The right side of Figure 2 depicts the condition number of the augmented Jacobian

once for absolute expected values (red) and once for relative expected values (blue).12

The condition of the augmented Jacobian deteriorates in both cases. Although the

condition number also diverges for relative expected values ev, it only does so for

some β > 1.13 This is very much in line with the near-singular information matrix

12The augmented Jacobian equals the Jacobian of the first-order conditions, with the derivative
w.r.t. the tracing parameter added as an additional column

13Also the convergence issues reported by Blom Västberg and Karlström (2017) for β > 1.05 can
be explained by the conditioning of the problem. We argue that NFXP might fail for β > 1 if
the starting points are not chosen very locally to the solution, as it is done using homotopy path
continuation with predictor steps.
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Figure 2: Left: Violation of the first-order conditions as a function of β for three
error tolerance configurations of Hompack90 (1e-08, 1e-10, 1e-12). Right: Condition
number of the augmented Jacobian, i.e., the Jacobian of the first-order conditions with
an additional column containing the partial derivative w.r.t. the tracing parameter,
as a function of β, using absolute expected values (red) and relative expected values
(blue).

reported by Rust (1987) for β approaching 1 when using absolute expected values.

3.4 The Context of Rust (1987) and its Effect on Discounting

The literature widely ignores the context in which the decision-maker in Rust (1987)

acts: first, the individual bus group’s embedding in the expanding bus fleet, and sec-

ond, the historical macroeconomic context—the great inflation. By adding a struc-

tural break (i) to the transition probabilities and (ii) to the discount factor, we find

statistical evidence that both affect the decision-maker’s replacement behavior. Ex-

tension (i) suggests that the parameter β is sensitive to misspecifications in the tran-

sition probabilities; extension (ii) establishes a qualitative link between the change

in the discount factor estimates around the structural break and the change in the

real interest rates during the great inflation. We argue that due to the partly pre-

vailing negative real interest rates during this period, the estimate of β > 1 cannot

be rejected by a time value of money argument.
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3.4.1 Rust (1987) with Bus Groups 1–8

This section presents the estimation results for the entire data set, including bus

groups 1–8. Rust (1987) uses only bus groups 1–4 for the estimation, which covers

a subset of the sample period. We use bus groups 1–8 to have data for the whole

sample period. Analogously to Section 3, we account for the buses’ heterogeneity

by allowing for cost heterogeneity. The buses group naturally into three partitions

matching the bus and engine types: (i) Bus groups 4, 5, and 7 of bus model 5308A

and engine type 8V71, (ii) bus groups 6 and 8 of bus model 4523A and engine type

6V71, and (iii) bus groups 1, 2, and 3, which are of heterogeneous type, but not

divided further.14 Thus, the partition set comprising the three partitions equals

P = {{1, 2, 3}, {4, 5, 7}, {6, 8}}. Moreover, we allow for individual transition proba-

bilities for each bus group. This extends the system of constraints of the standard

MPEC formulation to one Bellman equation for each bus group which we solve si-

multaneously.

Figure 3 shows the estimation results: On the left, it depicts the profile likelihood

as a function of β and on the right, the cost parameter estimates for each partition

in P .15 The findings are qualitatively consistent with the findings in Section 3.3 for

P = {{1, 2, 3}, {4}}: The profile likelihood indicates that the maximum likelihood

estimate of β is larger than 1, and not even the confidence interval includes 1. The

shape of the profile likelihood implies that the maximum likelihood estimates are

well-identified. The replacement cost parameters diverge with increasing β whereas

the maintenance cost parameters vanish.

3.4.2 Structural Break in the Transitions Probabilities

Rust (1987) uses Harold Zurcher’s maintenance records from December 1974 to May

1984, comprising monthly observations on mileage and maintenance decisions. Figure

4 depicts the number of buses per bus group for each month. Evidently, bus groups

5–8 were purchased before the dataset begins, while bus groups 1–4 were purchased

afterward, which almost tripled the bus fleet from 58 to 162 buses. We have no

14In grouping bus groups 1, 2, and 3 we follow Rust (1987). A further subdivision of these actually
heterogeneous bus types is not identified as there exist no observations of engine replacements in
bus groups 1 and 2.

15For expositional purposes, we drop the confidence interval functions that were included in Section
3.3.
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Figure 3: Results for the unrestricted model (P = {{1, 2, 3}, {4, 5, 7}, {6, 8}}). Left:
Profile likelihood Lp(β) including 95% likelihood ratio confidence interval for β (light
green). Right: Parameter estimates for (θp11, RC

p) as functions of β (red and blue,
respectively) for partitions {1, 2, 3}, {4, 5, 7}, and {6, 8} (solid, dashed, and dotted).

information on whether these buses were purchased to extend the bus service with new

routes, increase the frequency on existing routes, or relieve existing buses. However,

the purchase of the buses evidently impacts the already existing buses as depicted in

Figure 5. This Figure plots a 12-month centered moving average of the aggregated

mileage transitions for bus groups 3–6 and the entire fleet. After the addition of

bus group 3, the aggregated mileage transitions for bus groups 1, 2, and 4 drop; bus

group 4 is particularly affected and its aggregated mileage transitions drop by almost

40%. A reasonable explanation for this could, e.g., be a less frequent scheduling of

the “old” bus groups or a change in the company’s route schedule.

The original model assumes the transition probabilities of the bus groups, θ3,g, to

be stationary. We relax this stationarity assumption by introducing a single unantici-

pated structural break in the transition probabilities for bus groups 4–8.16 We denote

the transition probabilities before the structural break for bus group g by θ1
3,g, and

after by θ2
3,g. Formally, the decision-maker considers θ1

3,g to be constant from today to

infinity in any month before the structural break at time tθ3,g . Starting from tθ3,g , he

considers θ2
3,g to be constant from today to infinity. This extends the system of con-

straints to two Bellman equations per bus group for bus groups 4–8, which we solve

16We assume that bus groups 1–3 have no structural break as the company purchased these late,
and thus, we only have few observations.
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Figure 4: Number of buses per bus group in each month.

simultaneously, once with θ1
3,g and once with θ2

3,g. We follow the literature (Casini

and Perron, 2018) in choosing the estimates t̂θ3,g that maximize the likelihood.

Figure 6 depicts the estimation results: On the left, it shows the profile likelihood

as a function of β with a 95% confidence interval around β̂ and on the right, the

corresponding cost parameter estimates. The shape of the profile likelihood indicates

a well-identified β with a maximum likelihood estimate below one, and the confidence

interval barely includes 1. The other maximizers show qualitatively the same behavior

as before. While the specification of the structural break—a single unanticipated

structural break—is ad hoc, we can reject the restricted model with a p-value of

below 10−16.

The discount factor estimate drops from larger than 1 in the original model spec-

ification to less than 1 after relaxing the stationarity assumption of the transition

probabilities. This suggests that β is sensitive to misspecifications in the law of mo-

tion, which is reasonable as both “discount” future costs. The decision-maker forms

his expectation about future costs using the law of motion. A misspecification which

causes too high probabilities for low transitions yields too low expected costs. The

discount factor discounts these expected costs and thus, a high biased discount factor

estimate can compensate, to some extent, the misspecification the law of motion.
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Figure 5: Centered 12-month moving average aggregated mileage (solid) and monthly
mileage transitions (dashed) for bus groups 3–6 and the entire fleet.

3.4.3 Structural Break in the Discount Factor β

A period of considerable economic turmoil lasted from 1965 to the mid-1980s and

is often referred to as great inflation. In the US, inflation rates rose from below

2% to above 15% in 1979, leading to an economic environment with striking price

uncertainty. Even though the US faced periods of high inflation before, the great

inflation was the only instance of a long period of inflation during peace times. During

its peak, it made “every business decision a speculation on monetary policy” (?). Due

to the low nominal interest rates compared to the inflation, the real interest rates were

widely negative starting from 1974, as depicted in Figure 7.

This lasted until President Jimmy Carter nominated Paul Volcker as chairman of

the FED in 1979. Already in his confirmation hearing in July 1979, he pledged to

make fighting inflation his top priority. While not specific about any planned policies,

he made clear that money supply had been “rising at a pretty good clip” even though

there was no evidence the nation was “suffering grievously from a shortage of money”

(?). After an unscheduled Federal Open Market Committee Meeting on October 6,

1979, Paul Volcker announced new monetary policies which targeted the growth rate

of money stock in the economy instead of stabilizing the federal funds rate as has

been the practice before. This led to a rise in the federal funds rate to 19%, and

falling inflation rates. Hence, the real interest rates turned positive shortly after the

beginning of the monetary policies.
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Figure 6: Results for the unrestricted model (P = {{1, 2, 3}, {4, 5, 7}, {6, 8}}) with
a structural shock to the transition probabilities for bus groups 4-8. Left: Profile
likelihood Lp(β) including 95% likelihood ratio confidence interval for β (light green).
Right: Parameter estimates for (θp11, RC

p) as functions of β (red and blue, respec-
tively) for p = {1, 2, 3}, {4, 5, 7}, {6, 8} (solid, dashed, dotted).

The decision-maker in Rust (1987) maximizes the sum of discounted utilities which

equal the negative expected costs plus utility shock. We argue that the nominal

value of these costs increased over time due to the prevailing high inflation. It is

reasonable to assume that the decision-maker expects this trend to continue after

observing several years of high inflation. In the model, however, the cost parameters

are constant over time; consequently, we argue that they are stated in real terms.

This implies that the decision-maker’s discount factor relates to the real interest rate

instead of the nominal interest rate to account for inflation.

We argue that this historical context constitutes a natural experiment. The

decision-maker acts in a period of a largely unanticipated macroeconomic regime

change in the real interest rates: from low or even negative to economically signif-

icantly higher rates. We hypothesize that this regime change affects the decision-

maker’s discounting. To test this hypothesis, we extend the model from the previous

section with an unanticipated structural break to the discounting. Before the struc-

tural break at tβ, Zurcher discounts by a constant discount factor β1 and after the

shock he discounts by β2. Formally, this implies that he considers β1 to be constant

from today to infinity in any month before the structural break at time tθβ . Starting

from tβ, he assumes β2 to be constant from today to infinity. This again extends the

system of constraints to a Bellman equation for each parameter combination we solve
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Figure 7: Ex-post real interest rate calculated as the difference of CPI and the federal
fund rate. Grey shaded area depicts period of Paul Volcker as chairman of the Fed.

simultaneously.

We employ our proposed homotopy continuation estimation approach by tracing

the parameter estsimates as a function of the difference of the discount factor before

and after the break, ∆β = β1 − β2, as the controlled parameter. This is a natural

choice as it enables us to examine the degree of identification of the potentially poorly

identified ∆β. Starting from the restricted model, we fix tβ and trace the parameter

estimates for all tβ ∈ {Jan 1976, . . . ,Dec 1983}.
Figure 8 depicts the profile likelihood L(∆β, tβ) which is two-dimensional—continuous

in ∆β and discrete in tβ. The profile likelihood in ∆β—for fixed tβ—allows for a simi-

lar analysis as before. The black points denote the restricted model for which ∆β = 0.

The profile likelihood increases in ∆β up to its peak for all tβ ∈ {Jan 1976, . . . ,Dec 1983}.
The shape and location of the peaks indicate that ∆β is well-identified and its esti-

mate larger than zero, i.e., β̂1 > β̂2.

Next, we further profile L(∆β, tβ) w.r.t. ∆β by taking the respective maximum

L(tβ) = max∆β L(∆β, tβ). This reduces the two-dimensional profile likelihood to

the one-dimensional profile likelihood depicted in Figure 9. The Figure shows L(tβ),

β1(tβ), and β2(tβ) as functions of tβ. The green shaded area depicts the area for which
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the likelihood is not worse than the typical 95% likelihood ratio confidence interval

around the maximum likelihood estimate of the time of the structural break, t̂β.

The vertical black line denotes the time Paul Volcker took office. The log-likelihood

takes its maximum for t̂β equal to September 1979. The estimates for the discount

factors equal β̂1 = 1.03 and β̂2 = 1.00. The tβ within the confidence interval include

February 1979 to November 1979 and October 1978 to December 1978. The orange

dashed horizontal line denotes the log-likelihood value for the restricted model with

β1 = β2, which we reject with a p-value of 2.17 · 10−09.

We focus in the following on the maximum likelihood estimate t̂β equal to Septem-

ber 1979. September 1979 corresponds to the month after Paul Volcker took office

as chairman of the Fed, who introduced monetary policies which led to economically

significantly higher real interest rates. The change in the discount factor estimates

from β̂1 = 1.03 to β̂2 = 1.00 follows the expected economically sensible qualita-

tive link to the real interest rates: a rise in the real interest rates leads to a fall

in the discount factor. The estimate of the discount factor before September 1979,

β̂1 = 1.03, falls in a period of largely negative real interest rates. In this economic

environment, the time value of money is inversed, and thus, the discount factor esti-

mate larger than 1 cannot be rejected. In fact, it agrees with the popular notion of

discout factor = 1/(1 + interest rate). The estimate of the discount factor starting

from September 1979, β̂2 = 1.00, corresponds to an agent that maximizes his long-run

average utility.

3.4.4 Implied Demand for β > 1

Econometricians are, in general, not only interested in the estimates but also study

policy questions using the estimated models. In Rust (1987), econometricians could,

e.g., study the impact of increasing part costs for the replacement engine on the ex-

pected annual engine replacements (the implied demand). While the policy question

itself is of no interest to us, we use it to study the implications of a discount factor

estimate of β̂ > 1.

Figure 10 traces the expected annual engine replacement as a function of the

replacement cost and the discount factor for a single bus with the characteristics

of bus group 4. For β = 0, the expected annual engine replacement is sensitive to

changes in the replacement bus engine cost. In the region with low part costs, the

demand is over-predicted, while in the region with high part costs, the demand is
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Figure 8: Profile likelihood L(∆β, tβ) as function of ∆β and the time of the structural
break tβ. Restricted model with ∆β = 0 denoted by black dots.

under-predicted. The same holds for the implied demand for β = 0.9999. The curve

of the expected annual engine replacements flattens with increasing β. This appears to

be a continuous deformation of the demand curve in β without the structural change

one might expect at β = 1. The prediction for β > 1 is a reasonable extension of

the model predictions for β < 1: the price elasticity of demand continues to decrease

with increasing β.

4 Conclusion

In this paper, we presented the necessary mathematical, statistical, and numerical

tools to trace the maximum likelihood estimates of the structural parameters of a

model and its confidence intervals, in dependence on a controlled parameter, based

on the profile likelihood and using homotopy path continuation. Applying the method

to the bus engine replacement model of Rust (1987), we find that—in contrary to a

common belief—the discount factor is well identified. The application of relative

value iteration allows us to solve the model for values of the discount factor equal to

or beyond 1, and we can actually show the corresponding estimate to lie above 1 with
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Figure 9: Profile likelihood L(tβ) (orange), and β1(tβ) (blue solid) and β2(tβ) (blue
dashed) maximum likelihood estimates for P = {{1, 2, 3}, {4, 5, 7}, {6, 8}} as a func-
tion of the structural break at time tβ. The tβ for which the log-likelihood is not worse
than the typical 95% confidence interval w.r.t. tβ (green shaded). Log-likelihood for
the restricted model with β1 = β2 (orange dashed). Paul Volcker takes office as
chairman of the Federal Reserve (black solid vertical line).

statistical significance. We present further insight by examining the context in which

the decision-maker acts: First, a misspecification in the transition probabilities biases

the discount factor to an estimate larger than 1, and second, a historical macroeco-

nomic regime switch qualitatively relates the real interest rate to the discount factor.
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Figure 10: Expected annual engine replacement in group 4 as a function of the part
cost of replacement bus engine in 1985 dollars for varying discount factors.
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A Appendix

A.1 Multiplicity and Identification

We introduced the profile likelihood function, and with it, due to its special nature,

the conditions under which it exists in the strict sense of a function. In this subsec-

tion, we briefly examine how these conditions are related to two important aspects

of the application domain—that is to say structural estimation: identification and

multiplicity in the model solution.

As commonly done in the literature, we restrict our attention to models where the

parameter vector θ is identified—or, more precisely, the distribution of an observation

implied by the model is different for different values of θ. However, this is no guarantee

that, for finite samples, the likelihood function has a (locally) unique maximum;

in fact, since the likelihood function (i) aggregates information by multiplying over

the probability or density of all data points from a random sample, and (ii), for

continuous data, in fact, compares distributions on sets of measure zero, a locally

unique maximum is sufficient, but not necessary for identification.17 We explicitly add

that no identification requirements are made with respect to the controlled parameter

β.

Suppose we have a local maximum (θ̂, σ̂, β0). As we have argued above, a maximum—

even if locally unique—does not imply the second-order sufficient conditions for opti-

mality. In particular, even if the gradients of the constraints are linearly independent,

the Hessian is only guaranteed to be negative semi-definite, with some eigenvalues

potentially equal to zero and thus singular. If, however, we find the Hessian to be reg-

ular, we can conclude that the profile likelihood function exists and is smooth within

some neighborhood of β0. Obviously this argument can be applied recursively to some

β1 ≷ β0 in that neighborhood, effectively creating some kind of “tube” around the

profile likelihood function within which it is unique. However, this neighborhood will

shrink and tend to zero if it approaches a singularity; we give an example of how this

can easily arise from multiplicity below.

As we have noted, no identification requirements are stated for β. In fact, a key

motivation of this paper is to show how poorly or non-identified parameters can be

17This argument can be taken even further by arguing that for continuous likelihood function,
even in the very vicinity of a maximum there exist infinitely many parameter values with equal
likelihood.
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traced out using the profile likelihood function. Consider the examples in Figure 11:

The top left panel shows a function for which the maximum is unique; consequently, a

projection as implemented through the profile likelihood (5) has a unique maximum;

see the bottom left panel. At the same time, the top right panel shows a function

where, for each value of β, the maximum w.r.t. θ is the same; consequently, if it were

a likelihood function, β could not be identified jointly with θ, and the corresponding

profile likelihood would be flat; see the bottom right panel; note in particular the non-

uniqueness of the optimal θs. The mathematical explanation of the independence of

our approach from any identification assumptions about β is that—at this stage—

the numerical properties of the problem are mostly delimited by the regularity and

definiteness of the Hessian (28), which, however, does not contain any derivatives

w.r.t. β.

Closely related to identification is multiplicity in the solution of the model. In the

description of an abstract model above, we made no restrictions on the set of solutions

to the model for given structural parameters, Σ̇(θ, β). In fact, multiplicity does not

contradict identification per se, as long as the likelihood itself discriminates the model

solutions properly—that is, as long as the maximum of the profile likelihood w.r.t.ãll

structural parameters,

Lp(θ̂, β) ≡ max
σ∈Σ̇(θ̂,β)

L(θ̂, β, σ), (27)

at all local solutions of θ̂ is locally unique. (Note that local uniqueness of (27) is

necessary but not sufficient for local uniqueness of Lp(β).)

However, we have argued several times that it is essential for the profile likelihood

to be a unique function, a necessary condition for the Hessian of the Lagrangian (28)

is to be nonsingular; however, this cannot be true if the gradients of the constraints

are linearly dependent—that is, if the Jacobian Dθ,σh drops in rank. This can, e.g.,

happen at points where the solution is indeed unique but “splits up” into several solu-

tions, e.g., at turning points or bifurcations. The following simple algebraic example

might give an intuition for this: Consider the function x2, which has a double zero

at 0. While the solution to x2 = 0 is unique, the Jacobian is zero and thus singular.

If one further generalizes this example to the solution set of x2 − y = 0, we observe

that as we increase y from 0 to a positive value, the corresponding solutions x solving

the equation are unique only for y = 0, but ambiguous for y > 0; the Jacobian at

strictly positive y is, however, nonsingular. We provide more extensive examples in
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Figure 11: Two numerical examples of 2-dimensional functions (top panels), and
their optimal value (blue, left axis) and maximizer functions (red, right axis) (bottom
panels).
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the following sections.

A.2 Second-Order Sufficient Conditions

The first-order necessary conditions only give us stationary points. A sufficient con-

dition can be formulated based on a second-order argument. Consider the Hessian of

the Lagrangian (6):

∇2
µ,θ,σL(θ, σ, µ; β) ≡

 0 −Dθh(σ; θ, β) −Dσh(σ; θ, β)

−Dθh(σ; θ, β)T
∇2
θ,σL(θ, σ, µ; β)

−Dσh(σ; θ, β)T

 , (28)

where∇2
θ,σL(θ, σ, µ; β) ≡ ∇2

θ,σL(θ, β, σ)−∇2
θ,σµ

Th(σ; θ, β). Obviously, the well-known

second-order sufficient condition from unconstrained optimization requiring the full

Hessian ∇2
θ,σ,µL to be negative-definite cannot hold for any point because of the block

of zeros in the northwest corner of the Hessian. Rather, it is sufficient to require that

the Hessian of the Lagrangian w.r.t. σ and θ is negative-definite on a linearization of

the constraint set (1):

vT∇2
θ,σL(θ̂, σ̂, µ̂; β)v < 0 ∀v 6= 0 : Dθ,σh(σ̂; θ̂, β)v = 0. (29)

In summary, if the point (θ̂, σ̂, β) together with µ̂ satisfies (8) and (29), it is a

strict (i.e., locally unique) local maximum of the parametric optimization problem

(5). On the other hand, the converse is not necessarily true; in fact, second-order

necessary optimality conditions only imply semi-definiteness of the Hessian at the

optimum, and, additionally, explicitly require that the gradients of the constraints

are linearly independent. If, however, (θ̂, σ̂, β) together with µ̂ is a solution to (5),

and if, moreover, the Hessian ∇2
µ,θ,σL is nonsingular at (θ̂, σ̂, µ̂, β), then the second-

order sufficient conditions are satisfied (Fiacco and McCormick, 1990, Cor. 7).

A.3 pMPEC

In this section, we provide details on the application of pMPEC to the optimal re-

placement of bus engines model. As we have argued above, the dynamic programming

problem in the model can be reformulated using relative expected values, still yielding

valid decision probabilities and thus a valid likelihood function. Therefore, the profile
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likelihood function of β w.r.t. θ1 is established by the following constrained optimiza-

tion formulation (recall θ1 ≡ (θ11, RC)), and note that we separately estimate θ3 at

this point, but present simultaneous estimations below):

Lp(β) = max
θ1,ev

L(θ1, ev; β, θ3)

s.t. ev − Tθ(ev) + Tθ(ev)1 = 0,
(30)

which yields first-order necessary conditions

∇µ,θ1,evL(θ1, ev, µ; β, θ3) ≡

(
dTθ(ev)

∇θ1,evL(θ1, ev; β, θ3)−∇θ1,evµ
TdTθ(ev)

)
= 0, (31)

where we write dTθ(ev) ≡ ev− Tθ(ev) + Tθ(ev1) for notational brevity. The Jacobian

matrix of the system (31) (or the Hessian matrix of problem 30) reads

∇2
µ,θ1,ev

L(θ1, ev, µ; β, θ3) ≡

 0 −Dθ1dTθ(ev) −DevdTθ(ev)

−Dθ1dTθ(ev)
∇2
θ1,ev
L(θ1, ev, µ; β, θ3)

−DevdTθ(ev)

 .

(32)

Note that the full Jacobian ∇2
µ,θ1,ev

L inherits the sparsity of the Hessian of the like-

lihood function w.r.t. the structural parameters, ∇2
θ1,ev

L, in combination with the

Jacobian of the constraints, DevdTθ.

Following Section 2.5, we define the homotopy map ρ(µ, θ1, ev, c(λ)) as the gradient

of the Lagrangian w.r.t.ãll free parameters, i.e., explicitly written as

ρ(µ, θ1, ev, c(λ)) ≡ ∇µ,θ1,evL(θ1, ev, µ; c(λ), θ3), (33)

with the linear transformation c(λ) = (1 − λ)a + λb = β. The augmented Jacobian

reads

ρ(µ, θ1, ev, c(λ)) =

(
∇2
µ,θ1,ev

L(θ1, ev, µ; c(λ), θ3),
∂

∂λ
∇µ,θ1,evL(θ1, ev, µ; c(λ), θ3)

)
,

(34)

which equals the full Jacobian ∇2
µ,θ1,ev

L with an additional column containing the

derivative of the first-order conditions w.r.t. λ. Note that since the Bellman operator

T in (20) constitutes a contraction mapping for β ∈ (0, 1), the solution to the sys-
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absolute expected value evθ Absolute expected value EVθ

θ3 partial θ3 joint θ3 partial θ3 joint

RC 9.7557 9.7558 9.7557 9.7558
θ11 2.6276 2.6275 2.6276 2.6275
θ30 (0.3488) 0.3489 (0.3488) 0.3489
θ31 (0.6394) 0.6394 (0.6394) 0.6394
LL -6,055.2504 -6,055.2504 -6,055.2504 -6,055.2504

Table 2: Replication of the original configuration of Rust (1987) with β = .9999
fixed, 90 mileage bins, and bus groups {1, 2, 3, 4}, using relative and absolute expected
values, and estimating transition probabilities θ3 beforehand using partial likelihood
(values reported in parentheses) and jointly.

tem of constraints is unique, and its Jacobian has full rank, which is an important

necessary condition for the interpretation of our results as solutions to the profile

likelihood problem (30); see Sections 2.3 and A.1. As we will show, in the absolute

expected value formulation this property indeed breaks down as β → 1; moreover,

we will demonstrate that also in the absolute expected value formulation, the profile

likelihood will diverge starting for some βs larger than 1.

A.4 Results

Figure 12 depicts the absolute expected value function evθ obtained from the absolute

expected value fixed point equation for various values of β. As an overlay, we also plot

the EVθ function of the original specification at β = .9999 obtained using absolute

expected values. We observed that the absolute expected value formulation indeed

nests the absolute expected value formulation for β ∈ [0, 1). For the estimation,

this is confirmed numerically in Table 2, where we present estimations of the original

specification using both absolute and absolute expected values.

We estimate the model with and without the transition probability vector θ3 (in

the latter case taking the estimates from the partial likelihood of state transitions

only), and observe that, as pointed out by Rust (1987), this sequential estimation

procedure is very efficient; see the first two columns in Table 3.

We also briefly verify that the result is not an artifact of the mileage state dis-

cretization as maybe too coarse a transition probability vector—which is essentially a

non-parametric density estimation—might affect the estimates. Table 3 presents our
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Figure 13: Non-parametric density of mileage transition from partial likelihood esti-
mation, using 90 bins (left) and 700 bins (right), for bus groups {1, 2, 3, 4}.

findings, implying that the coarseness of the discretization has no significant effect on

the estimates θ̂1 and β̂.18 Figure 13 depicts the non-parametric density implied by θ̂3

for 90 (original paper) and 700 mileage bins.

As we illustrate in Figure 14, we note that the steps taken by Hompack 90 to

trace the path are becoming smaller in terms of β, as it approaches the region of

poor conditioning. However, note that all plots—be it the profile likelihood or the

estimates as a function of β—are projections of the full-dimensional path, and so are

the steps. Therefore, assessing the step length requires us to check all dimensions,

and indeed, the step lengths in the R̂C dimension are not vanishing for β > 1.

Finally, we demonstrate the feasibility of our approach by reporting running times

for various configurations in terms of L∞ tolerances and number of states in Table 4.

We compare them to the running times of the corresponding full point estimation (in-

cluding β). All experiments are carried out in MATLAB using our tool M-HOMPACK

to interface to Hompack 90 (Watson et al., 1997) for the ODE homotopy solution al-

gorithm, CasADi (Andersson et al., 2018) for exact derivatives, and KNITRO for

constrained nonlinear optimization. All computations are performed on a Lenovo

Yoga 520-14IKB Laptop with Intel Core i7-8550U @ 1.8 GHz and 8GB RAM.

Most importantly, the running times prove the feasibility of the approach: e.g.,

tracing the parameter estimates of the configuration with 90 mileage bins for β from

0 to 1.1 with a targeted precision of 1e-8 takes less than 10 seconds; increasing the

18The coarseness of the discretization has no significant effect on the estimates θ̂1 up to the fact
that since θ11 regresses on the index of the state rather than on its mileage value, it is expected to
roughly half if the number of mileage states is doubled, which is indeed what we observe.
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90 bins
(θ3 partial)

90 bins 175 bins 350 bins 700 bins

β 1.0768 1.0768 1.0760 1.0764 1.0764
RC 37.7107 37.7109 36.2772 37.0743 37.3942
θ11 0.0905 0.0905 0.0490 0.0240 0.0119
θ30 (0.3488) 0.3488 0.1070 0.0463 0.0370
θ31 (0.6394) 0.6394 0.5152 0.1263 0.0207
θ32 (0.0118) 0.0118 0.3622 0.2897 0.0560
θ33 — — 0.0143 0.3183 0.1183
θ34 — — 0.0009 0.1896 0.1530
θ35 — — 0.0004 0.0272 0.1579
θ36 — — — 0.0012 0.1631
θ37 — — — 0.0004 0.1486
θ38 — — — 0.0006 0.0966
θ39 — — — 0.0004 0.0342
θ310 — — — — 0.0112
θ311 — — — — 0.0013
θ312 — — — — 0.0004
θ313 — — — — 0.0005
θ314 — — — — 0.0000
θ315 — — — — 0.0004
θ316 — — — — 0.0002
θ317 — — — — 0.0002
θ318 — — — — 0.0002
LL -6,051.7915 -6,051.7915 -8,604.4930 -13,011.2883 -18,159.8869

Table 3: Joint estimation of all structural parameters, (θ11, RC, β, θ3) (transition
probabilities θ3 jointly, except first column), for bus groups {1, 2, 3, 4}, for various
mileage bin configurations.
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(a) Steps of the path continuation.
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(b) Steps of the path continuation.

Figure 14: Steps of a path continuation laid over the profile likelihood Lp(β) (left),
and the estimates in dependence of β (right). Estimation is based on bus groups
{1, 2, 3, 4}; mileage discretization: 90 bins.

problem size to 700 bins—resulting in a system with more than 1,400 equations—

the tracing still takes less than 10 minutes. As one would expect, doing a point

estimation only is faster in terms of running time, but the tracing algorithm clearly

outperforms the optimizer in terms of time per solution (recall that each step taken

by the continuation algorithm equals a full solution to the profile likelihood problem

for fixed β). Hereby, the targeted tolerances for the homotopy solution method are

fulfilled, and only when RC diverges, the maximum absolute error increases (c.f.

Figure ??). Note that the time to trace a path increases more than linearly if the

number of mileage bins is increased, even though we fully exploit the sparsity of the

problem. This is due to the superlinear growth of the number of nonzero elements

in the Jacobian caused by the increasing number of transition probabilities.Also note

that the number of steps taken to trace a path only depends on the targeted accuracy,

and not on the problem size. Conversely, the time per step only depends on the size

of the problem.

We note, though, that the transition probabilities when traced as a function of

β are not constant, in particular for large values of the discount factor, but their

variation is not significant in order of magnitude; see Figure 15.19

19Note that in order to trace the complete estimation problem including θ3, we have to add another
constraint to (30), stating that the probabilities sum up to 1:

∑
i∈{0,1,2} θ3i = 1; however, we do not

explicitly impose 0 ≤ θ3i ≤ 1 (but rather verify ex post) as the incorporation of (binding) inequality
constraints is the subject of further research.
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90 bins 175 bins 350 bins 700 bins

1e−8

time [s] 8.69e+00 2.40e+01 1.15e+02 5.24e+02
L∞ 2.89e−08 9.22e−09 2.67e−08 2.21e−08

steps 3.58e+02 3.67e+02 3.54e+02 3.64e+02
time [s]/steps 2.43e−02 6.54e−02 3.26e−01 1.44e+00

1e−10

time [s] 1.40e+01 4.37e+01 2.00e+02 8.78e+02
L∞ 2.36e−09 3.96e−09 1.19e−09 3.59e−09

steps 5.92e+02 5.86e+02 6.16e+02 5.91e+02
time [s]/steps 2.36e−02 7.46e−02 3.25e−01 1.49e+00

1e−12

time [s] 5.70e+01 1.37e+02 7.47e+02 3.04e+03
L∞ 2.05e−10 1.24e−10 3.73e−11 1.95e−10

steps 2.40e+03 2.41e+03 1.97e+03 2.01e+03
time [s]/steps 2.37e−02 6.69e−02 3.80e−02 1.52e−02

nnz 2.24e+03 6.41e+03 1.84e+04 5.89e+04
time [s] full estimation 4.79e+00 1.26e+00 1.84e+00 4.39e+00

Table 4: Running times in seconds, realized L∞ tolerance, number of steps taken, and
time per step in seconds for each combination of mileage discretization and targeted
tolerance for the homotopy continuation algorithm (ODE). All quantities are averages
over 5 runs. The last two rows report the number of nonzeros (nnz) of the Jacobian
for each mileage discretization, and the time for the full estimation.
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Figure 15: Estimated normalized transition probabilities in dependence of the value
of the discount factor, θ̂3(β), normalized by θ̂3(0) (red: θ̂30; blue: θ̂31; orange: θ̂32).
Estimation is based on bus groups {1, 2, 3, 4}; mileage discretization: 90 bins.
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A.5 Robustness

We test the robustness of our results under various model specifications. While ex-

ploring functional forms for the utility functions and allowing for heteroscedacity of

risk, we apply our method and trace the controlled parameter to the maximum like-

lihood estimates. Our result of β > 1 proved to be robust across all tested model

specifications.

A crucial choice in the construction of dynamic discrete choice models is the

specification of the utility function as Magnac and Thesmar (2002) have shown that

the discount factor is not identified without strong assumptions on the utility function.

In constructing the utility function, Rust (1987) relies on the resulting maximum

likelihood in addition to non-quantitative information which suggest a linear and

square root functional form as “best fit”. Without any specific non-quantitative

information, we test the linear, square root, cubic polynomial, exponential and log

functional form. Figure 16 plots the profile likelihood for all tested functional forms as
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Figure 16: Profile Likelihood as a function of the controlled parameter β for the
linear (blue), exponential (red), logarithmic (yellow), square root (violet) and cubic
polynomial (green) functional form.

function of β. The cost functions allowing for one parameter yield the same MLE for

β with β = 1.0768. The linear, exponential and square root functional form sustain

the statistical significance of β > 1. The tracing for the cubic polynomial stops before

the MLE is attained as RC grows in the same magnitude as before leading to a bad
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condition of the FOC’s Jacobian. The plot of the profile likelihood function suggests

a β distinctly greater than 1.0768.

The model assumes the utility shock ε to be extreme value type I distributed for all

mileage states. This simplifying assumption is counter-intuitive; it seems reasonable

to assume that buses with higher mileages have a higher probability of breaking down

and in turn a higher variance in the unobserved utility shocks. Thus, the model ignores

any heteroscedasticity w.r.t.̃the increasing mileage. We model the heteroscedasticity

by adding a second shock η to the utility function u+ ε. We assume the second shock

to be distributed as η ∼ N(0, x2) and introduce the heteroscedasticity parameter θh.

The resulting utility reads

u(x; θ, d) + ε(d) + θhη. (35)
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Figure 17: Maximizer β(θh) and profile likelihood Lp(θh) as a function of θh traced
from (θh = 0) to (θh = 0.031). The left plot depicts the maximum likelihood estimate
β(θh) and the right plot depicts Lp(θh).

Figure 17 illustrates on the left the maximum likelihood estimate β(θh) and on the

right the corresponding profile likelihood value as functions of the heteroscedacticity

parameter θh. The likelihood is monotonically increasing in θh, but the maximum of

the likelihood cannot be attained due to the same numerical reasons as before. Note

that the original homoscedastic model is nested for θh = 0. Opposed to our expec-

tation, β(θh) is monotonically increasing in θh. Thus, even with heteroscedasticity

included, the maximum likelihood estimate of β is greater than 1.
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This section shows that our main findings are robust with respect to varying model

specification. The maximum likelihood estimator for the discount factor β—using the

data for bus groups 1-4—is greater than 1 for all tested model specification.
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