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Abstract

The complexity of modern economic models – especially those used
in applied econometrics – has increased the use of and need for efficient,
robust, and accurate tools for multi-dimensional integration. First, we
explain how to use modern integration techniques such as Gaussian prod-
uct and monomial rules as well as the correct implementation of simple
Monte Carlo methods, the de facto standard of most economists despite
the superiority of monomial rules. Next, we consider how these different
integration rules affect the results from the industry-standard ‘BLP’ model
for product differentiation (Berry, Levinsohn, and Pakes, 1995). We show
that simulation often leads to inaccurate market share calculations, that
these errors affect the convergence of Berry’s mapping – which is used
to invert the market share equations for the unobserved product-market
shock – and that all these problems result in multiple local maxima in the
GMM objective function as well as erroneous parameter estimates. After
analyzing the problems with the status quo, we provide several quadra-
ture rules which, thanks to the power of modern computers and numerical
analysis, are both more accurate and less expensive computationally. Fi-
nally, we develop custom quadrature rules which exploit the boundedness
of the multinomial logit and are much more efficient for computing mar-
ket share integrals in random coefficients (or mixed logit) models. These
integration tools are quite general and applicable to a wide variety of
economic problems.

Keywords: Numerical Integration, Monomial Rules, Gauss-Hermite Quadra-
ture, Monte Carlo Integration, Product Differentiation, Econometrics.
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1 Introduction
Unobserved heterogeneity, incomplete information, and uncertainty are features
of many modern economic models and have improved our ability to understand
the complexity and variety of the real world. These features often require the
computation of an integral over some – often multi-dimensional – probability
distribution with some conveniet distribution in order to calculate economi-
cally relevant terms such as expected profits/utility or a likelihood. Finding
the correct solution depends on computing these integrals quickly and accu-
rately. Nevertheless, the current status quo in Economics is to use Monte Carlo
methods which, although easy to program and understand, are inaccurate or
even biased if not implemented correctly – i.e., when researchers do not take
enough samples to approach the region where the asymptotic approximation
is valid. In this paper, we explain how to obtain much more accurate numer-
ical approximations for multidimensional integrals using monomial or product
rules. To illustrate the stakes of using Monte Carlo methods incorrectly, we
analyze how simulation introduces error in the point estimates in Berry, Levin-
sohn, and Pakes (1995)’s ‘industry standard’ model of product differentiation
(BLP hereafter), leads to multiple local minima in the GMM objective function,
and affects the convergence of Berry’s mapping, which is used to invert mar-
ket shares to obtain ξjt, the unobserved product-market heterogeneity (Berry,
1994). Our goal, then, is to develop better methods of multidimensional inte-
gration for economic problems and explain how to apply these tools to a wide
range of problems of moderate size – i.e. 10− 15 dimensions. The benefits are
obvious: more accurate computation at a lower computational cost.

Outline:

1. Objectives of paper

• How to use simulation
• How to use quadrature
• When to use simulation or quadrature
• How BLP can be improved with better integration methods:

– Market shares
– Berry’s mapping
– Multiple local optima
– Error in Point estimates

2. Overview of integration (Cools, 2002)

3. Overview of relevant literature:

(a) BLP Demand estimation
(b) Numerical Integration

i. Number-theoretic methods: Simulation
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ii. Polynomial based methods: Quadrature

Integration and distributional assumptions – the focus of this paper – are just
some of the numerical challenges a researcher must overcome to successfully
apply BLP to a real-world problem. We mention in passing that choosing the a
modern solver such as SNOPT or KNITRO, configuring the right optimization
options for your problem, and correctly specifying the optimization program –
especially sparseness – are also crucial numerical decisions. See Su and Judd
(2008) and Dubé, Fox, and Su (2009) for a thorough discussion of the advan-
tages of using a modern solver (i.e. not fmincon/fminunc) and formulating the
optimization problem as a Mathematical Program with Equilibrium Constraints
(MPECC).1

We begin the paper with a discussion the current state of the art for numer-
ical integration, explaining the strengths and weaknesses of the two methods
(number theoretic and polynomial-based) for computing multidimensional inte-
grals. Next, we analyze how Monte Carlo methods provide inferior results to
monomial and product rules in BLP: we start by quickly reviewing the BLP
model of product differentiation and then show how simulation error ripples
through the model, affecting market share calculations, convergence of Berry’s
mapping, and the accuracy of the point estimates. We conclude by developing
custom quadrature rules which exploit the extra structure of the multinomial
distribution – boundedness and slope – in the random-coefficients integral which
produce even more accurate results at lower computational cost than traditional
monomial rules.

2 Basic Multi-Dimensional Numerical Integration
For more almost four decades – and many rules have been known longer than
that – there have been well understood rules to compute multidimensional inte-
grals on a variety of domains accurately and efficiently (Stroud, 1971). Broadly
speaking, all methods approximate an integral as a weighted sum of the inte-
grand evaluated at a finite set of well-specified points. The art of numerical
integration lies in choosing these nodes and weights so that the approximation
is inexpensive to compute and has little error. Many of these rules give an exact
result for all polynomials or monomials2[[[]]] below a certain degree. Because
monomials and polynomials span the vector space of ‘well-behaved’ functions,
any economic function which is smooth and differentiable should be easy to in-
tegrate numerically. The quality of the approximation will also depend on the

1Dubé, Fox, and Su (2009) also explain how sloppy loop tolerances prevent convergence of
the nested fixed-point (NFX) algorithm of Rust (1987) to reliable parameter estimates.

2Let Pd be the vector space of all polynomials in d variables. Then this space is spanned

by all monomials xk ≡
d
Πxki

i
i=1

where k = (k1, . . . , kd) ∈ Nd. I.e., a monomial is a product of

xi’s raised to different powers. The degree of a monomial, deg
`
xk

´
≡

P
i

ki.
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properites of the integrand such as smoothness, symmetry, differentiability, and
thickness of the tails.

To be more explicit, consider the integral of a function f (x):

I [f ] :=
ˆ

Ω
w (x) f (x) dx, Ω ⊂ Rd, w (x) ≥ 0∀x ∈ Ω

where I have used Cools (2002)’s notation. w (x) is the weight function such as
1, exp (−x), or exp

(
−x2

)
depending on the problem. Similarly, the region of

integration, Ω, is also problem dependent. For example, in a random-coefficients
model Ω = Rd and w (x) = exp

(
−x2

)
after a suitable change of variables

. 3To minimize the error in computing an integral, you must choose a good
approximation for I [f ]. Following Cools, call this approximation

Q [f ] :=
N∑

wjf (yj) ,
j=1

yj ∈ Ω,

where {wj} and {yj} are the quadrature nodes and weights, respectively. For
example, a simple Monte Carlo rule would set wj = 1/N,∀j and draw yj from
a suitable distribution such as w (x). An ideal solution is exact, i.e. I [f ] =
Q [f ] so the approximation has no error. More likely, the approximation will
not be exact. A good approximation – as well as minimizing error and the
number of (expensive) function evaluations – should converge to the true value
of the integral as the number of nodes goes to infinity Stroud (1971). This is
increasingly important in higher dimensions.

There are two primary methods for choosing the quadrature nodes and
weights to calculate integrals numerically: number theoretic methods and polynomial-
based methods Cools (2002). The former refers to (quasi-) Monte Carlo (or sim-
ulation) methods whereas the later includes product rules based on the Gaussian
quadrature family of methods as well as monomial rules.4

2.1 One Dimensional Integration: A Simple Example
To illustrate these issues, consider a simple one dimensional random coeffi-
cients multinomial logit model. An agent i chooses the alternative j ∈ J
which yields the highest utility Uij = αi (log yi − log pj) + zT

j β + εij where
εij follows a Type 1 Extreme Value distribution and αi ∼ N

(
α,σ2

)
is a one

3To be explicit: if you are integrating over a normal densisty w̃ (u) =

(2π |Ω|)
−

n

2 exp

„
−

1

2
uT Σ−1u

«
, the change of variables exploits the Cholesky decomposition

CCT = 2Σ so x = C−1u produces the form in the text. This convenience of the form becomes
clear once you have a set of quadrature nodes {yj} and need to transform them for a specific
problem. See below.

4Some authors (e.g. Cools, 2002) use quadrature to refer to one dimensional integrals and
cubature to refer to integrals of dimension ≥ 2. We will always use quadrature to refer to any
integration rule, regardless of the dimension.
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dimensional random coefficient . Then conditional market shares are sij =
exp

[
αi (log yi − log pj) + zT

j β
]

∑
k

exp
[
αi (log yi − log pk) + zT

k β
] so the total market share of good j must be

sj =
∞̂

−∞

sij (αi) f (αi) dαi

=
∞̂

−∞

sij (αi)
1√

2πσ2
exp

(
− 1

2σ2
[αi − α]2

)
dαi

=
1√
π

∞̂

−∞

sij

(√
2σu

)
exp

(
−u2

)
du

≈ 1√
π

∑

k

wksij

(√
2σuk

)

where {uk} and {wk} are the quadrature nodes and weights for Gauss-Hermite
integration and I have used a simple Cholesky transformation to convert from
the economic problem to the mathematical formula. We chose to use the Gauss-
Hermite rule because exp

(
−x2

)
is the weighting function for athe variance and

the bounds of integration are ±∞. An added benefit is that variance σ2 drops
out from the change of variables.

2.2 Monte Carlo Integration
Monte Carlo integration involves computing the integral by taking draws from
some suitable distribution and sometimes includes extra tricks to increase ac-
curacy and speed, such as importance sampling, Halton draws, and antithetic
draws (See Train (2003) for details). The alternative is to use a quadrature rule
which tries to improve accuracy and efficiency through a clever choice of nodes
and weights which exploits the structure of the problem. These rules are exact
for all polynomials and/or monomials below a certain degree. If the integrand
is well approximated by a polynomial, then a quadrature rule should perform
well. Nevertheless some researchers continue to believe that simulation is the
only option for high dimensional integrals. Because accuracy only increases as√

N – so the number of nodes must be increased by a factor of 100 to for each
additional digit of accuracy – a more sophisticated quadrature rule will usually
outperform Monte Carlo because adding well-chosen nodes should improve the
integral approximation more quickly than the same number of randomly-chosen
points.

In its simplest form, simulation weights weights all nodes equally by set-
ting the weights ωj = 1/N , where N = |J |, and the nodes are drawn from a
suitable distribution. The weight function is set to 1 because the draws come
from the corresponding distribution. Consequently, simulation is easy to under-
stand and implement and also works with functions which are not smooth and
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over irregular-shaped regions, even if it does not always produce an accurate
approximation of the integral. These properties make simulation one of the
most popular choices for numerical integration by economists. More sophisti-
cated methods of taking draws such as quasi-Monte Carlo methods, importance
sampling, and antithetic draws are also popular and attempt to remedy the
difficiencies of simulation. But, the basic problems of simulation remain: it is
dirty and can produce inaccurate results, as Berry, Levinsohn, and Pakes (1995)
point out: ‘On the other hand, we are concerned about the variance due to sim-
ulation error. Section 6 develops variance reduction techniques that enable us
to use relatively efficient simulation techniques for our problem. Even so, we
found that with a reasonable number of simulation draws the contribution of
the simulation error to the variance in our estimates (V3) is not negligible.’ But,
many researchers still fail to employ any variance reduction techniques.

This discussion follows Train (2003). I focus on the Method of Simulated
Moments (MSM), which is the basis for estimating BLP-style models – except
for those who now use MPEC. The original BLP paper uses an importance
sampling algorithm. In general, the MSM estimator is the θ̂MSM which solves

ǧn (θ) =
∑

n

∑

j

(
dj − P̌nj (θ)

)
znj = 0

where dj = {0, 1} depending on whether alternative j is chosen, znj are the
instruments for agent n and choice j, and P̌nj (θ) is the empirical probability
of n choosing j. Quantities with a check x̌ refer to the approximation of x
calculated using simulation. E.g., P̌nj (θ) is the approximate value for Pnj (θ)
calculated using simulation to compute the relevant integrals.

In the case of BLP, we don’t observe individuals’ decisions. Instead, the
econometrician observes only market shares, some product characteristics, and
some market characteristics. Consequently, the GMM moment conditions be-
come

g (ξ (θ)) =
1
T

T∑

t=1

J∑

j=1

ξjt (θ) · h (zjt, xjt)

= =
1
T

T∑

t=1

J∑

j=1

s−1
j (St; θ) · h (zjt, xjt)

where sj are calculated market shares, St are a vector of observed market shares
for all products j in a market t, h (·) is a function which gives moment conditions.
Then the GMM optimization program is

min
θ

g
(
s−1 (S; θ)

)′

Wg
(
s−1 (S; θ)

)
.

Clearly, this is a nasty piece of work because the market shares š (S; θ) must
be simulated and then inverted to obtain an estimate of ξ̂jt. Any errors in
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computing integrals, estimating θ̂, or inverting the market shares will compound,
compromising the accuracy of the value computed for ξ̂jt

Consistency of Simulated Estimates A key issue which is overlooked by
many researchers is choosing a sample size which is large enough to ensure
consistency. Train (Section 10.5) shows that an estimator’s error consists of
three parts when using simulation :

ǧn (θ) = A + B + C

A traditional finite sample error, gn (θ∗) d→ N
(
0, σ2

)

B simulation bias, Er ǧn (θ∗)−gn (θ∗),
√

NB =
√

N

R
Z for MSL so need R >

√
N

as N →∞

C simulation noise, ǧn (θ∗)−Er ǧn (θ∗),→ 0 as NR →∞ because C
a∼ N (0, S/NR)

where S is the variance of the simulation noise for one draw.

Er is ‘the expectation of the simulated value over the draws used in the simula-
tion.’ N is the number of observations, R the number of draws.

Thus, the key points are:

• A is just the traditional estimator which is asymptotically normal.

• Simulation bias is 0 if ǧn is an unbiased estimator of gn. This is not
the case for Maximum Simulated Likelihood because log is a non-linear
transformation. Given Train’s formula above, B will not vanish for fixed
R unless Z = 0 which is the case only for MSM. Consequently, MSM
is unbiased but MSL will only be unbiased if R → ∞ faster than

√
N ,

i.e.
√

N

R
→ 0 as N → ∞. If this condition is not satisfied inference

is impossible for MSL because there is no limiting distribution when R
doesn’t rise faster than

√
N ! Many researchers neglect this point and

think that large N alone is sufficient to guarantee an unbaised estimator.

• Simulation noise vanishes as NR →∞ so C vanishes if R rises with N .

• Summary:

– MSL:

∗ inconsistent for fixed R

∗ R increases more slowly than
√

N then estimator is consistent
but not asymptotically normal

∗ R increases more slowly than
√

N then estimator is consistent,
asymptotically normal, and efficient

– MSM:
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∗ properties of estimator depend on properties of instruments
∗ instruments simulated without bias and independent of residual
⇒ unbiased and consistent, i.e. like normal GMM

∗ instruments simulated with bias and are not ideal ⇒ like MSL
except not asymptotically efficient

∗ ideal instruments ⇒ efficient if R rises with N ; fixed R then
consistent and asymptotically normal but not efficient as ML

Consequently, it is crucial to increase R at a fast enough rate to ensure consis-
tency, unbiased estimation, and, where possible, efficiency. Another key research
question is are the instruments used actually ideal and simulated without bias.
Does anyone check this? E.g., for the ‘Hausman instruments’ which are used in
many of these papers?

2.3 Multi-dimensional Quadrature
We compare simulation to two multi-dimensional quadratures rules: Gaussian-
Hermite product rules and a multi-dimensional monomial rule. Both rules work
by using clever choices of nodes and weights which will exactly integrate all
polynomials or monomials less than some chosen degree. The higher the degree,
the more accurate the approximation of the integral at the cost of evaluating
the function at more nodes. The actual choice of nodes and weights depends
on the weighting function in the integral. For smooth functions which are well
approximated by polynomials, a good quadrature rule should outperform sim-
ulation.

Gauss-Hermite Because the random coefficients are assumed to be normally
distributed, the correct weight function to use is w (x) = e−x2

. Obviously, a
Gauss-Hermite rule is best for this kernel. We consider product rules for five
dimensions, the dimensionality of the shock in JP Dubé’s BLP code, with 3,
4, 5, 7, and 9 nodes in each dimension. Consequently, we have to evaluate
the function at N5 points, which quickly becomes much larger than 10, 000, a
common upper limit on the number of simulated draws.

Monomial Rules For higher dimension, one can further cutdown on the num-
ber of points by using a monomial rule (Stroud, 1971). We use Stroud’s mono-
mial Rule 11-1 which is accurate for all 11 degree polynomials in five dimen-
sions using only 983 nodes. This is a significant improvement on Gauss-Hermite
product rules. For the BLP integral, the computed market shares, sjt, were
essentially identical.

XXX Add tables and formulas for Gauss-Hermite and Stroud mono-
mial rules
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3 The Basics of BLP
The BLP model has become one of the most popular empirical models of prod-
uct differentiation because fits empircal data well, using a flexible form with
both random coeffients and unobserved product-market characteristics, and also
overcomes many problems with discrete choice models such as unrealistic substi-
tution patterns and independence of irrelevant alternatives (IIA). Nevo (2000)
provides a detailed and accessible explanation of the model. Here, I summarize
the relevant features before examining the numerical issues.

BLP is a special case of the mixed logit which uses a random utility model
with indirect utility

Uijt = Vijt + εijt

and

Vijt = αi (yi − pjt) + x′jtβi + ξjt

where i is the agent, j ∈ J the product, and t ∈ T the market. ξjt is the unob-
served to the econometrician product-market shock – i.e. unobserved product
characteristics. εijt is an IID, Type I Extreme value shock. Note: if αi is not a
function of yi (through the Di term – see below) then there are no income effects
because the αiyi term cancels when the indirect utilities for each alternative are
compared. In practice, yi and pjt are often the logarithm of the respective
quantities. This ensures that the utility is homogeneous of degree zero.

For tractability, researchers assume that the coefficients θi = (αi, βi) have a
normal distribution. Often demographics are added to the equations for θ:

(
αi

βi

)
=

(
ᾱ
β̄

)
+ ΠDi + Σνi

where ᾱ and β̄ are the mean value of the coefficients for all agents. Demographics
Di ∼ PD and νi ∼ Pν . These distributions are parametric. Π determines how
demographics affect tastes. Consequently, the market shares are the expectation
of the regular MNL choice probabilities with respect to θ.

We also need to model the outside option (option j = 0 by convention).
Because it is not observed, we typically use

Vi0t = αiyi + εi0t

for the indirect utility and εi0t is Type I Extreme Value.
Nevo and BLP then group the coeffients into a mean utility

δjt = xjtβ̄ − ᾱpjt + ξjt
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and an individual specific preference shock

µijt = [−pjt xjt] (ΠDi + Σνi)

where µijt + εijt is the mean zero, composite shock which captures individual
heterogeneity.

There are a couple things to note about this specification:

• αi < 0 implies a positive price coefficient, violating consumer theory. This
problem occurs for a non-zero measure of the population. One appeal of
simulation is that you can find a draw which doesn’t have any positive
price coefficients. Nevo has a footnote about discarding these draws. A
better option is to assume that αi is log-normally distributed. I.e., here
is a case of ‘sample fishing.’

• The Type I Extreme value distributional assumption + IID provides the
closed form, multinomial logit solution for the conditional market shares,
i.e. the probability of an agent choosing an option, conditional on the
agent’s type. A more general distribution would appear to require the
computation of the integral for the conditional choice probability, aka
market share:

sijt =
∞̂

−∞





Π

k %=j

εijt+Vijt(θ)−Vikt(θ)
ˆ

−∞

f (εikt) dεikt





f (εijt) dεijt

where we have still assumed IID. However, McFadden and Train (2000)
show that any preferences can be modeled using a suitable mixing dis-
tribution with the multinomial logit. Consequently, there is no loss in
generality from using the multinomial logit. The common specification of
a normal mixing distribution could cause problems from misspecification.
An area for future research is to study the impact of a more flexible mixing
distribution. Then the market share is

sjt =
ˆ

Θ




∞̂

−∞





Π

k %=j

εijt+Vijt(θ)−Vikt(θ)
ˆ

−∞

f (εikt) dεikt





f (εijt) dεijt



 g (θ) dθ

after integrating over all possible preference types which are distributed
as θ ∼ g (θ).

• Without IID, we would need to replace the product of integrals over the
appropriate joint distribution conditional on εijt. The unconditional mar-
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ket share with IID is

sjt =
ˆ

Θ

sijt (θi) g (θi) dθi

=
´

Θ




∞̂

−∞





Π

j %=i

εijt+Vijt(θi)−Vikt(θi)
ˆ

−∞

f (ε−ikt |εijt ) dεikt





f (εijt) dεijt



 g (θi) dθi.

• The integrals are computed by simulation:

– Nevo draws demographics Di for a limited number of households from
the CPS.

– Nevo draws νi from a Normal
– A point of concern is that if researchers too few draws, R, for asymp-

totic consistency (See below).

• The model is estimated using a nested GMM algorithm:

1. Given parameters θ̂n = (α,β,Π,Σ), obtain ξjt by
(a) Solve for δjt from market shares using a contraction mapping

Berry, Levinsohn, and Pakes (1995)
(b) Invert δjt to obtain the latest estimate for the unobserved prod-

uct heterogeneity, ξ̂n
jt

2. Use ξ̂n
jt to form GMM moment conditions and re-estimate parameters

θ̂n

3. Repeat until a stopping criterion is satisfied.

4 Simulation vs. Quadrature Rule
To compare Monte Carlo integration with quadrature and monomial rules, I
use these different numerical techniques to compute key quantities in the BLP
model such as market share integrals, the unobserved heterogeniety ξjt, the
information matrix, the standard errors, and the GMM objective function. In
addition, I compare how the different methods affect the parameter estimates
(optima) produced by a state of the art solver (KNITRO).

4.1 Computation of Market Shares
To compare the accuracy of different integration approaches, I compute the
market share integrals for T = 50 markets and J = 25 products for the BLP
model. I use the code from Dubé, Fox, and Su (2009)5 to generate a dataset

5The code was downloaded from http://faculty.chicagobooth.edu/jean-pierre.dube/research/,
Fall 2009.
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Table 1: Comparison of Integration Rules
Rule Type Nnodes Max Abs Error Min Abs Error
Simulation Simple Random Draw 100 7.551948439036227e-02 1.527297314339364e-12

1,000 4.708060066243702e-02 3.335032180409949e-11
10,000 3.896166560785574e-02 1.182201694457840e-10

Gauss-Hermite Product Rule 35 = 243 1.072985611572319e-03 4.533583487614291e-12
45 = 1, 024 2.517427160893537e-04 1.758592200356603e-12
55 = 3, 125 5.644382503433576e-05 1.311538115999068e-13
75 = 16, 807 0 0
95 = 59, 049 – –

Stroud Rule 11-1 Left Column 983 8.121581065728689e-05 6.107747097034455e-15
Right Column 983 1.379071789571751e-04 1.551264895804618e-14

All values are computed at θ̂MPEC based on R = 100 draws. The 95 product
rule cannot be evaluated because MATLAB runs out of memory to calculate
all T × J market shares. Errors are relative to the 75 Gauss-Hermite product
rule. Values for simulation are max/min for 5 trials.

using R = 100 draws from a Normal distribution. I then compute the market
shares, sjt, for this data using simulation, Gauss-Hermite product rules, and
Stroud’s monomial rule 11-1. For all cases, I compute the market shares at the
point estimate, θ̂MPEC , generated by the MPEC estimation code provided in
Dubé, Fox, and Su (2009). These results are tabulated below in Table 4.1.

The striking thing when looking at a histogram of the Stroud vs. Gauss-
Hermite product rule residuals, is that the Stroud rule is only off at a few (~10)
points. See figure 1. The same histogram for the simulated market shares shows
a similar distribution, though the tail is a little fatter and the order of magnitude
is a factor of 100 worse for 104 draws! Also note that even increasing the number
of simulation draws from 100 to 10, 000 does little to improve the accuracy of the
integral. In fact, it is less than the expected factor of

√
N (

√
100 = 10). However

a crucial factor driving this result is that for any market, most of the products
have very small market share. Consequently, only a few products determine the
parameter values and estimating these market shares correctly, then, is crucial.
The larger market shares are also those with larger variances across multiple
simulation runs: the market shares which have small variances do so because
the market shares are essentially zero. Furthermore, this effect becomes starker
with more simulation draws. See table 2. Another issue is that the parameter
value used to compute the shares will affect which combinations of product
and market produce the largest shares. Simple tests show that 10% or more
of shares could move into or out of the top decile. Consequently, simulation
will also make shifts in parameters more knife-edged at the extensive margin,
further complicating the task of the solver.

Examination of a plot of si vs. var [ŝi] where ŝi is the simulated version of
si shows:

• ŝi is consistently smaller or larger than the value of si computed via Stroud
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Figure 1: Stroud Rule 11-1 vs. Gauss-Hermite Product Rule

rule 11-1.

• larger shares tend to have larger variances

• Most shares and variances are extremely close to 0. When I look at a
histogram of market shares, 88.3% of shares are less than 1% and 93.3%
are less than 5%.

XXX Use a Log scale here.
XXX Only need a couple digits here....
In the course of computing these market shares, I noticed that the manner

of computing the market share integral affects the point estimates as well as the
starting value. Running with the default configuration provided in the code,
there are five random starts of which three agree, one doesn’t converge in 100
iterations (verify), and the fifth is significantly better than the other four – i.e.,
it has a much lower value for the GMM objective function. When I compare
these estimates to those obtained with either simulation with more draws (larger
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Table 2: Impact of Market Share on Variance
R = 100 R = 1000 R = 10, 000

min Var [si < 0.0095] 1.030823534978537e-20 4.516622606490837e-10
max Var [si < 0.0095] 9.227279021096175e-06 9.477527876912232e-03
min Var [si > 0.0095] 7.043915397070283e-07 9.799958561130986e-03
max Var [si > 0.0095] 1.114497255204688e-03 9.351920115545796e-01

For 20 simulations with R draws.

R) or a Gauss-Hermite product, the point estimates usually have statistically
significant differences for most components of θ̂. To determine significance, I
use the standard errors calculated from the GMM variance for θ based on the
familiar sandwich product estimator.

• XXX how many are deviations are statistically significant? I.e.,
how many deviations are important?

• Check at solution, using high-quality quadrature, find Jacobian
of equation:

1. Is the system well conditioned? i.e. condition number is less than
108.

2. What is conditioning at parameter estimates?

– Good quadrature rule (i.e. monomial rule)
– Monte Carlo: use multiple draws

Negative Market Shares Stroud Rule 11-1 Right column produces several
negative market shares which are basically zero:

-5.490794199853441e-09
-8.128211836318200e-10
-2.548912005938970e-12
-5.235446754952933e-10
-5.741560408205868e-12
-2.082523606903214e-10
Figure 2 clearly shows the simulation error in the computation of market

shares sjt. The green points represent market shares which were calculated
via simulation whereas the red and blue triangles used Stroud rule 11-1. As a
check, I plot the 95 Gauss-Hermite product rule, shown as a magenta pentagon.
The majority of simulated share values are either considerably below or above
those for Stroud’s monomial rule 11-1 and the Gauss-Hermite product rule with
95 nodes, both of which produce the same market share values to many deci-
mal places. The propagation of error from the Gaussian draws to simulate the
integral cause this problem because errors in the draws for ν affect the val-
ues for the random coefficients which, in turn, affect the agent-specific utility,
µijt. Errors in computing µijt are further distorted by the multinomial logit
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transformation which can be flat, concave, or convex depending on parameter
values. From Jensen’s inequality we know that the expectation of a concave
(convex) function is more (less) than the function of the expectation. Conse-
quently, simulation error percolates through the multinomial logit form for the
conditional shares to produce either positive or negative error. Two facts sup-
port this: (1) the mean of µijt is large for simulation – |mean (µijt)| ≥ 10−3

– compared to the mean with the monomial rule, |mean (µijt)| ≤ 10−17, even
with NDraws = 10, 000 draws for the Monte Carlo integral over the random
coefficients (i.e., ν); and (2) the correlation coefficient of µijt and the simulation
error, ejt = sMC

jt − sStroud
jt , is about −0.2 conditional on |ejt| > 10−4 (This

result, of course, depends on the draws.).6
In addition, simulation error explains why the solver and Berry’s mapping

converge more frequently – even if not always to the same value – for Monte
Carlo methods than monomial or product rules (See below for further discussion
of these issues.). The optimizer adjusts parameters so that the spectrum of the
mapping is less singular and has local basins of attraction. The different sizes
of these basins affect how often solver finds them when searching for a local
minimum of the GMM objective function. I also found that SNOPT 7 could
often find an optimum when KNITRO would not converge. That SNOPT 7 was
recently upgraded to handle rank deficient systems further supports to these
claims.

4.2 Computation of Product-Market Shock ξjt

To compare how integration methods affect the computed value of the ξjt, I
computed the value of the shock using simulation, a product rule, and a mono-
mial rule. My method was the following: take the parameter estimates from
the NFX algorithm for a variety of starting values, compute the market shares
sjt with each integration rule, and then invert the market shares to recover the
value of ξjt using BLP’s contraction mapping with a tight tolerance of 10−14

(This tolerance is what Dubé, Fox, and Su (2009) call the ‘inner loop tolerance’)
to ensure accurate results. Two further issues of concern about the contraction
mapping are that the approximate mapping operator is not a contraction 7 and
that numerical errors in the computation of the market shares could lead to
non-convergent cycles.

XXX Verify behavior of contraction mapping for various Monte
Carlo draws

XXX Verify eigenvalues of contraction mapping – CSD – at the
solution? How slow is contraction? Does sample fishing give you
stability when the contraction isn’t.

6Here, mean (µijt) ≡
1

NDraws

P
i

µijt.
7Gandhi (2008) does show that the true mapping is invertible under some axioms. However,

invertibility does not imply contraction.
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Figure 2: Simulation Error: sjt vs. var [ŝjt]

XXX How dows simulation affect Jacobian for ξjt or δjt in contrac-
tion mapping – use N = 1, 000 ... do a full range.... stability implies
that all eigenvalues are

This experiment showed that simulation produces a very different result for
the product-market shock from the product and monomial rules. Examining
the histograms of ξjt, the mean and variance are much larger under simulation.
In addition, there is more skewness. See Figure 3.

4.3 Impact of Simulation on Optimization
An important open question is to quantify how the integration method affects
the solver’s ability to find a (global) maximum, i.e. to find the correct parameter
estimates. Simulation is dirty which means that as the parameter moves through
parameter space, there are discrete jumps at the extensive margin whereas with
a quadrature rule the distribution of consumers is smooth. Consequently the
simulated objective function is lumpy like a step function unlike the quadrature
rule objective function which is smooth. Furthermore, as mentioned above, the
lumpiness of simulation means which are the large market-shares may shift in
a knife-edged fashion as parameter values changed, causing local optima and
increasing the difficulty of finding a global maximum.

Dubé, Fox, and Su (2009) side-step the issue of convergence of the solver to
a some extent by using the same draws which generated the data to compute
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Figure 3: Product Market Shocks
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the market shares via simulation when estimating their BLP model. Clearly, in
a real world problem these shocks would not be observed by the econometrician.
8 When I redraw the these shocks, some of the starting values fail to converge.
A quadrature rule mitigates these issues. Need more data on this XXX!

With Seed A, 4/5 starts converge and three of these get the same answer.
The other is higher. With Seed B, instead of Seed A, 3/5 starts converge. 2
have save value for GMM objective. The other is higher. Note: Seed B uses
5,000 draws to calculate integrals vs. 1,000 for Seed A and T = 20, prods = 15
vs. T = 50, prods = 25.

4.4 Problems with Berry’s Mapping
In theory, Berry’s mapping is a contraction Berry (1994), but in practice, when
integrals must be approximated, it is unclear whether or not the mapping is
still a contraction. My experiments show that more accurate approximation of
the integrals with monomial rules causes the mapping not to converge whereas
it usually converges for a Monte Carlo rule. This does not mean that monomial
rules are bad, rather that the messyness of simulation facilities convergence.

Decreasing the number of markets and products:

• Trouble with convergence of contraction mapping with Stroud Monomial
rules

• Jacobian has huge condition number: 19 (full matrix) or 16 (sparse). Com-
puting eigenvalue for sparse matrix produces a warning that the matrix is
close to singular or badly scaled

• T = 20, prods = 15

• Decreasing T ∗ prods makes contraction mapping less stable, i.e. closer to
singular

• Convergence problems with MPEC or Berry’s mapping under monomial
rule are not because the monomial rule is bad but because under the more
accurate integration approximation the mapping is closer to singular

• The spectrum of eigenvalues for the mapping:

– histogram of log10 (‖λ‖) shows that most eigenvalues are very small;
only a few are close to 1; λmax determines rate of convergence and is
∼ 0.95

– Plot quintiles/quartiles
– How affected by number of simulation draws? Should get worse with

more draws....
– 6 of 100 mappings fail to converge with T = 20, prods = 15, and

NDraws = 1, 000 draws for Monte Carlo integration.

18



Table 3: Statistics on Iterations Until Convergence
Statistic Value
mean 1133.70
median 1139
variance 2909.11
N 94

Note: 6 of 100 sets of draws failed to converge using the ,∞ norm with an
absolute tolerance of 10−14. 20 markets, 15 products, NDraws = 1, 000 draws
for Monte Carlo integration.

Figure 4: Market Share vs. Mapping Residual

The conventional wisdom is to iterate until
∥∥exp [δn]− exp

[
δn−1

]∥∥ < εInner

where ‖·‖ is a suitable norm such as ,∞, εInner is the inner loop stopping
criterion, and δ is the mean utility (and a function of ξjt). A plot of mar-
ket share vs. this residual shows that convergence problems come from the
largest market shares (Figure 4). In addition, heuristic tests to compute β,
the rate of contraction for the mapping show that β is always close to 1 and
often exceeds it. See Judd (1998) for a discussion of approximating β as[(∥∥exp

(
δk+2∆

)
− exp

(
δk+∆

)∥∥ /
∥∥exp

(
δk+∆

)
− exp

(
δk

)∥∥)]1/∆ to examine the
convergence properties of a mapping. The exponent on δ is the number of in-
teration and ∆ > 0 is some additional number of steps so that the contraction
property of the mapping is compared over a larger range.

8When we discussed the issue with J.P Dubé, he argued that he could treat the shocks ξjt

as ‘data’.
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4.5 Negative Price Coefficients
Compute what fraction of price coefficients are negative. How does this affect
things? Rerun with a lognormal distribution.

5 Custom Quadrature Rules
Traditional Gauss product rules and monomial rules are designed for general
integration of functions for which the Riemann–Stieltjes integral exists. These
rules fail to exploit all of the structure in the random-coefficients integral because
the integral consists of two parts: the conditional market share for a given type
– such as a multinomial distribution – and the distribution of the coefficients,
usually assumed to be normal. Consequently a custom rule which exploits slope
information or that the conditional market share must be bounded between 0
and 1 should be even more efficient and accurate than other quadrature rules.

Two approaches are possible to exploit this structure: (1) Gauss-Turan
quadrature, which uses slope information, and (2) custom monomial rules.

XXX Insert Custom Monomial Rules.

6 Conclusion
With modern computing resources, there is no excuse not to use a proper
quadrature rule for integration because it is both faster and more accurate.

7 Notes on a Degenerate Case
Consider the most simple model:

uijt = ξjt + εijt

so market shares are

sjt =
exp (ξjt)∑

k
exp (ξkt)

and the Berry map is

ξt+1
i = Sobs

i + log

(
∑

k

exp
(
ξt
k

)
)

.

This formula depends on having no random coefficients so that the necessary
terms cancel out.

If there are three goods and each has the same share of 1/3 then the Jacobian
of the above map
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∇Ti ∝ (1, 1, 1)

which means the Jacobian is singular with n−1 eigenvalues equal to 0. However,
if you rewrite this as a Fixed Point equation/ a set of nonlinear equations is not
singular because the Jacobian is ∇Ti − I

Two degenerate cases:

• Infinite amount of data. What happens to Berry map for logit case as
data becomes more random

• Random coefficient. Infinite amount of data. Know true parameters. Use
infinitely accurate quadrature rule. As sample size ↓ 0, ↑ sample error.

One implication is that if you have many market shares which are nearly the
same (i.e. small) , then the Jacobian is small.

Key Issues/Themes:

• MC integration creates error in integrals. Propogation of errors⇒ solution
is very sensitive to sample size & quadrature rule. Need special rules for
bounded functions.

• If MPEC is a problem with a good quadrature rule and only works with
SNOPT, this a separate paper. Must explain ??? perturbation

• Berry map blows up

• Asymptotic analysis using perturbation theory

• Later, attack CCP & Hotz-Miller, Dynamic BLP, Seim

Things to to on first paper:

• Sensitivity Testing:

– Get point estimates from NFP.
– Perturb solution, i.e. small perturbation of everything (including

ξjt). Perturb anything which is a variable/unknown.
– Does it still satisfy inner stoping rule? Outer rule? What is the set

of points which satisfies the stopping rule?
– Is this large relative to standard errors? ⇒ results are garbage
– We have ‘numerical equivalence’ analogous to ‘observational equiva-

lence’

Task for Tibi:

• Objectives:

– Compute integrals for many different draws (data, integrals)
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– Compute Berry’s mapping for many different draws:

∗ Characterize Jacobian of mapping (eigenvalues, rate of conver-
gence)

– Understand propagation of error from miscalculation of integrals

• Design:

– Input:

∗ Random seeds
∗ Points to evaluate market share integrals
∗ Points to evaluate Berry’s mapping

– Output:

∗ Market shares
∗ Plots
∗ Statistics:

· Convergence of Mapping (eigenvalues, their distribution, etc.)
· Nature of error/how it propagates
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