
High Performance Quadrature Rules
How Numerical Integration Affects a Popular Model of Product

Differentiation

Benjamin S. Skrainka (UCL)
Kenneth L. Judd (Hoover)

October 25, 2010

The Big Picture

Accurate and efficient numerical approximation of multi-dimensional
integrals is crucial for modern economic research:

� Unobserved heterogeneity
� Uncertainty
� Incomplete information (expectations)
� Approximation of densities, functions, etc. using basis

functions: e.g., sieve estimation
Need to approximate integrals quickly and accurately!

Research Objectives

Our paper shows that polynomial-based quadrature rules are vastly
superior to Monte Carlo methods for multi-dimensional numerical
integration:

� Polynomial-based methods are both more accurate and more
efficient

� Using MC methods incorrectly compromises numerical results
and may mask identification problems

� MC causes many problems in Berry, Levinsohn, & Pakes
(1995, 2004)-style models, including incorrect point estimates,
multiple local optima, and non-convergence Berry’s mapping

Results currently based on five simulated data sets.

A Bit of Literature

Some integration literature:
� Stroud (1971)
� Genz (1993)
� Cools (1997, 2002, 2003)
� Judd (1998)
� Heiss & Winschel (2008)

Some discrete choice literature:
� Berry, Levinsohn, & Pakes (1995, 2004); Nevo (2000a, 2000b,

2001)
� McFadden & Train (2000)
� Train (2009)

Just a Bit More Literature

There is a growing, but young literature on identification:
� Chiou & Walker (2007); Walker (2002); Walker, Ben-Akiva, &

Bolduc (2004)
� Berry & Haile (2009)

Numerical literature focuses on optimization:
� Dubé, Fox, & Su (2009); Su & Judd (2009)

Roadmap

The plan for this talk is:
1. Review quadrature methods for multi-dimensional numerical

integration
2. Example: mixed logit
3. BLP model
4. Results
5. Future Research
6. Conclusions

Numerical Integration

1. Theory & Definitions
2. Monte Carlo Methods

2.1 Pseudo-Monte Carlo (pMC)
2.2 Quasi-Monte Carlo (qMC)
2.3 Random Numbers

3. Polynomial-based Methods
3.1 Gaussian Quadrature (1-d)
3.2 Gaussian Product Rules
3.3 Monomial Rules
3.4 Sparse Grids

Integration Basics

Want to approximate some (multidimensional) integral

I [f] :=
ˆ

Ω
f (x)w (x) dx , Ω ⊂ Rd , w (x) ≥ 0 ∀x ∈ Ω

as

Q [f] :=
R

∑
j=1

wj f (yj) , yj ∈ Ω

� The crucial issue is how to choose the nodes and weights,
(wj , yj)

� Ideally, a rule should have lim
R→∞

QR [f] = I [f]

Example: Mixed Logit
Conditional shares with linear utility & Type I Extreme value:

sij (αi) =
exp

�
−αi log pj + zT

j β
�

∑
k

exp
�
−αi log pk + zT

k β
�

Computed market shares are then:

sj =

∞̂

−∞

sij (αi)
1√

2πσ2
exp

�
− 1

2σ2
[αi − α]2

�
dαi

=
1√
π

∞̂

−∞

sij
�√

2σu
�

exp
�
−u2

�
du

≈ 1√
π ∑

k
wksij

�√
2σuk

�
.

Note: mixed logit ↔ random coefficients

Monte Carlo Methods

There are several MC tools – all based on number theory:
� pseudo-MC:

� Draw R nodes, yi , from weight function w (x)
� Set weights to 1/R
� Converges as R−1/2

� Warning: must increase draws 100x for each extra decimal
point of accuracy!

� quasi-MC:
� Use number theory to choose nodes which have better

properties, e.g. equidistribution, low discrepancy
� Set weights to 1/R
� Converges as R−d/2

� For high dimensions, MC is the only option....

Warning!

Beware of ‘random numbers’:
� ‘Anyone who considers arithmetical methods of producing

random digits is, of course, in a state of sin.’ – von Neumann
� Computer generates pseudo-random numbers, which are not

truly random!
� Make sure your proof works with Q [f] and not just for I [f]!
� Different quasi-MC algorithms work better for different kinds

of problems so it pays to experiment

Polynomial-based Rules

Polynomial based rules are usually much more efficient:
� Exact for all polynomial integrands f (x) less than or equal to

some degree, i.e. I [f] = QR [f]
� Example: in one dimension, a Gaussian rule with R nodes is

exact for all polynomials of degree less than or equal to 2R − 1
� lim

R→∞
QR [f] = I [f] ∀f ∈ C1

⇒ very accurate for any smooth function which is
well approximated by a polynomial

⇒ requires many fewer nodes than MC rules
� Easier to use than most economists think: just call the right

library function to generate nodes and weights instead of
randn()

One-dimensional Polynomial-based Methods

Domain and weight function determine which nodes are clever:
� In one dimension, use Gaussian rule
� Choose rule based on domain and weight function:

Rule w (x) Ω
Gauss-Hermite exp

�
−x2

�
R

Gauss-Chebyshev
�
1− x2

�−1/2
[−1, 1]

Gauss-Legendre 1 [−1, 1]
Gauss-Laguerre exp (−x) [0,∞]

� The best method for one dimension unless your function is ugly

Example: Gauss-Hermite

For five nodes we have:

yk wk

2.020182870456086e+00 1.995324205904591e-02
9.585724646138185e-01 3.936193231522410e-01

0 9.453087204829417e-01
-9.585724646138185e-01 3.936193231522410e-01
-2.020182870456086e+00 1.995324205904591e-02

� These nodes and weights will exactly integrate any polynomial
of degree 2× 5− 1 = 9 or less!

� The moral: use a Gaussian rule if your function is well
approximated by a polynomial.

� Computed using gauher() from Press et al. (1992)

Multidimensional Polynomial-based Methods
Gaussian Product rules:

� Form tensor product of all combinations of one dimensional
nodes and weights

� I.e. all points on a lattice
Sparse Grids:

� Choose nodes on lattice more symmetrically
� Uses more nodes and weights than a monomial rule

Monomial Rules:
� Uses absolute minimum of nodes
� Look up data in a table e.g. Stroud (1971)
� Monomial: xp ≡ Π

j
xpj
j

� where p = (p1, p2, . . . , pJ)
� Degree is ∑

j
pj

� Exact for all monomials less than or equal to some degree

Sparse Grids

Figure from Heiss & Winschel (2008)

SGI Scaling

Table from Heiss & Winschel (2008)

SGI vs. Monomial Rule

Polynomial-based vs. MC Rules

The advantages of polynomial-based quadrature rules:
� Integrates any monomial below a certain degree exactly
� Integrates anything which can be approximated with

monomials well
� More efficient
� More accurate

The advantages of MC rules:
� Easier to implement – but not by that much
� Only option for very high dimensions
� Handle weird domains
� May be better for some irregularities (jumps, kinks)

But, neither method handles highly irregular functions – e.g. lack
of smoothness, extreme curvature

The BLP Model
BLP is a mixed logit with unobserved product-market heterogeneity
for studying product differentiation:

� Individuals’ random coefficients capture horizontal differences
in taste

� Product-market shock, ξjt , captures vertical differences in
quality

� Traditional estimation strategy uses nested-fixed point (Rust,
1987):

� Outer loop uses ξ̂n
jt to compute parameter estimates, θ̂n, using

GMM
� Inner loop uses current parameter estimates θ̂n to estimate

ξ̂n+1

jt by equating observed (Sjt) and calculated market share
integrals (sjt): Sjt = sjt (δ (ξ; θ1) ; θ2)

� Market share integrals computed via pMC (inaccurate)
� (Best practice is to use MPEC (Su & Judd, 2009; Dubé, Fox,

& Su, 2000))

The Outer Loop

The outer loop estimates the parameters via GMM:

θ̂ = arg max
θ

�
Z

�
ξ
��

W
�
Z

�
ξ
�

Z instruments (e.g. Hausman, Pakes, or cost shifters)
ξ unobserved product-market heterogeneity

W Weighting matrix

The Inner Loop
The inner loop inverts the market share equations

Sjt = sjt (δ (ξ, p, x ; θ1) ; θ2)

to obtain the mean utility δjt and, thus, ξjt which is needed for the
outer loop

� Usual procedure is to use Berry’s mapping, aka ‘The
Contraction Mapping’

� Shown to converge only for the case of exact integrals (Berry,
1994)

exp
�

δn+1

jt

�
= exp

�
δn
jt
�
× Sjt/sjt

�
δn
jt ; θ2

�

Remark: The mapping is written this way for performance
reasons – log is more expensive than exp

Remark: For simple logit, δjt = log (sjt)− log (s0t)

Specification

Utility:

uijt = Vijt + �ijt

Vijt = αi (yi − pjt) + x �jt βi + ξjt

Distributions:

�ijt ∼ Type I Extreme Value
�

αi
βi

�
=

�
ᾱ
β̄

�
+ Σνi

νi ∼ N(0, 1)

By convention, θ = (θ1, θ2) where θ1 =
�
ᾱ, β̄

��
and θ2 = vec (Σ)

Repackaging

It is customary to repackage the utility into constant and stochastic
parts:

� Mean utility: δjt (ξjt ; θ1) = xjt β̄ − ᾱpjt + ξjt

� Preference shock: µijt (νi ;Σ) = [−pjt xjt] (Σνi)

Goal of estimation is to recover δjt to obtain ξjt for GMM outer
loop. Once you have estimated the mean utility, e.g. with MLE,
you can even regress δ̂jt on the covariates to estimate

�
ᾱ, β̄

��
...

Calculated Share Integrals

A central part of BLP is the computation of the market share
integrals:

� Conditional market shares:

sjt (δ (ξ; θ1) |θ2) =
exp [δjt + µijt (ν)]

∑ exp [δkt + µikt (ν)]

� Unconditional market shares:

sjt (δ (ξ; θ1) ; θ2) =
ˆ

RK+1

exp [δjt + µijt (ν)]

∑ exp [δkt + µikt (ν)]
φ (ν) dν

Assumptions

The model is depends on structural assumptions:
� Specification of indirect utility
� Distributional assumptions
� Identification
� No income effects
� Static
� Purchase at most one unit of good
� Share of outside good

Results

We investigate the performance of BLP using MC data:
� Currently five simulated data sets
� Simulate typical BLP data setup with five random coefficients:

� Endogenous price & instruments
� Diagonal Σ (‘industry standard’ assumption – facilitates

identification)

� Code based on Dubé, Fox, & Su (2009)
� All pseudo-random numbers created with MATLABTM’s

rand() and randn()
� Sparse grids generated using code from

www.sparse-grids.de
� Gaussian nodes & weights from Press et al. (1992)
� Monomial rule 11-1 from Stroud (1971)

Computed Market Shares

We computed the 5-dimensional, market share integrals, sjt :
� Compared different quadrature rules:

� pMC
� qMC (Niederreiter sequences)
� GH product rule with 35, 55, 75, 95 nodes
� Sparse grids: exact for degree 11 monomials with 993 nodes.
� Stroud monomial rule 11-1: exact for all degree 11 monomials

with just 983 nodes!

� Evaluated at MPEC parameter estimates θ̂MPEC and at nine
points drawn from N

�
θ̂MPEC , 1/4

��θ̂MPEC
���

� N = 100 simulations for pMC and qMC
� R = {100, 1000, 10000} draws for pMC
� R = {100, 1000, 10000} with 10, 000 burn in for a Niederreiter

qMC rule

Share Integral Approximation
Recall the original share integral:

sjt (δ (ξ; θ1) ; θ2) =
ˆ

RK+1

exp [δjt + µijt (ν)]

∑ exp [δkt + µikt (ν)]
φ (ν) dν

We approximate it as:

sjt (δ (ξ; θ1) ; θ2) = ∑
m∈N

wm
exp [δjt + µijt (ym)]

∑ exp [δkt + µikt (ym)]

Remark: The kernel φ (·) disappears because either we take
pseudo-random draws from N (0, 1), transform qMC
numbers via n = Φ−1 (u), or use a polynomial rule
with w (x) = exp

�
−x2

�

Remark: A Cholesky decomposition of the variance is necessary
to transform the nodes

Results

We now discuss the following results:
� Market share integrals
� Optimization
� Point estimates
� Berry’s mapping

Results: Market Shares

Polynomial rules clearly superior to pMC:
� Polynomials approximate smooth functions like the logit well
� All polynomial-based rules clustered in center of MC cloud,

usually at exactly the same point
� Polynomial-based rules close to mean of pMC simulations, as

expected, because pMC is unbiased.
� Monomial rule and sparse grids much more efficient in terms

of points than GH product rule or MC.
� qMC has lower variance than pMC

Key issue, however, is to approximate the gradient of the GMM
objective function accurately!

Market Shares in Numbers

Rule Nnodes Max Abs
Error

pMC 100 2.02858e-02
1,000 7.88069e-03
10,000 6.77537e-04

qMC 100 1.14975e-02
1,000 3.55180e-03
10,000 5.98465e-04

Product 35 = 243 5.37642e-04
Rule 45 = 1, 024 3.90495e-05

55 = 3, 125 6.91544e-06
75 = 16, 807 0

Stroud 983 1.03309e-04
11-1 983 1.60621e-04
Sparse 993 4.53294e-05

* Errors relative to GH product rule with 75 nodes.

Optimization Overview

We compute point estimates:
� Five starting values for a variety of quadrature rules and draws
� Five MC data sets
� Used both KNITRO and SNOPT without significant change in

results
� ‘non-convergence’ means:

� Exceeded iteration limit of 100
� Solver aborts with an error message, e.g. the problem is

unbounded, the solver cannot make progress, or all constraints
cannot be satisfied

� Numerical problems evaluating constraints indicative of nearly
singular Hessian

� With MPEC, quadrature rules only affect result via constraint
that observed market shares equal calculated market shares

� MPEC and NXP are equivalent (Dubé, Fox, & Su, 2009)

Solver Convergence

We find that the solver often fails to converge for better
approximations of the integral:

� Sparse grids and GH product rules always find the same
optimum when they converge:

� Same point estimates for all starting values
� Same value of the objective function for all starting values
� When the best pMC solution is used as a starting value, solver

converges to SGI optimum or fails to converge

� pMC rarely finds the same optimum:
� Different starting values produce different point estimates and

values of GMM objective function
� Monte Carlo approximation creates spurious local optima

� Monomial rules never converge
� qMC is faster than pMC but not significantly more accurate
� For some Monte Carlo datasets, none of the rules converge

Results: Optimization with pMC (R = 1, 000)

Dataset EXIT INFORM f_k CPU Time
5 0 1 203.50784 668.71
5 0 1 213.97591 503.92
5 0 1 203.50784 626.74
5 0 1 208.76144 489.06
5 0 1 208.76144 696.81

Table: Point Estimates: pMC with First 5 good starts and R = 1, 000
draws

Results: Optimization with pMC (R = 10, 000)

Dataset EXIT INFORM f_k CPU Time
5 0 1 260.57447 5450.45
5 0 1 279.95232 6514.08
5 0 1 299.22156 5555.86
5 0 1 299.22156 5444.99
5 0 1 279.95232 4403.82

Table: MPEC Results: pMC with R = 10, 000 draws

Results: Optimization with SGI

Dataset EXIT INFORM f_k CPU Time
5 0 1 293.89029 494.45
5 0 1 293.89029 571.11
5 0 1 293.89029 481.82
5 0 1 293.89029 556.80
5 0 1 487.40742 6535.28

Table: Point Estimates: SGI with first 5 good starts and 993 nodes
(exact for degree ≤ 11)

Results: Optimization with GH Product Rule

Dataset EXIT INFORM f_k CPU Time
5 0 1 288.69920 6334.33
5 0 1 288.69920 7553.43
5 0 1 288.69920 7164.02
5 0 1 288.69920 8156.16
5 0 1 288.69920 5521.13

Table: Point Estimates: Gauss-Hermite with first 5 good starts and 75

nodes

Results: Optimization with Monomial Rule

Dataset EXIT INFORM f_k CPU Time
5 0 1 277.89463 441.45
5 0 1 278.03790 441.77
5 0 1 277.89463 548.75
5 0 1 277.89463 1134.53
5 0 1 278.03790 656.13

Table: Point Estimates: Monomial with First 5 Good Starts.

Results: Point Estimates with pMC (R = 1, 000)

Data INFORM θ11 θ12 θ13 θ14 θ15
5 1 3.8847 2.941 1.717 0.7584 -5.028

(0.7081) (0.2525) (0.2558) (0.1694) (0.5138)

5 1 0.1228 2.608 1.614 0.2418 -2.575

(0.4817) (0.1932) (0.2031) (0.1285) (0.1604)

5 1 3.8847 2.941 1.717 0.7584 -5.028

(0.7081) (0.2525) (0.2558) (0.1694) (0.5138)

5 1 1.9287 2.693 1.550 0.7341 -3.911

(0.6686) (0.2155) (0.2226) (0.1501) (0.3918)

5 1 1.9287 2.693 1.550 0.7341 -3.911

(0.6686) (0.2155) (0.2226) (0.1501) (0.3918)

Table: Point Estimates: pMC with First 5 good starts and R = 1, 000
draws

Results: Point Estimates with pMC (R = 1, 000)

Data INFORM θ21 θ22 θ23 θ24 θ25
5 1 1.432 1.2450 0.8917 1.2194 1.2161

(1.019) (0.3340) (0.1194) (0.1908) (0.1532)

5 1 1.567 0.9745 0.7653 0.5999 0.4921

(0.6346) (0.1237) (0.1238) (0.1533) (0.04807)

5 1 1.432 1.2450 0.8917 1.2194 1.2161

(1.019) (0.3340) (0.1194) (0.1908) (0.1532)

5 1 2.316 1.4281 0.7147 1.0183 0.8986

(0.5851) (0.1760) (0.1347) (0.1880) (0.1172)

5 1 2.316 1.4281 0.7147 1.0183 0.8986

(0.5851) (0.1760) (0.1347) (0.1880) (0.1172)

Table: Point Estimates: pMC with First 5 good starts and R = 1, 000
draws

Results: Point Estimates with pMC (R = 10, 000)

Data INFORM θ11 θ12 θ13 θ14 θ15
5 1 -0.2568 2.340 1.196 0.3208 -2.217

(0.4224) (0.1931) (0.1949) (0.1170) (0.1624)

5 1 0.3066 2.506 1.259 0.4342 -2.707

(0.5113) (0.1932) (0.1962) (0.1176) (0.1620)

5 1 -0.7372 2.306 1.184 0.3491 -2.073

(0.4224) (0.1931) (0.1949) (0.1170) (0.1624)

5 1 -0.7372 2.306 1.184 0.3491 -2.073

(0.4224) (0.1931) (0.1949) (0.1170) (0.1624)

5 1 0.3066 2.506 1.259 0.4342 -2.707

(0.5113) (0.1932) (0.1962) (0.1176) (0.1620)

Table: Point Estimates: pMC with R = 10, 000 draws

Results: Point Estimates with pMC (R = 10, 000)

Data INFORM θ21 θ22 θ23 θ24 θ25
5 1 0.6103 1.1014 0.2332 0.5633 0.3884

(2.189) (0.09419) (0.2608) (0.1058) (0.04790)

5 1 1.3931 1.1934 0.3408 0.5283 0.5531

(0.6929) (0.08841) (0.1647) (0.1012) (0.04609)

5 1 0.7923 0.9923 0.4481 0.7718 0.3472

(2.189) (0.09419) (0.2608) (0.1058) (0.04790)

5 1 0.7923 0.9923 0.4481 0.7718 0.3472

(2.189) (0.09419) (0.2608) (0.1058) (0.04790)

5 1 1.3931 1.1934 0.3408 0.5283 0.5531

(0.6929) (0.08841) (0.1647) (0.1012) (0.04609)

Table: Point Estimates: pMC with R = 10, 000 draws

Results: Point Estimates with SGI

Data INFORM θ11 θ12 θ13 θ14 θ15
5 1 -0.5386 2.263 1.151 0.372 -2.075

(0.6593) (0.2231) (0.1989) (0.1182) (0.3571)

5 1 -0.5386 2.263 1.151 0.372 -2.075

(0.6593) (0.2231) (0.1989) (0.1182) (0.3571)

5 1 -0.5386 2.263 1.151 0.372 -2.075

(0.6593) (0.2231) (0.1989) (0.1182) (0.3571)

5 1 -0.5386 2.263 1.151 0.372 -2.075

(0.6593) (0.2231) (0.1989) (0.1182) (0.3571)

5 1 -1.5668 2.804 1.390 0.161 -3.108

(0.9577) (0.3847) (0.3638) (0.2231) (0.4480)

Table: Point Estimates: SGI with first 5 good starts and 993 nodes
(exact for degree ≤ 11)

Results: Point Estimates with SGI

Data INFORM θ21 θ22 θ23 θ24 θ25
5 1 2.704e-06 1.0143 0.3028 0.7257 0.3472

(1.360E+05) (0.1080) (0.2113) (0.07381) (0.08151)

5 1 3.862e-09 1.0143 0.3028 0.7257 0.3472

(9.524E+07) (0.1080) (0.2113) (0.07381) (0.08151)

5 1 1.490e-06 1.0143 0.3028 0.7257 0.3472

(2.468E+05) (0.1080) (0.2113) (0.07381) (0.08151)

5 1 4.880e-06 1.0143 0.3028 0.7257 0.3472

(7.538E+04) (0.1080) (0.2113) (0.07381) (0.08151)

5 1 4.535e+00 0.9027 1.1143 1.2092 0.6888

(0.6692) (0.2141) (0.1681) (0.1588) (0.1092)

Table: Point Estimates: SGI with first 5 good starts and 993 nodes
(exact for degree ≤ 11)

Results: Point Estimates with GH Product Rule

Data INFORM θ11 θ12 θ13 θ14 θ15
5 1 -0.551 2.243 1.134 0.3711 -2.066

(0.5336) (0.2683) (0.2078) (0.1225) (0.3929)

5 1 -0.551 2.243 1.134 0.3711 -2.066

(0.5336) (0.2683) (0.2078) (0.1225) (0.3929)

5 1 -0.551 2.243 1.134 0.3712 -2.066

(0.5336) (0.2683) (0.2078) (0.1225) (0.3929)

5 1 -0.551 2.243 1.134 0.3712 -2.066

(0.5336) (0.2683) (0.2078) (0.1225) (0.3929)

5 1 -0.551 2.243 1.134 0.3712 -2.066

(0.5336) (0.2683) (0.2078) (0.1225) (0.3929)

Table: Point Estimates: Gauss-Hermite with first 5 good starts and 75

nodes

Results: Point Estimates with GH Product Rule

Data INFORM θ21 θ22 θ23 θ24 θ25
5 1 1.250e-07 1.055 1.578e-06 0.7183 0.3442

(1.594E+06) (0.08564) (2.598E+04) (0.04176) (0.1017)

5 1 1.639e-07 1.055 1.072e-06 0.7183 0.3442

(1.216E+06) (0.08564) (3.825E+04) (0.04176) (0.1017)

5 1 1.819e-06 1.055 5.292e-07 0.7183 0.3442

(1.095E+05) (0.08564) (7.746E+04) (0.04176) (0.1017)

5 1 1.852e-07 1.055 7.546e-07 0.7183 0.3442

(1.076E+06) (0.08564) (5.432E+04) (0.04176) (0.1017)

5 1 3.086e-06 1.055 2.230e-06 0.7183 0.3442

(6.455E+04) (0.08564) (1.838E+04) (0.04176) (0.1017)

Table: Point Estimates: Gauss-Hermite with first 5 good starts and 75

nodes

Results: Point Estimates with Monomial Rule

Data INFORM θ11 θ12 θ13 θ14 θ15
5 1 -0.466 2.258 1.155 0.3580 -2.115

(0.5857) (0.2434) (0.1912) (0.1214) (0.5060)

5 1 -0.492 2.317 1.214 0.3340 -2.123

(0.6321) (0.2652) (0.1960) (0.1183) (0.5158)

5 1 -0.466 2.258 1.155 0.3580 -2.115

(0.5857) (0.2434) (0.1912) (0.1214) (0.5060)

5 1 -0.466 2.258 1.155 0.3580 -2.115

(0.5857) (0.2434) (0.1912) (0.1214) (0.5060)

5 1 -0.492 2.317 1.214 0.3340 -2.123

(0.6321) (0.2652) (0.1960) (0.1183) (0.5158)

Table: Point Estimates: Monomial with First 5 Good Starts.

Results: Point Estimates with Monomial Rule

Data INFORM θ21 θ22 θ23 θ24 θ25
5 1 1.550e-06 1.0433 0.2330 0.7726 0.3592

(1.733E+05) (0.1083) (0.1558) (0.04675) (0.1425)

5 1 1.174e-07 0.9852 0.5095 0.7826 0.3627

(2.140E+06) (0.1021) (0.08569) (0.04595) (0.1455)

5 1 3.531e-07 1.0433 0.2331 0.7726 0.3592

(7.606E+05) (0.1083) (0.1557) (0.04675) (0.1425)

5 1 1.848e-06 1.0433 0.2331 0.7726 0.3592

(1.453E+05) (0.1083) (0.1557) (0.04675) (0.1425)

5 1 1.785e-06 0.9852 0.5095 0.7826 0.3627

(1.408E+05) (0.1021) (0.08569) (0.04595) (0.1455)

Table: Point Estimates: Monomial with First 5 Good Starts.

Numerical Identification

� Numerical Identification occurs when the solver converges to
(the same) optimum, i.e. it finds the global optimum:

� Lack of convergence means:
� A numerical problem (scaling, poor choice of variables)
� Problems with numerical accuracy
� Lack of variation in the data
� The model is weakly- or un-identified

� That SNOPT 7 is often superior to KNITRO supports the
weak identification story because SNOPT 7 was recently
upgraded to handle rank deficient systems better

� Walker (2002) shows that taking too few draws will mask an
identification problem in mixed logit models

Importance Sampling

Importance sampling will not rescue pMC:
� Importance sampling is really just a non-linear change of

variables
� Consequently, it will help any numerical method
� The fundamental problem with pMC is using an inaccurate

method to approximate the integral

Results: Berry’s Mapping

Berry’s (1994) ‘contraction’ mapping drives estimation procedure:
� Used to invert calculated market shares Sjt = sjt (δ (ξ; θ1) ; θ2)

to obtain ξjt

� A contraction in theory (Berry, 1994): does Berry’s theorem
hold for MC approximation?

� BLP use importance sampling but few other authors employ
variance reduction or qMC

� I met someone at the scanner data conference using Halton
draws, but he was only taking 30 draws....

� Conlon (2009) uses sparse grids – the only non-pMC BLP
paper I know of

� Expensive to compute even with Nevo’s transform
� Stopping criterion:

��exp
�
δn+1

�
− exp [δn]

�� < �Inner

Convergence of Berry’s Mapping

We find:
� Berry’s mapping converges slowly at best, typically requiring

∼ 1, 000 iterations (not Gaussian!)
� Approximation of integral affects results:

� Convergence for pMC and qMC requires more iterations as
number of draws, R, increases

� Slower convergence as T and J increase

� Fails sufficiency conditions in BLP’s contraction mapping
theorem ∼ 10% of the time

� With some Monte Carlo datasets, the mapping never
converges (Niter > 2500)

Iterations until Convergence

Properties of the Mapping
We also investigate the properties of Berry’s mapping:

� Jacobian of mapping is nearly singular:
� Condition number ∼ 19
� A few eigenvalues near 1
� The majority close to 0

� We estimate rate of contraction, λ, using (Judd, 1998)

λ =
����exp

�
δk+2∆

�
− exp

�
δk+∆

���� /
���exp

�
δk+∆

�
− exp

�
δk
����

�1/∆

� λ is always close to 1 and often exceeds it, i.e. the Berry’s
approximate mapping diverges

� Decreasing T and J slows convergence which should facilitate
convergence for a block diagonal system unless increasing size
of the system increases chance of finding a local basin of
attraction due to MC simulation error

� An identification problem?
� It appears that MC creates local regions of attraction where

incorrect solutions are possible

Remark: Berry’s mapping has trouble making progress for
larger share values (∆ = 25)

Future Research

Custom Monomial Rules:
� Given importance of mixed logit, use modern tools to create

custom rules which exploit structure of economic problems
such as mixed logit with normally-distributed taste shocks

� Ideal theory + homotopy
� For maximum efficiency and accuracy

Future Research

Convergence Issues:
� Is the approximate Berry mapping a contraction?
� Does the solution from Berry’s map agree with better methods

for solving non-linear equations such as homotopy?
� What drives non-convergence of solvers? Lack of

identification?
Identification:

� Under what conditions is BLP identified?
� When does poor integration mask identification problems in

BLP

Conclusion

There are several dangers to poor numerical approximations of
integrals:

� Inaccurate results
� Much greater computational costs
� Masking of identification problems

For multidimensional problems of moderate dimension:
� Monomial-rules and Sparse Grids Integration are best options

for integrals unless integrating over a very large number of
dimensions

� Polynomial-based rules provide superior efficiency and accuracy
Of the MC methods, qMC was significantly more efficient than
pMC and had much lower variance

Conclusion

Use of pMC in BLP models cause several problems:
� Incorrect point estimates
� Inaccurate share values
� Different solutions for different starting values
� Non-convergence of solver and Berry’s mapping
� These problems are usually a sign of identification problems

