High Performance Quadrature Rules How Numerical Integration Affects a Popular Model of Product **Differentiation**

> Benjamin S. Skrainka (UCL) Kenneth L. Judd (Hoover)

> > March 24, 2010

The Big Picture

Accurate and efficient numerical approximation of multi-dimensional integrals is crucial for modern economic research:

- ▶ Unobserved heterogeneity
- \blacktriangleright Uncertainty
- \blacktriangleright Incomplete information (expectations)
- \blacktriangleright Approximation of densities, functions, etc. using basis functions: e.g., sieve estimation

KORKA REPARATIONS

Need to approximate integrals quickly and accurately!

Research Objectives

Our paper shows that there are superior methods for multi-dimensional numerical integration than Monte Carlo methods:

- ▶ Polynomial-based methods are both more accurate and more efficient
- ! Using MC methods incorrectly compromises numerical results and masks identification problems
- ▶ MC causes many problems in Berry, Levinsohn, & Pakes (1995, 2004)-style models, including inaccurate market share values, multiple solutions, and non-convergence of the solver and Berry's mapping

4 D X 4 P X 3 X 4 B X 3 B X 9 Q Q

Results currently based on five simulated data sets.

A Bit of Literature

Some integration literature:

- \blacktriangleright Stroud (1971)
- Genz (1993)
- \triangleright Cools (1997, 2002, 2003)
- \blacktriangleright Judd (1998)
- ► Heiss & Winschel (2008)

Some discrete choice literature:

▶ Berry, Levinsohn, & Pakes (1995, 2004); Nevo (2000a, 2000b, 2001)

- ▶ McFadden & Train (2000)
- \blacktriangleright Train (2009)

There is a growing, but young, literature on identification:

▶ Chiou & Walker (2007); Walker (2002); Walker, Ben-Akiva, & Bolduc (2004)

KORKA REPARATIONS

 \triangleright Berry & Haile (2009)

Numerical literature focuses on optimization:

▶ Dubé, Fox, & Su (2009); Su & Judd (2009)

Roadmap

The plan for this talk is:

1. Review quadrature methods for multi-dimensional numerical integration

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

- 2. Example: mixed logit
- 3. BLP model
- 4. Results
- 5. Future Research
- 6. Conclusions

Numerical Integration

- 1. Theory & Definitions
- 2. Monte Carlo Methods
	- 2.1 Random Numbers
	- 2.2 Pseudo-Monte Carlo (pMC)
	- 2.3 Quasi-Monte Carlo (qMC)
- 3. Polynomial-based Methods
	- 3.1 Gaussian Quadrature (1-d)

KEL KARIK KEL KEL KARIK

- 3.2 Gaussian Product Rules
- 3.3 Monomial Rules
- 3.4 Sparse Grids

Integration Basics

Want to approximate some (multidimensional) integral

$$
I[f] := \int_{\Omega} f(x) w(x) dx, \ \Omega \subset \mathbb{R}^d, \ w(x) \ge 0 \ \forall x \in \Omega
$$

as

$$
Q[f] := \sum_{j=1}^{R} w_j f(y_j), \ y_j \in \Omega
$$

 \triangleright The crucial issue is how to choose the nodes and weights, (w_i, y_i)

! Ideally, a rule should have lim*R*→[∞] *Q^R* [*f*] = *I* [*f*]

Example: Mixed Logit

Conditional shares with linear utility & Type I Extreme value:

$$
s_{ij}(\alpha_i) = \frac{\exp\left[-\alpha_i \log p_j + z_j^T \beta\right]}{\sum_{k} \exp\left[-\alpha_i \log p_k + z_k^T \beta\right]}
$$

Computed market shares are then:

$$
s_j = \int_{-\infty}^{\infty} s_{ij} (\alpha_i) \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2} [\alpha_i - \alpha]^2\right) d\alpha_i
$$

$$
= \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} s_{ij} (\sqrt{2}\sigma u) \exp(-u^2) du
$$

$$
\approx \frac{1}{\sqrt{\pi}} \sum_k w_k s_{ij} (\sqrt{2}\sigma u_k).
$$

Note: mixed logit \leftrightarrow random coefficients

Monte Carlo Methods

There are several MC tools – all based on number theory:

► pseudo-MC:

- \triangleright Draw nodes, y_i , from weight function $w(x)$
- \blacktriangleright Set weights to $1/R$
- \triangleright Variance reduction: importance $\&$ antithetic sampling
- ! Converges as *R*−*d*/²
- \triangleright Warning: must increase draws 100x for each extra decimal point of accuracy!

 \blacktriangleright quasi-MC:

 \triangleright Use number theory to choose nodes which have better properties, e.g. equidistribution, low discrepancy

4 D X 4 P X 3 X 4 B X 3 B X 9 Q Q

- \blacktriangleright Set weights to $1/R$
- ▶ Halton draws, Niederreiter sequences, etc.
- ! Converges as *R*−*d*/²
- \triangleright For high dimensions, MC is the only option....

Warning!

Beware of 'random numbers':

- \blacktriangleright 'Anyone who considers arithmetical methods of producing random digits is, of course, in a state of sin.' – von Neumann
- **EXECOM** Computer generates *pseudo*-random numbers, which are not truly random!
- \triangleright Make sure your proof works with $Q[f]$ and not just for $I[f]$!
- ▶ Different quasi-MC algorithms work better for different kinds of problems so it pays to experiment

One-dimensional Polynomial-based Methods

Domain and weight function determine which nodes are clever – based on ideal theory:

- \blacktriangleright In one dimension, use Gaussian rule:
	- ▶ With *R* nodes, the rule is *exact* for all polynomials of degree $2R - 1$ or less^[1]
	- \triangleright Nodes are zeros of some basis function
	- \triangleright Different weights, w_i , for each node, y_i
- Common cases:

 \triangleright The best method for one dimension unless your function is ugly

KORA (FRAGE) A BY A GAO

$$
\qquad \qquad \lim_{R \to \infty} Q^R \left[f \right] = I \left[f \right] \ \forall f \in \mathcal{C}^1
$$

Example: Gauss-Hermite

For five nodes we have:

 \triangleright These nodes and weights will exactly integrate any polynomial of degree $2 \times 5 - 1 = 9$ or less!

KORKA REPARATIONS

 \triangleright The moral: use a Gaussian rule if your function is well approximated by a polynomial.

Multidimensional Polynomial-based Methods

Gaussian Product rules:

- \blacktriangleright Form Kronecker product of all combinations of one dimensional nodes and weights
- \blacktriangleright I.e. all points on a lattice

Sparse Grids:

- \triangleright Choose nodes on lattice more symmetrically
- \blacktriangleright Easier to compute than monomial rules
- **E.** but uses more nodes and weights

Monomial Rules:

- \triangleright Uses absolute minimum of nodes
- \blacktriangleright Look up data in a table

$$
\blacktriangleright \text{ Monomial: } x^p \equiv \prod_j x^{p_j}
$$

$$
\triangleright \text{ where } \mathbf{p} = (p_1, p_2, \dots, p_J)
$$

▶ Degree is
$$
\sum_j p_j
$$

Exact for all monomials less than or eq[ua](#page-12-0)l [to](#page-14-0)[so](#page-13-0)[m](#page-14-0)[e](#page-0-0) [de](#page-44-0)[gre](#page-0-0)[e](#page-44-0)

 Ω

Sparse Grids

Fig. 1. Construction of the sparse grid in two dimensions.

Figure from Heiss & Winschel (2008)

Polynomial-based vs. MC Rules

The advantages of polynomial-based quadrature rules:

- \blacktriangleright Integrates any monomial below a certain degree exactly
- \blacktriangleright Integrates anything which can be approximated with monomials well
- \blacktriangleright More efficient
- \blacktriangleright More accurate
- The advantages of MC rules:
	- \triangleright Easier to implement but not by that much
	- \triangleright Only option for high dimensions
	- \blacktriangleright Handle weird domains
	- \triangleright May be better for some irregularities (jumps, kinks)

But, neither method handles highly irregular functions – e.g. lack of smoothness, extreme curvature

KORKAR KERKER EL VAN

The BLP Model

BLP is a mixed logit with unobserved product-market heterogeneity for studying product differentiation:

- \blacktriangleright Individuals' random coefficients capture horizontal differences in taste
- **Product-market shock,** ξ_{it} , captures vertical differences in quality
- \triangleright Traditional estimation strategy uses nested-fixed point (Rust, 1987):
	- ► Outer loop uses $\hat{\xi}_{jt}^n$ to compute parameter estimates, $\hat{\theta}^n$, using GMM
	- Inner loop uses current parameter estimates $\hat{\theta}^n$ to estimate $\hat{\xi}^{n+1}$ by equating observed (S_{i+}) and calculated market sha $\hat{\xi}^{n+1}_{jt}$ by equating observed (S_{jt}) and calculated market share integrals (s_{it}) : $S_{it} = s_{it}$ (δ (ξ ; θ_1); θ_2)
	- \triangleright Market share integrals computed via pMC (inaccurate)
	- ▶ (Best practice is to use MPEC (Su & Judd, 2009; Dubé, Fox, & Su, 2000))

The outer loop estimates the parameters via GMM:

$$
\hat{\theta} = \arg \max_{\theta} \left(Z^{\prime} \xi \right)^{\prime} W \left(Z^{\prime} \xi \right)
$$

Z instruments (e.g. Hausman, Pakes, or cost shifters) *ξ* unobserved product-market heterogeneity *W* Weighting matrix

The Inner Loop

The inner loop inverts the market share equations

$$
S_{jt} = s_{jt} (\delta(\xi, p, x; \theta_1); \theta_2)
$$

to obtain the mean utility *δjt* and, thus, *ξjt* which is needed for the outer loop

- ► Usual procedure is to use Berry's mapping, aka 'The Contraction Mapping'
- \triangleright Shown to converge only for the case of exact integrals (Berry, 1994)

$$
\exp\left(\delta_{jt}^{n+1}\right) \;\; = \;\; \exp\left(\delta_{jt}^{n}\right) \times S_{jt}/s_{jt} \left(\delta_{jt}^{n} ; \theta_{2}\right)
$$

Remark: The mapping is written this way for performance reasons – log is more expensive than exp $\mathsf{Remark:}$ $\mathsf{Remark:}$ $\mathsf{Remark:}$ For simple logit, $\delta_{jt} = \log{(s_{jt})} - \log{(s_{0t})}$ $\delta_{jt} = \log{(s_{jt})} - \log{(s_{0t})}$ $\delta_{jt} = \log{(s_{jt})} - \log{(s_{0t})}$

Specification

Utility:

$$
u_{ijt} = V_{ijt} + \epsilon_{ijt}
$$

\n
$$
V_{ijt} = \alpha_i (y_i - p_{jt}) + x'_{jt} \beta_i + \xi_{jt}
$$

Distributions:

$$
\epsilon_{ijt} \sim \text{Type I Extreme Value}
$$
\n
$$
\begin{pmatrix} \alpha_i \\ \beta_i \end{pmatrix} = \begin{pmatrix} \bar{\alpha} \\ \bar{\beta} \end{pmatrix} + \Sigma v_i
$$
\n
$$
v_i \sim N(0, 1)
$$

KORKAR KERKER EL KORA

By convention, $\theta = (\theta_1, \theta_2)$ where $\theta_1 = \left(\bar{\alpha}, \bar{\beta}\right)^{'}$ and $\theta_2 = \text{vec}(\Sigma)$

It is customary to repackage the utility into constant and stochastic parts:

- \triangleright Mean utility: $\delta_{it}(\xi_{it}; \theta_1) = x_{it}\bar{\beta} \bar{\alpha}p_{it} + \xi_{it}$
- \triangleright Preference shock: μ_{ijt} (ν_i ; Σ) = $[-p_{jt} x_{jt}]$ (Σ ν_i)

Goal of estimation is to recover δ_{it} to obtain ξ_{it} for GMM outer loop. Once you have estimated the mean utility, e.g. with MLE, you can even regress $\hat{\delta}_{jt}$ on the covariates to estimate $\left(\bar{\alpha},\bar{\beta}\right)'...$

KORKAR KERKER EL VAN

Calculated Share Integrals

A central part of BLP is the computation of the market share integrals:

 \blacktriangleright Conditional market shares:

$$
s_{jt} \left(\delta \left(\xi; \theta_1 \right) | \theta_2 \right) = \frac{\exp \left[\delta_{jt} + \mu_{ijt} \left(v \right) \right]}{\sum \exp \left[\delta_{kt} + \mu_{ikt} \left(v \right) \right]}
$$

I Unconditional market shares:

$$
s_{jt} (\delta(\xi; \theta_1); \theta_2) = \int\limits_{\mathbb{R}^{{K+1}}} \frac{\exp\left[\delta_{jt} + \mu_{ijt} (v)\right]}{\sum \exp\left[\delta_{kt} + \mu_{ikt} (v)\right]} \phi(v) dv
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 1 할 → 9 Q @

Assumptions

The model is depends on structural assumptions:

- \triangleright Specification of indirect utility
- \blacktriangleright Distributional assumptions
- \blacktriangleright Identification
- \triangleright No income effects
- \blacktriangleright Static
- **Purchase at most one unit of good**

KORKA REPARATIONS

 \blacktriangleright Share of outside good

Results

We investigate the performance of BLP using MC data:

- \blacktriangleright Currently five simulated data sets
- \triangleright Simulate typical BLP data setup:
	- **Instruments: Hausman, Pakes, & supply-side cost-shifters**
	- \blacktriangleright Endogenous price
	- \triangleright No demographics
	- \triangleright Diagonal Σ ('industry standard' assumption facilitates identification)
	- \triangleright Only $R = 100$ draws for share integrals to generate some 'real-world' noise
- ▶ Code based on Dubé, Fox, & Su (2009)
- \blacktriangleright All pseudo-random numbers created with MATLABTM's rand and randn

4 D X 4 P X 3 X 4 B X 3 B X 9 Q Q

• Sparse grids generated using code from www.sparse-grids.de

Computed Market Shares

We computed the 5-dimensional, market share integrals, *sjt*:

- \blacktriangleright Evaluated at parameter estimates $\hat{\theta}^{MPEC}$ and at nine points drawn from N $\left(\hat{\theta}^{MPEC}, 1/4 \|\hat{\theta}^{MPEC}\|\right)$
- ▶ Parameter estimates computed with MPEC and KNITRO or SNOPT
- \triangleright $N = 100$ simulations for pMC and qMC
	- $R = \{100, 1000, 10000\}$ draws for pMC
	- $R = \{100, 1000, 10000\}$ with 10,000 burn in for a Niederreiter qMC rule

Compared with polynomial-based rules:

- GH product rule with 3^5 , 5^5 , 7^5 , 9^5 nodes
- **>** Sparse grids with Konrad-Patterson rule: exact for degree 11 monomials with 993 nodes.
- \triangleright Stroud monomial rule 11-1: exact for all degree 11 monomials with just 983 nodes!

Share Integral Approximation

Recall the original share integral:

$$
s_{jt} \left(\delta \left(\xi; \theta_1 \right); \theta_2 \right) = \int\limits_{\mathbb{R}^{K+1}} \frac{\exp \left[\delta_{jt} + \mu_{ijt} \left(v \right) \right]}{\sum \exp \left[\delta_{kt} + \mu_{ikt} \left(v \right) \right]} \phi \left(v \right) dv
$$

We approximate it as:

$$
s_{jt} (\delta (\xi; \theta_1) ; \theta_2) = \sum_{m \in \mathcal{N}} w_m \frac{\exp [\delta_{jt} + \mu_{ijt} (y_m)]}{\sum \exp [\delta_{kt} + \mu_{ikt} (y_m)]}
$$

Remark: The kernel $\phi(\cdot)$ disappears because either we take pseudo-random draws from $N(0, 1)$, transform qMC numbers via $n = \Phi^{-1}(u)$, or use a polynomial rule with $w(x) = \exp(-x^2)$

Remark: A Cholesky decomposition of the variance is necessary to transform the nodesK ロ K K (日) X X B X X B X X X X X X X B X D X O

Share Results

Polynomial rules clearly superior to pMC:

- \triangleright Polynomials approximate logit well
- \triangleright All polynomial-based rules clustered in center of MC cloud, usually at exactly the same point
- \triangleright Polynomial-based rules close to mean of pMC simulations, as expected, because pMC is unbiased.
- \triangleright Monomial rule and sparse grids much more efficient in terms of points than GH product rule or MC.

KORKA REPARATIONS

 \triangleright qMC has significantly less variance that pMC

メロト メ御り メミト メミト È 299

(ロ) (御) (星) (星) È つくい

Market Shares in Numbers

* Errors relative to GH product rule with 7⁵ [no](#page-29-0)[de](#page-31-0)[s](#page-29-0)[.](#page-30-0) A REALLER ARCH

Asymptotic Comparison

- \triangleright Comparison is now made over $N = 100$ simulations
- \blacktriangleright Increased probability of extremely large and small deviations from the Gauss-Hermite product rule with $7⁵$ nodes

Sensitivity Analysis

Initial tests show computed share values are very sensitive to $\hat{\theta}$:

- \blacktriangleright Most shares are very small (< 0.01)
- Only a few products in each market have large share values and appear to determine parameter estimates
- ► Larger shares have larger variances with MC rules because small shares are essentially 0
- \triangleright Simple tests show that $> 10\%$ shares can move into/out of top decile of computed share values for small changes in $\hat{\theta}$

KORKAR KERKER EL VAN

 \triangleright MC exacerbates this sensitivity

Solver Convergence

We compute point estimates:

- \blacktriangleright Five starting values for a variety of quadrature rules and draws
- \blacktriangleright Five MC data sets
- ▶ Used both KNITRO and SNOPT without significant change in results
- \blacktriangleright 'non-convergence' means:
	- \blacktriangleright Exceeded iteration limit of 100
	- \triangleright Solver aborts with an error message, e.g. the problem is unbounded or it cannot make progress, such as all constraints cannot be satisfied
- \triangleright With MPEC, quadrature rules only affect result via constraint that observed market shares equal calculated market shares

Solver Convergence

We find that the solver fails to converge for better approximations of the integral:

- Polynomial-based rules never converge
- ► pMC and qMC rules produce different point estimates
- ▶ Different starting values produce different point estimates and values of GMM objective function
- ► pMC and qMC do not converge for all starting values
- \triangleright qMC produces better solutions than pMC:
	- \triangleright Different solutions with qMC very similar, unlike pMC
	- \triangleright Usually, requires fewer iterations to converge
	- ▶ At least 3x faster and often 50x faster
	- \blacktriangleright Produces different point estimates and converges more often than pMC

KORKA REPARATIONS

 \triangleright No rules converge for the data set 0005 which has abnormally low variance vis-a-vis other MC data sets

メロト メタト メミト メミト つくい É

Possible Causes of Non-convergence

- Remark: Non-convergence corroborates the story of an identification problem
- Remark: Walker (2002) shows that taking too few draws will mask an identification problem in mixed logit models

4 D X 4 P X 3 X 4 B X 3 B X 9 Q Q

- \Rightarrow Niederreiter MC rule was clearly superior to pMC
	- ▶ That SNOPT 7 is often superior to KNITRO supports this story be SNOPT 7 was recently upgraded to handle rank deficient systems better

Berry's Mapping

Berry's (1994) 'contraction' mapping drives estimation procedure:

- \triangleright Used to invert calculated market shares $S_{it} = s_{it}$ ($\delta(\xi; \theta_1)$; θ_2) to obtain *ξjt*
- ▶ A contraction in theory (Berry, 1994), but does Berry's theorem hold for MC approximation?
- \triangleright BLP use importance sampling but few other authors employ variance reduction or qMC
	- I met someone at the scanner data conference using Halton draws, but he was only taking 30 draws....
	- \triangleright Conlon (2009) uses sparse grids the only non-pMC BLP paper I know of

K ロ K K (日) X X B X X B X X X X X X X B X D X O

- \blacktriangleright Expensive to compute even with Nevo's transform
- \blacktriangleright Stopping criterion: $\left\| \exp \left[\delta^{n+1} \right] - \exp \left[\delta^{n} \right] \right\| < \epsilon_{\textit{Inner}}$

Convergence of Berry's Mapping

We find:

- \triangleright Berry's mapping converges slowly at best, typically requiring \sim 1,000 iterations (not Gaussian!)
- \triangleright Approximation of integral affects results:
	- \triangleright No convergence for any of the polynomial rules
	- ▶ Convergence for pMC and qMC requires more iterations as number of draws, *R*, increases
- **EX Convergence statistics number of iterations until convergence** $(N = 100, T = 20, J = 15,$ and $R = 1,000$ draws for pMC with ℓ^{∞} norm and absolute tolerance of 10⁻¹⁴)

I Note: 6 of 100 simulations failed to co[nve](#page-37-0)[rg](#page-39-0)[e!](#page-37-0)

Properties of the Mapping

We also investigate the properties of Berry's mapping:

- \blacktriangleright Jacobian of mapping is nearly singular:
	- \triangleright Condition number \sim 19
	- \triangleright A few eigenvalues near 1
	- \blacktriangleright The majority close to 0
- \blacktriangleright We estimate rate of contraction, λ , using (Judd, 1998)

$$
\lambda = \left[\left\| \exp \left(\delta^{k+2\Delta} \right) - \exp \left(\delta^{k+\Delta} \right) \right\| / \left\| \exp \left(\delta^{k+\Delta} \right) - \exp \left(\delta^{k} \right) \right\| \right]^{1/\Delta}
$$

- \blacktriangleright λ is always close to 1 and often exceeds it, i.e. the Berry's approximate mapping diverges
- ▶ Decreasing *T* and *J* slows convergence which should facilitate convergence for a block diagonal system unless increasing size of the system increases chance of finding a local basin of attraction due to MC simulation error
- \blacktriangleright An identification problem?
- \blacktriangleright It appears that MC creates local regions of attraction where incorrect solutions are possible4 D X 4 P X 3 X 4 B X 3 B X 9 Q Q

Remark: Berry's mapping has trouble making progress for larger share values ($\Delta = 25$)

Custom Monomial Rules:

 \triangleright Given importance of mixed logit, use modern tools to create custom rules which exploit structure of economic problems such as mixed logit with normally-distributed taste shocks

- \blacktriangleright Ideal theory $+$ homotopy
- \blacktriangleright For maximum efficiency and accuracy

Future Research

Convergence Issues:

- \triangleright Is the approximate Berry mapping a contraction?
- \triangleright Does the solution from Berry's map agree with better methods for solving non-linear equations such as homotopy?
- ▶ What drives non-convergence of solvers? Lack of identification?

Identification:

- \triangleright Under what conditions is BLP identified?
- When does poor integration mask identification problems in BLP

Conclusion

There are several dangers to poor numerical approximations of integrals:

- \blacktriangleright Inaccurate results
- \triangleright Much greater computational costs
- \blacktriangleright Masking of identification problems

For multidimensional problems of moderate dimension:

• Monomial-rules and Sparse Grids Integration are best options for integrals unless integrating over a very large number of dimensions

 \triangleright Polynomial-based rules provide superior efficiency and accuracy Of the MC methods, qMC was significantly more efficient than pMC and had much lower variance

Conclusion

Use of pMC in BLP models cause several problems:

- \blacktriangleright Inaccurate share values
- \triangleright Different solutions for different starting values
- ▶ Non-convergence of solver and Berry's mapping
- \triangleright These problems are usually a sign of identification problems