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The Big Picture

Accurate and efficient numerical approximation of multi-dimensional
integrals is crucial for modern economic research:

! Unobserved heterogeneity
! Uncertainty
! Incomplete information (expectations)
! Approximation of densities, functions, etc. using basis

functions: e.g., sieve estimation
Need to approximate integrals quickly and accurately!



Research Objectives

Our paper shows that there are superior methods for
multi-dimensional numerical integration than Monte Carlo
methods:

! Polynomial-based methods are both more accurate and more
efficient

! Using MC methods incorrectly compromises numerical results
and masks identification problems

! MC causes many problems in Berry, Levinsohn, & Pakes
(1995, 2004)-style models, including inaccurate market share
values, multiple solutions, and non-convergence of the solver
and Berry’s mapping

Results currently based on five simulated data sets.



A Bit of Literature

Some integration literature:
! Stroud (1971)
! Genz (1993)
! Cools (1997, 2002, 2003)
! Judd (1998)
! Heiss & Winschel (2008)

Some discrete choice literature:
! Berry, Levinsohn, & Pakes (1995, 2004); Nevo (2000a, 2000b,

2001)
! McFadden & Train (2000)
! Train (2009)



Just a Bit More Literature

There is a growing, but young, literature on identification:
! Chiou & Walker (2007); Walker (2002); Walker, Ben-Akiva, &

Bolduc (2004)
! Berry & Haile (2009)

Numerical literature focuses on optimization:
! Dubé, Fox, & Su (2009); Su & Judd (2009)



Roadmap

The plan for this talk is:
1. Review quadrature methods for multi-dimensional numerical

integration
2. Example: mixed logit
3. BLP model
4. Results
5. Future Research
6. Conclusions



Numerical Integration

1. Theory & Definitions
2. Monte Carlo Methods

2.1 Random Numbers
2.2 Pseudo-Monte Carlo (pMC)
2.3 Quasi-Monte Carlo (qMC)

3. Polynomial-based Methods
3.1 Gaussian Quadrature (1-d)
3.2 Gaussian Product Rules
3.3 Monomial Rules
3.4 Sparse Grids



Integration Basics

Want to approximate some (multidimensional) integral

I [f ] :=
ˆ

Ω
f (x)w (x) dx , Ω ⊂ Rd , w (x) ≥ 0 ∀x ∈ Ω

as

Q [f ] :=
R

∑
j=1

wj f (yj ) , yj ∈ Ω

! The crucial issue is how to choose the nodes and weights,
(wj , yj )

! Ideally, a rule should have lim
R→∞

QR [f ] = I [f ]



Example: Mixed Logit
Conditional shares with linear utility & Type I Extreme value:

sij (αi ) =
exp

[
−αi log pj + zT

j β
]

∑
k

exp
[
−αi log pk + zT

k β
]

Computed market shares are then:

sj =

∞̂

−∞

sij (αi )
1√

2πσ2
exp

(
− 1

2σ2 [αi − α]2
)

dαi

=
1√
π

∞̂

−∞

sij
(√

2σu
)

exp
(
−u2) du

≈ 1√
π ∑

k
wksij

(√
2σuk

)
.

Note: mixed logit ↔ random coefficients



Monte Carlo Methods

There are several MC tools – all based on number theory:
! pseudo-MC:

! Draw nodes, yi , from weight function w (x)
! Set weights to 1/R
! Variance reduction: importance & antithetic sampling
! Converges as R−d/2

! Warning: must increase draws 100x for each extra decimal
point of accuracy!

! quasi-MC:
! Use number theory to choose nodes which have better

properties, e.g. equidistribution, low discrepancy
! Set weights to 1/R
! Halton draws, Niederreiter sequences, etc.
! Converges as R−d/2

! For high dimensions, MC is the only option....



Warning!

Beware of ‘random numbers’:
! ‘Anyone who considers arithmetical methods of producing

random digits is, of course, in a state of sin.’ – von Neumann
! Computer generates pseudo-random numbers, which are not

truly random!
! Make sure your proof works with Q [f ] and not just for I [f ]!
! Different quasi-MC algorithms work better for different kinds

of problems so it pays to experiment



One-dimensional Polynomial-based Methods
Domain and weight function determine which nodes are clever –
based on ideal theory:

! In one dimension, use Gaussian rule:
! With R nodes, the rule is exact for all polynomials of degree

2R − 1 or less!!!
! Nodes are zeros of some basis function
! Different weights, wi , for each node, yi

! Common cases:

Rule w (x) Ω
Gauss-Hermite exp

(
−x2) R

Gauss-Chebyshev
(
1− x2)−1/2

[−1, 1]
Gauss-Legendre 1 [−1, 1]
Gauss-Laguerre exp (−x) [0,∞]

! The best method for one dimension unless your function is ugly
! lim

R→∞
QR [f ] = I [f ] ∀f ∈ C1



Example: Gauss-Hermite

For five nodes we have:

yk wk

2.020182870456086e+00 1.995324205904591e-02
9.585724646138185e-01 3.936193231522410e-01

0 9.453087204829417e-01
-9.585724646138185e-01 3.936193231522410e-01
-2.020182870456086e+00 1.995324205904591e-02

! These nodes and weights will exactly integrate any polynomial
of degree 2× 5− 1 = 9 or less!

! The moral: use a Gaussian rule if your function is well
approximated by a polynomial.



Multidimensional Polynomial-based Methods
Gaussian Product rules:

! Form Kronecker product of all combinations of one
dimensional nodes and weights

! I.e. all points on a lattice
Sparse Grids:

! Choose nodes on lattice more symmetrically
! Easier to compute than monomial rules
! ... but uses more nodes and weights

Monomial Rules:
! Uses absolute minimum of nodes
! Look up data in a table
! Monomial: xp ≡ Π

j
xpj

! where p = (p1, p2, . . . , pJ )
! Degree is ∑

j
pj

! Exact for all monomials less than or equal to some degree



Sparse Grids

Figure from Heiss & Winschel (2008)



Polynomial-based vs. MC Rules

The advantages of polynomial-based quadrature rules:
! Integrates any monomial below a certain degree exactly
! Integrates anything which can be approximated with

monomials well
! More efficient
! More accurate

The advantages of MC rules:
! Easier to implement – but not by that much
! Only option for high dimensions
! Handle weird domains
! May be better for some irregularities (jumps, kinks)

But, neither method handles highly irregular functions – e.g. lack
of smoothness, extreme curvature



The BLP Model
BLP is a mixed logit with unobserved product-market heterogeneity
for studying product differentiation:

! Individuals’ random coefficients capture horizontal differences
in taste

! Product-market shock, ξjt , captures vertical differences in
quality

! Traditional estimation strategy uses nested-fixed point (Rust,
1987):

! Outer loop uses ξ̂n
jt to compute parameter estimates, θ̂n, using

GMM
! Inner loop uses current parameter estimates θ̂n to estimate

ξ̂n+1
jt by equating observed (Sjt) and calculated market share

integrals (sjt): Sjt = sjt (δ (ξ; θ1) ; θ2)
! Market share integrals computed via pMC (inaccurate)
! (Best practice is to use MPEC (Su & Judd, 2009; Dubé, Fox,

& Su, 2000))



The Outer Loop

The outer loop estimates the parameters via GMM:

θ̂ = arg max
θ

(
Z

′
ξ
)′

W
(
Z

′
ξ
)

Z instruments (e.g. Hausman, Pakes, or cost shifters)
ξ unobserved product-market heterogeneity

W Weighting matrix



The Inner Loop
The inner loop inverts the market share equations

Sjt = sjt (δ (ξ, p, x ; θ1) ; θ2)

to obtain the mean utility δjt and, thus, ξjt which is needed for the
outer loop

! Usual procedure is to use Berry’s mapping, aka ‘The
Contraction Mapping’

! Shown to converge only for the case of exact integrals (Berry,
1994)

exp
(

δn+1
jt

)
= exp

(
δn
jt
)
× Sjt/sjt

(
δn
jt ; θ2

)

Remark: The mapping is written this way for performance
reasons – log is more expensive than exp

Remark: For simple logit, δjt = log (sjt)− log (s0t)



Specification

Utility:

uijt = Vijt + εijt

Vijt = αi (yi − pjt) + x ′jt βi + ξjt

Distributions:

εijt ∼ Type I Extreme Value
(

αi
βi

)
=

(
ᾱ
β̄

)
+ Σνi

νi ∼ N(0, 1)

By convention, θ = (θ1, θ2) where θ1 =
(
ᾱ, β̄

)′
and θ2 = vec (Σ)



Repackaging

It is customary to repackage the utility into constant and stochastic
parts:

! Mean utility: δjt (ξjt ; θ1) = xjt β̄ − ᾱpjt + ξjt

! Preference shock: µijt (νi ;Σ) = [−pjt xjt ] (Σνi )

Goal of estimation is to recover δjt to obtain ξjt for GMM outer
loop. Once you have estimated the mean utility, e.g. with MLE,
you can even regress δ̂jt on the covariates to estimate

(
ᾱ, β̄

)′
...



Calculated Share Integrals

A central part of BLP is the computation of the market share
integrals:

! Conditional market shares:

sjt (δ (ξ; θ1) |θ2 ) =
exp [δjt + µijt (ν)]

∑ exp [δkt + µikt (ν)]

! Unconditional market shares:

sjt (δ (ξ; θ1) ; θ2) =
ˆ

RK+1

exp [δjt + µijt (ν)]

∑ exp [δkt + µikt (ν)]
φ (ν) dν



Assumptions

The model is depends on structural assumptions:
! Specification of indirect utility
! Distributional assumptions
! Identification
! No income effects
! Static
! Purchase at most one unit of good
! Share of outside good



Results

We investigate the performance of BLP using MC data:
! Currently five simulated data sets
! Simulate typical BLP data setup:

! Instruments: Hausman, Pakes, & supply-side cost-shifters
! Endogenous price
! No demographics
! Diagonal Σ (‘industry standard’ assumption – facilitates

identification)
! Only R = 100 draws for share integrals to generate some

‘real-world’ noise

! Code based on Dubé, Fox, & Su (2009)
! All pseudo-random numbers created with MATLABTM’s rand

and randn
! Sparse grids generated using code from

www.sparse-grids.de



Computed Market Shares
We computed the 5-dimensional, market share integrals, sjt :

! Evaluated at parameter estimates θ̂MPEC and at nine points
drawn from N

(
θ̂MPEC , 1/4

∥∥θ̂MPEC
∥∥)

! Parameter estimates computed with MPEC and KNITRO or
SNOPT

! N = 100 simulations for pMC and qMC
! R = {100, 1000, 10000} draws for pMC
! R = {100, 1000, 10000} with 10, 000 burn in for a Niederreiter

qMC rule

Compared with polynomial-based rules:
! GH product rule with 35, 55, 75, 95 nodes
! Sparse grids with Konrad-Patterson rule: exact for degree 11

monomials with 993 nodes.
! Stroud monomial rule 11-1: exact for all degree 11 monomials

with just 983 nodes!



Share Integral Approximation
Recall the original share integral:

sjt (δ (ξ; θ1) ; θ2) =
ˆ

RK+1

exp [δjt + µijt (ν)]

∑ exp [δkt + µikt (ν)]
φ (ν) dν

We approximate it as:

sjt (δ (ξ; θ1) ; θ2) = ∑
m∈N

wm
exp [δjt + µijt (ym)]

∑ exp [δkt + µikt (ym)]

Remark: The kernel φ (·) disappears because either we take
pseudo-random draws from N (0, 1), transform qMC
numbers via n = Φ−1 (u), or use a polynomial rule
with w (x) = exp

(
−x2)

Remark: A Cholesky decomposition of the variance is necessary
to transform the nodes



Share Results

Polynomial rules clearly superior to pMC:
! Polynomials approximate logit well
! All polynomial-based rules clustered in center of MC cloud,

usually at exactly the same point
! Polynomial-based rules close to mean of pMC simulations, as

expected, because pMC is unbiased.
! Monomial rule and sparse grids much more efficient in terms

of points than GH product rule or MC.
! qMC has significantly less variance that pMC









Market Shares in Numbers
Rule Nnodes Max Abs

Error
Min Abs
Error

pMC 100 2.02858e-02 3.52172e-11
1,000 7.88069e-03 2.55065e-11
10,000 6.77537e-04 2.60308e-12

qMC 100 1.14975e-02 3.91531e-11
1,000 3.55180e-03 2.72549e-11
10,000 5.98465e-04 1.19251e-12

Product 35 = 243 5.37642e-04 4.48538e-11
Rule 45 = 1, 024 3.90495e-05 2.69840e-11

55 = 3, 125 6.91544e-06 9.02103e-12
75 = 16, 807 0 0
95 = 59, 049 1.26292e-06 2.19342e-13

Stroud 983 1.03309e-04 3.27133e-13
11-1 983 1.60621e-04 4.88308e-14
Sparse 993 4.53294e-05 4.56641e-14

* Errors relative to GH product rule with 75 nodes.



Asymptotic Comparison

Rule Nnodes Max Abs Error Min Abs Error
pMC 100 6.76374e-02 2.75864e-13

1,000 2.20766e-02 8.83621e-14
10,000 8.58756e-03 5.71953e-14

qMC 100 2.75487e-02 2.23273e-13
1,000 5.17365e-03 5.58996e-13
10,000 9.13809e-04 2.00144e-14

! Comparison is now made over N = 100 simulations
! Increased probability of extremely large and small deviations

from the Gauss-Hermite product rule with 75 nodes



Sensitivity Analysis

Initial tests show computed share values are very sensitive to θ̂:
! Most shares are very small (< 0.01)
! Only a few products in each market have large share values

and appear to determine parameter estimates
! Larger shares have larger variances with MC rules because

small shares are essentially 0
! Simple tests show that > 10% shares can move into/out of

top decile of computed share values for small changes in θ̂

! MC exacerbates this sensitivity



Solver Convergence

We compute point estimates:
! Five starting values for a variety of quadrature rules and draws
! Five MC data sets
! Used both KNITRO and SNOPT without significant change in

results
! ‘non-convergence’ means:

! Exceeded iteration limit of 100
! Solver aborts with an error message, e.g. the problem is

unbounded or it cannot make progress, such as all constraints
cannot be satisfied

! With MPEC, quadrature rules only affect result via constraint
that observed market shares equal calculated market shares



Solver Convergence

We find that the solver fails to converge for better approximations
of the integral:

! Polynomial-based rules never converge
! pMC and qMC rules produce different point estimates
! Different starting values produce different point estimates and

values of GMM objective function
! pMC and qMC do not converge for all starting values
! qMC produces better solutions than pMC:

! Different solutions with qMC very similar, unlike pMC
! Usually, requires fewer iterations to converge
! At least 3x faster and often 50x faster
! Produces different point estimates and converges more often

than pMC

! No rules converge for the data set 0005 which has abnormally
low variance vis-a-vis other MC data sets





Possible Causes of Non-convergence

Remark: Non-convergence corroborates the story of an
identification problem

Remark: Walker (2002) shows that taking too few draws will
mask an identification problem in mixed logit models

⇒ Niederreiter MC rule was clearly superior to pMC
! That SNOPT 7 is often superior to KNITRO supports this

story be SNOPT 7 was recently upgraded to handle rank
deficient systems better



Berry’s Mapping

Berry’s (1994) ‘contraction’ mapping drives estimation procedure:
! Used to invert calculated market shares Sjt = sjt (δ (ξ; θ1) ; θ2)

to obtain ξjt

! A contraction in theory (Berry, 1994), but does Berry’s
theorem hold for MC approximation?

! BLP use importance sampling but few other authors employ
variance reduction or qMC

! I met someone at the scanner data conference using Halton
draws, but he was only taking 30 draws....

! Conlon (2009) uses sparse grids – the only non-pMC BLP
paper I know of

! Expensive to compute even with Nevo’s transform
! Stopping criterion:

∥∥exp
[
δn+1]− exp [δn]

∥∥ < εInner



Convergence of Berry’s Mapping
We find:

! Berry’s mapping converges slowly at best, typically requiring
∼ 1, 000 iterations (not Gaussian!)

! Approximation of integral affects results:
! No convergence for any of the polynomial rules
! Convergence for pMC and qMC requires more iterations as

number of draws, R, increases
! Convergence statistics number of iterations until convergence

(N = 100, T = 20, J = 15, and R = 1, 000 draws for pMC
with !∞ norm and absolute tolerance of 10−14)

Statistic Value
mean 1133.70
median 1139
variance 2909.11
N 94

! Note: 6 of 100 simulations failed to converge!



Properties of the Mapping
We also investigate the properties of Berry’s mapping:

! Jacobian of mapping is nearly singular:
! Condition number ∼ 19
! A few eigenvalues near 1
! The majority close to 0

! We estimate rate of contraction, λ, using (Judd, 1998)

λ =
[∥∥∥exp

(
δk+2∆

)
− exp

(
δk+∆

)∥∥∥ /
∥∥∥exp

(
δk+∆

)
− exp

(
δk
)∥∥∥

]1/∆

! λ is always close to 1 and often exceeds it, i.e. the Berry’s
approximate mapping diverges

! Decreasing T and J slows convergence which should facilitate
convergence for a block diagonal system unless increasing size
of the system increases chance of finding a local basin of
attraction due to MC simulation error

! An identification problem?
! It appears that MC creates local regions of attraction where

incorrect solutions are possible



Remark: Berry’s mapping has trouble making progress for
larger share values (∆ = 25)



Future Research

Custom Monomial Rules:
! Given importance of mixed logit, use modern tools to create

custom rules which exploit structure of economic problems
such as mixed logit with normally-distributed taste shocks

! Ideal theory + homotopy
! For maximum efficiency and accuracy



Future Research

Convergence Issues:
! Is the approximate Berry mapping a contraction?
! Does the solution from Berry’s map agree with better methods

for solving non-linear equations such as homotopy?
! What drives non-convergence of solvers? Lack of

identification?
Identification:

! Under what conditions is BLP identified?
! When does poor integration mask identification problems in

BLP



Conclusion

There are several dangers to poor numerical approximations of
integrals:

! Inaccurate results
! Much greater computational costs
! Masking of identification problems

For multidimensional problems of moderate dimension:
! Monomial-rules and Sparse Grids Integration are best options

for integrals unless integrating over a very large number of
dimensions

! Polynomial-based rules provide superior efficiency and accuracy
Of the MC methods, qMC was significantly more efficient than
pMC and had much lower variance



Conclusion

Use of pMC in BLP models cause several problems:
! Inaccurate share values
! Different solutions for different starting values
! Non-convergence of solver and Berry’s mapping
! These problems are usually a sign of identification problems


