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Quasi-Monte Carlo Methods

• Observation:

— MC uses “random” sequences to satisfy i.i.d. premise of LLN

— Integration only needs sequences which are good for integration

— Integration does not care about i.i.d. property

• Idea of quasi-Monte Carlo methods

— Explicitly construct a sequence designed to be good for integration.

— Do not leave integration up to mindless random choices

• Pseudorandom sequence are not random.

— von Neumann: “Anyone who considers arithmetical methods of producing random digits is, of

course, in a state of sin.”

— “pseudo” means “false, feigned, fake, counterfeit, spurious, illusory”

— Neither LLN nor CLT apply

— Visual similarities are not mathematically relevant; for example, “optical regression” is not a

valid technique.

2



• Monte Carlo Propaganda

— Best deterministic methods converge at rate N−1/d

— MC converges at rate N−1/2 for any dimension d

— So, MC is far better than any deterministic scheme

• Observations about Monte Carlo Propaganda

— Implementations of MC use pseudorandom (hence, deterministic) sequences instead of random

numbers

— Implementations of MC converge at rate N−1/2 for any dimension d

— Therefore, there exist deterministic methods which converge at rate N−1/2 for any dimension

d.

— Therefore, under MC propaganda logic, 1/2 = 1/d for all d > 1
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• Questions

— What is rate of convergence when using pseudorandom numbers?

— Why do deterministic pseudorandom methods converge at rate N−1/2 in practice?

• Answer: MC propagandists pull a bait-and-switch

— They use worst-case analysis in “Best deterministic methods for integrating C0 functions con-

verge at rate N−1/d”

— They use probability-one criterion when they say “MC methods converge at rate N−1/2”

• Mathematical Facts:

— MC worst-case convergence rate is N−0 - no convergence - there is some sequence where MC

does not converge

— Some pseudorandommethods converge at N−1/2 for smooth functions in worst case; proofs are

number-theoretic.

— If f is Ck and periodic, then there are deterministic rules converging at rate N−k independent

of dimension

• Practical facts

— qMC has been used for many high-dimension (e.g., 360) problems.

— pMC asymptotics kick in early; qMC asymptotics take longer

— Therefore, pMC methods have finite sample advantages, not asymptotic advantages.

— “quasi-MC” is bad name since qMC methods have no connection to probability theory
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Equidistributed Sequences

Definition 1 A sequence {xj}
∞
j=1 ⊂ R is equidistributed over [a, b] if

lim
n→∞

b− a

n

n∑
j=1

f(xj) =

∫ b

a

f(x) dx (9.1.1)

for all Riemann-integrable f(x). More generally, a sequence {xj}∞j=1 ⊂ D ⊂ Rd is equidistributed over

D iff

lim
n→∞

μ(D)

n

n∑
j=1

f(xj) =

∫
D

f(x) dx (9.1.2)

for all Riemann-integrable f(x) : Rd → R, where μ(D) is the Lebesgue measure of D.

• Examples:

— 0, 1/2, 1, 1/4, 3/4, 1/8, 3/8, 5/8, 7/8, etc., is not equidistributed over [0, 1] since b−a
n

∑n
j=1 xj,

the approximation to
∫ 1

0 x dx, oscillates.

— Weyl sequence: for θ irrational

xn = {nθ}, n = 1, 2, · · · , (9.1.3)

where {x} is fractional part of x and defined by

{x} ≡ x−max{k ∈ Z | k ≤ x}

is equidistributed
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Figure 1: Weyl function
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First 1500 Weyl points
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1500 Points generated by LCM
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Table 9.1: Equidistributed Sequences in Rd

Name: Formula for xn:

Weyl
({

np
1/2
1

}
, · · · ,

{
np

1/2
d

})
Haber

({
n(n+1)

2 p
1/2
1

}
, · · · ,

{
n(n+1)

2 p
1/2
d

})
Niederreiter

({
n 21/(d+1)

}
, · · · ,

{
n 2d/(d+1)

})
Baker ({ner1} , · · · , {n erd}), rj rational and distinct

• MC vs qMC

— qMC are not serially uncorrelated

— Similar iterations for Weyl since xn+1 = (xn + θ)mod 1, but slope term is 1, not some big

number.
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Discrepancy

We want measures of deviation from uniformity for sets of points

Definition 2 The discrepancy DN of the set X ≡ {x1, · · · , xN} ⊂ [0, 1] is

DN(X) = sup
0≤a<b≤1

|
card([a, b] ∩X)

N
− (b− a)|.

Definition 3 If X is a sequence x1, x2, · · · ⊂ [0, 1], then DN(X) is DN(X
N) where XN = {xj ∈ X |

j = 1, · · · , N}.
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• Small discrepancy sets

— On [0, 1], the set with minimal DN is
{

1
N+1,

2
N+1, · · · ,

N
N+1

}
— Discrepancy of lattice point set

Ud,m =

{(
2m1 − 1

2m
, · · · ,

2md − 1

2m

)
| 1 ≤ mj ≤ m, j = 1, · · · , d

}

is O(m−1) = O
(
N−1/d

)
— Star discrepancy of N random points is O(N−1

2(log logN)1/2), a.s.

— Roth (1954) and Kuipers and Niederreiter (1974):

D∗
N > 2−4d ((d− 1) log 2)(1−d)/2 N−1 (logN)(d−1)/2. (9.2.1)

which is much lower than the Chung-Kiefer result on randomly generated point sets.

— The Halton sequence in Id has discrepancy

DN <
d

N2
+

1

N

d∏
j=1

(
pj − 1

2 log pj
logN +

pj + 1

2

)
(9.2.4)

∼
(logN)d

N
≤ O

(
N−1+ε

)

— Bound not good for moderate N and large d.
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Variation and Integration

Theorem 4 The total variation of f , V (f), on [0, 1] is

V (f) = sup
n

sup
0≤x0<x1<···<xn≤1

n∑
j=1

|f(xj)− f(xj−1)|

Theorem 5 (Koksma) If f has bounded total variation, i.e., V (f) < ∞, on I, and the sequence

xj ∈ I, j = 1, · · · , N , has discrepancy D∗
N , then∣∣∣∣∣∣N

−1
N∑
j=1

f(xj)−

∫ 1

0

f(x) dx

∣∣∣∣∣∣ ≤ D∗
N V (f) (9.2.5)

Can generalize variation to multivariate functions, V HK(f).

Theorem 6 (Hlawka) If V HK(f) is finite and {xj}Nj=1 ⊂ Id has discrepancy D∗
N , then

|
1

N

N∑
j=1

f(xj)−

∫
Id
f(x) dx |≤ V HK(f)D∗

N .

Product rules use lattice sets, which have discrepancy O
(
N−1/d

)
, not as good as some other sets

with discrepancy O
(
N−1+ε

)
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Monte Carlo versus Quasi-Monte Carlo

Table 9.2: Integration Errors for
∫
Id d

−1
∑d

j=1 | 4xj − 2 | dx

N(1000s) MC Weyl Haber Niederreiter

d = 10:

1 1(-3) 3(-4) 4(-4) 4(-4)

10 2(-4) 6(-5) 1(-3) 3(-5)

100 1(-3) 7(-6) 2(-4) 2(-6)

1000 4(-5) 6(-7) 2(-4) 2(-7)

d = 40:

1 3(-3) 4(-4) 3(-3) 2(-4)

10 3(-4) 6(-5) 1(-3) 2(-6)

100 4(-6) 5(-6) 3(-4) 9(-6)

1000 1(-4) 6(-7) 1(-5) 4(-7)
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Table 9.3: Integration Errors for
∫
Id Π

d
j=1

(
π
2 sin πxj

)
dx

N(1000s) MC Weyl Haber Niederreiter

d = 10:

1 1(-2) 6(-2) 8(-2) 9(-3)

10 3(-2) 8(-3) 5(-3) 5(-4)

100 9(-3) 2(-3) 1(-3) 6(-4)

1000 2(-3) 3(-5) 6(-3) 2(-4)

d = 40:

1 4(-1) 5(-1) 5(-2) 7(-1)

10 2(-1) 4(-1) 4(-1) 8(-2)

100 1(-2) 2(-1) 3(-3) 5(-2)

1000 3(-2) 2(-1) 3(-2) 4(-3)
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Fourier Analytic Methods

• Consider
∫ 1
0 cos 2πxdx = 0 and its approximation N−1

∑N
n=1 cos 2πxn

— Choose xn = {nα}, a Weyl sequence

— Periodicity of cosx implies cos 2π{nα} = cos 2πnα

— Periodicity of cos 2πx implies Fourier series representation

cos 2πx =
1

2
(e2πix + e−2πix)

— Error analysis: error is approximation, and

1
N

∑N
n=1

1
2(e

2πinα + e−2πinα)

= 1
2N

∑N
n=1

(
e2πiα

)n
+ 1

2N

∑N
n=1

(
e−2πiα

)n

≤ 1
2N

(∣∣∣e2πiNα−1
e2πiα−1

∣∣∣ +
∣∣∣e−2πiNα−1
e−2πiα−1

∣∣∣)

≤ 1
2N

(
2

|e2πiα−1|
+ 2

|e−2πiα−1|

)
≤ C

N

(9.3.1)

for a finite C as long as e2πiα 
= 1, which is true for any irrational α.

— So, convergence rate is N−1.

— (9.3.1) applies to a finite sum of e2πikx terms; can be generalized to arbitrary Fourier series.
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• The following theorem summarizes results reported in book.

Theorem 7 Suppose, for some integer k, that f : [0, 1]d → R satisfies the following two conditions:

1. All partial derivatives

∂m1+ ···+mdf

∂xm1

1 · · · ∂x
md

d

, 0 ≤ mj ≤ k − 1, 1 ≤ j ≤ d

exist and are of bounded variation in the sense of Hardy and Krause, and

2. All partial derivatives

∂m1+ ···+mdf

∂xm1

1 · · · ∂xmd

d

, 0 ≤ mj ≤ k − 2, 1 ≤ j ≤ d

are periodic on [0, 1]d.

Then, the error in integrating f ∈ Ck with Korobov or Keast good lattice point set with sample size

N is O(N−k(lnN)kd).

• Key observation:

— If f is Ck we can find rules with O(N−k+ε) convergence.

— For smooth functions, there are deterministic rules which far outperform MC

— qMC asymptotics may not kick in until N is impractically large.
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Estimating Quasi-Monte Carlo Errors

• MC rules have standard errors

• Quasi-MC rules do not have standard errors

• Add “randomization” to construct standard errors

• Suppose

— For each β,

I(f)
.
= Q(f ;β)

— For β ∼ U [0, 1]

I(f) ≡

∫
D

f(x) dx = E{Q(f ;β)} (9.5.1)

— Then

Î ≡
1

m

m∑
j=1

Q(f ;βj) (9.5.2)

is an unbiased estimator of I(f) with standard error σÎ approximated by

σ̂2
Î
≡

∑m
j=1(Q(f ;βj)− Î)2

m− 1
(9.5.3)

• Example: Random shifts to Weyl rules, because if xj is equidistributed on [0, 1], then so is xj + β

for any random β.
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Conclusion

• All sampling methods use deterministic sequences

• Probability theory does not apply to any practical sampling scheme

• Pseudorandom schemes seem to have O
(
N−1/2

)
convergence; this is proven for LCM

• There are O
(
N−1

)
schemes for continuously differentiable functions - use equidistributional se-

quences

• There are O(N−k) schemes for Ck functions - use Fourier analytic schemes

• qMC methods have done well in some problems with hundreds of dimensions

• Pseudorandom sequences appear to have finite sample advantages for very high dimension problems
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