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Monte Carlo and Simulation Methods
e (Gaussian, monomial, and Newton-Cotes formulas

— use predetermined nodes
— aim at high accuracy

— need many nodes
e Sampling methods

— Generate a sequence of points
— Short sequence produces rough approximation

— Longer sequences produce better approximations
e Monte Carlo sampling methods

— Use law of large numbers “intuition”
— Order N~1/2 convergence
— Use probability theory to prove theorems

— Use number-theoretic methods to generate deterministic sequences which appear random



Monte Carlo Integration

e Probability theory

— If X; are i.i.d. r.v.’s, density ¢g(z), and support [0, 1], then

— If 02 is not known a priori, an unbiased estimator is

62 =(N—-1)" Z (X; — X)?



e LLN suggests Monte Carlo quadrature:
—If X ~ U|0, 1], then
1
1= [ fio)de = B{00))

— The crude Monte Carlo method makes N draws from U|0, 1], {z;},, and defines

N

W
1=1

(N — 1) EN: (f(gji) _ f)2

I

6'2

e | is a statistical estimate of fo x)dx

— ] is an unbiased estimate of fo f(x)dx

— The variance of the I estimate is

O'—N / dx—N102



Variance Reduction Techniques

e Monte Carlo estimates have high variance; need to reduce variance
e Antithetic Variates

— Induce negative correlation in f(x) values

— Form the estimate

ZQNZ (z;) + f(1 —ay)).

— If f is monotone, I, has smaller variance than crude estimate
e Control Variates

— Suppose @ is similar to f but easily integrated.
— The identity [ f = [ @+ [(f — ¢) reduces the problem to

+ a Monte Carlo integration of [(f — ¢)
+ plus the known integral [ .

— 1If cov (f, ) is large, variance is reduced



e Importance Sampling

— Sample f(z) where its value is most important

—If p(x) > 0, and folp(:c) dx = 1, then

I—/Olf(:c)d:c—/()l%p(x)d:c

— If x; is drawn with density p(x), then
N
-1 f ()
= —
N z:zl p(x
is an unbiased estimate of I, and variance of [ is
L[ S ( / )
— dx — f(z)dx :
N ( o plT) 0 @)
—1If f(x) > 0 and p(z) /fo x), then f(z) = I p(x) and ¢% = 0.

— Add constant B to make f (x) positive
— Aim: find a p(z) similar to f(x)

— Thin tails problem
+ In o2 formula, key term is f(z)*/p()
x if f(x)?/p(x) is large when p(z) is small, variance is large.

« Normal density often has thin tails problem



Pseudorandom Number Generation

e Random numbers are seldom used

— Possible methods

+ Flipping coins

* (Geiger counters measuring radioactivity
— Disadvantages

x Fxpensive given RA salaries

*x RA’s complain about radiation risk; now have legal rights
e Monte Carlo propagandists

— Use deterministic sequences

— Act as if they are random sequences



e Pseudorandom numbers are used instead

— They are deterministic sequences, X1 = f( Xk, Xp—1,Xr_2,...)
— They pass some randomness tests, such as

+* Unbiasedness N
1
N Z X =p=E{X}
k=1

x Zero serial correlation

N
0= Z (Xk — 1) Xt
k=1
* Runs tests

« Lehmer: “each term is unpredictable to the uninitiated and .. digits pass a certain number
of tests traditional with statisticians.”

— They fail Brock-Dechert-Scheinkman tests for randomness



Uniform Random Number Generation

e Linear congruential method (LCM):
Xitr1 = (aX) + ¢) modm (8.1.1)

— Will generate pseudorandom sequence if parameters chosen well
— Will eventually cycle; chose parameters to get long cycle
— Y, = (Xo,41, Xony2) is a pseudorandom two-dimensional set of points. Similar for R?

— LCM generators have fallen into disfavor since they lie on a finite set of hyperplanes.

k+1

O » X

1 k

Linear congruential method function



.
- ¢ o
* e ® (4
.:. (] ° ..:. .: d ... .. o ®
&: .' * 0 n $ ‘.’..... L < o. .
.
.r L4 ... M .... * .'...'% ®eo o ....: ° N S
. . . % : o © (28 o® oo % § %0 & :’ A .
. L Y o o . ° &0 ves ° ¢
v A o® ® P o *° . o M o *
o 00 @ o o ® . o s
o [ e o oo L] P . ® . ° i F “~
. o~ [ X % o o©° o° o ce oo
s ool s c e RO %
.0 o® > .°. ° 3 . ‘.0 ...0 o © ¢ ®® PR 34
o °? e @ $e * A . (3 .8. 4 A o.' -
- ® .0.' . °qe’,° * ° o eg®’ o %° ° ., *
% 0'. - L] .”..0 e ® ® .‘..o b $e ¢ o o [ J e o
. ® o o° e o rauliig S (] o o o o L] (X
Py 0. e * e © %C%em ol o0 o ¥ e’ o LS o % *
. ~0.. .o \. . . R . .:‘. e 8® . '. . Py .”. o o o LS o..o
RN jere i f o 0T Y RIS
o o N Y P .’0 o . . e ° e & o
. . og © o L ¢ o ° . ..'... ° ‘e
ol > e e . ° [ ad o % i 4 *
o &’ ‘.’b o0, * eve °*° o * » cey 3
N ¢ °e 'o. e ° S hd e ®* ® 4
o 3 o ° ®e o o® ..o'. [ 3 [ '.
.. .o o . ce %o © [ o ® ° .' ... ° ®
e o ‘l. ° _ o . °® ° . d o, e
A ..'. '. Se ° ... e ®g ° s.o: e [ L
. oo ® o % ¢ .°‘ ¢ b ~0. ee ¢ ‘.
° ... ~.~.‘... ..... ." e, @ .0... [ . . ©° .04
.: 0’ o® .‘oo.' . o o.......'; ' .... ® ‘. ’ ° c .
’.: . o ° : ° ‘.. 0.’0 oo ° .0..' ‘.. : .o
e ®°
hd o:.. 0’:3.. * ‘:000 .:'. .o"'.o'..’ oo : 00.'0.0.
b S 0 o LY o ®o ° .~ s © . L 4
'S ° ° oo L 3 .” [ 2 [ ] (]
oo ® ' oo * o o s o oo 0’ *
o © 0® ®o° '.'. ..'.. ° O.: .0....' hd 0.8 0
Y 4 o, ° 0% o" Y3 $ .o ‘.. g
e e. b L4 e 3 ’ hd >l
- ° .'...0 Ce * S S .. d
! o' . . . ..o.l P .
o .% o PO - i N ® &
| : Po o Dl ° .'o. L)
¢ b 'o.‘.o. ° o.: o ’. * 0. o: o
. .
ML U ot
'y L 4

oints generated by L
y LCM



e Nonlinear schemes:

— MPRNG: an example of LCM plus “random” shifts.
— Xk_|_1 = f(Xk) mod m

— Fibonacci generator X = (Xj_1 + Xj_2) mod.m. This sequence has a number of poor prop-
erties. In particular, if X;_; and X,_, are small relative to m, so will be Xj.

— The Fibonacci-like scheme
Xi = (Xj_24 - Xj_55) mod2* (8.1.2)

has a period ~ 10%° and passes many randomness tests.



Nonuniform Random Number Generation

e Need to generate nonuniform random numbers

e Inversion:

— Suppose X has distribution F(x)
— Then F~Y(U) has distribution F(z)

— To approximate X, we compute 3, = F~!(x;) where x;, is a uniform pseudorandom sequence
e Normal random variables: A special method

— Suppose Uy and Uy ~ U|0, 1]
— Then X7, X5 ~ N(0, 1) are independent where

X1 = cos(2nUy)v/—2In Uy,

8.1.3
Xy =sin(2rUy)v/—2InUs, ( )



Mathematical Justification of Using pseudo-Random Numbers

e Probability theory produces theorems about Monte Carlo methods

e Probability theorems do not apply to deterministic sequences such as pseudo-Monte Carlo se-
quences

e What is the connection?

— Probability theory tells us that there are many sequences of numbers that will have certain
statistical properties and successfully integrate functions

— The existence of such sequences encourages us to search for them

— The literature on random number generators engages in this search, and has found several
sequences that do well for a finite initial segment

e The only proof of the validity of a random generator is the computational properties we learn from
computing it.

e This is not theorem proving; it is more like experimental mathematics!!!



Stochastic Approximation
e Consider
min Fz{g(x, Z)}, (8.4.1)

where 7 is a random variable.
e Conventional methods are impractical for empirical problems, such as
min Bz{9(8, X, 2))
where 3 are parameters, X is data, and Z is random

— Too costly - curse of dimensionality

— High-accuracy methods are not necessary in empirical problems since X data is noisy.
e Econometricians frequently fix S, and minimize ) |, ¢ g(8, X, 2).

e Stochastic approrimation is designed to deal with such problems.

— Begin with initial guess z!.

— Draw z!

— g.(z%, 21) is an unbiased estimate of the gradient f,(z!)
— Steepest descent method would change guess by —\; f,(z!) for some A; > 0.

— The stochastic gradient method executes the iteration

" = 2h — Apgo (2, 25, (8.4.2)

where {2} is a sequence of i.i.d. draws from Z and ), is a changing step size.



Theorem 1 Suppose that f is C%. If A, — 0, S50, A = 00, and > 1o A\; < 00, then the se-
quence x* generated by the stochastic gradient method, (8.4.2), confinded to U will almost surely have
a subsequence that converges to a point either on OU or at a (possibly local) minimum of f.

e Example:

— min,ep ) E{(Z — x)*}, Z ~ U0, 1], with solution z = 0.5
— Let )\k: = 1/]€

— (8.4.2) becomes

2
Tyl = Tk + %<Z]{; — a:k), (843)

Table 8.1: Statistics of (4.3) for 25 Runs
Iterate Average x; Standard Deviation

1 37D 298
10 008 143
100 A87 029
200 499 026
500 496 144

1000 001 010



Standard Optimization Methods with Simulated Objectives

e Consider optimization problem for some random variable Z:
min E{g(e, 2)} = f(z) (85.1)
HAS
— For many problems, the objective f(x) and its derivatives can be computed only with nontrivial

€Irror.

— When solving problems of the form (8.5.1) we need to determine how well we need to approxi-
mate the integral.

— We next consider optimization approaches that use simulation ideas.

e Idea: take a sample of Z of size N, and replace F{g(x,Z)} in (8.5.1) with its sample mean
N
% Zz’:l g<$7 ZZ)

e For example, suppose that we want to solve

min E{(Z — x)*}, (8.5.2)
z€[0,1]

where Z ~ U|0, 1].

To solve (8.5.2), we take, say, three draws from U0, 1]; suppose they are 0.10, 0.73, and 0.49. We
then minimize the sample average of (Z — z)?,

1
m[g)nl] §(<0-10 — )% 4 (0.73 — 2)* + (0.49 — z)?). (8.5.3)
xrel|l,

The solution to (8.5.3) is 0.43, a rough approximation of the true solution to (8.5.2) of 0.5.



e Simple portfolio problem. u(c) = —e™¢; safe return is R = 1.01; risky asset has return Z ~ N(u, o?)
with = 1.06 and 02 = 0.04. Portfolio problem is

max —F{e”(ImwErw2)y (8.5.4)

w

e Optimal w, denoted w*, and equals 1.25.

e Stochastic optimization uses Monte Carlo integration to evaluate the integral objective.

— Take N draws of Z ~ N(u,0?), and replace (8.5.4) by

max — — Z (1—w)R+wZ;) (855)

— Solution to (8.5.5) is w*; errors depend on N

Table 8.2: P(l)rtfoho Choice via Monte Carlo
Zz L u(ci) W

Standard Standard

N mean deviation mean deviation

100 -1.039440 .021362 1.2496 4885

1000 -1.042647  .007995 1.2870 1714

10,000 -1.041274  .002582 1.2505 0536

e Note: error in computing w* is ten to twenty times larger than error in computing an expectation.



Estimating Quality of MC procedures

e Suppose that you have a function
y=f(z)

which is computed by a procedure which of the form
Y =F(x,7)
where

— x are inputs (such as data)
— gy is the true answer given inputs x

— 7 is a set of random draws

1/2

— The variance of the error, Y — y, goes to zero like N~/ as the NN, cardinality of Z, goes to

infinity

e This is structure of many estimation procedures and stochastic programming methods.



e Question: How can we tell if the random variable Y is a good estimate of the the true y?

e Answer: Use Monte Carlo to estimate the mean and variance of the error Y — y.

— Choose a number of repititions, K.
— Construct K independent sets 7, Z;, i1 =1,.... K
— Compute V; = F(x,7;), i=1,... K

— Compute sample mean and variance of the set {Y;|i =1, ..., K'}
e Econometrics application

— Need to distinguish between sample noise and noise from MC errors.

— The standard error measures only sample noise, and is a r.v. if you use MC methods; therefore,
you need to also compute the variance of the estimate of the standard error!!

— Why is this not done? Because it makes “sample fishing” more difficult?



