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Monte Carlo and Simulation Methods

• Gaussian, monomial, and Newton-Cotes formulas

— use predetermined nodes

— aim at high accuracy

— need many nodes

• Sampling methods

— Generate a sequence of points

— Short sequence produces rough approximation

— Longer sequences produce better approximations

• Monte Carlo sampling methods

— Use law of large numbers “intuition”

— Order N−1/2 convergence

— Use probability theory to prove theorems

— Use number-theoretic methods to generate deterministic sequences which appear random
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Monte Carlo Integration

• Probability theory

— If Xi are i.i.d. r.v.’s, density q(x), and support [0, 1], then

X̄≡ 1

N

N∑
i=1

Xi

lim
N→∞

1

N

N∑
i=1

Xi=

∫ 1

0

xq(x) dx, a.s.

var

(
1

N

N∑
i=1

Xi

)
=
σ2
x

N

— If σ2
x is not known a priori, an unbiased estimator is

σ̂2
x ≡ (N − 1)−1

N∑
i=1

(Xi − X̄)2
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• LLN suggests Monte Carlo quadrature:

— If X ∼ U [0, 1], then

I =

∫ 1

0

f(x) dx = E {f(X)}

— The crude Monte Carlo method makes N draws from U [0, 1], {xi}Ni=1, and defines

Î≡ 1

N

N∑
i=1

f(xi)

σ̂2=(N − 1)−1
N∑
i=1

(
f(xi)− Î

)2

• Î is a statistical estimate of
∫ 1

0 f(x) dx

— Î is an unbiased estimate of
∫ 1

0 f(x) dx

— The variance of the Î estimate is

σ2
Î
= N−1

∫ 1

0

(f(x)− I)2 dx = N−1σ2

4



Variance Reduction Techniques

• Monte Carlo estimates have high variance; need to reduce variance

• Antithetic Variates

— Induce negative correlation in f(x) values

— Form the estimate

Î =
1

2N

N∑
i=1

(f(xi) + f(1− xi)) .

— If f is monotone, I, has smaller variance than crude estimate

• Control Variates

— Suppose ϕ is similar to f but easily integrated.

— The identity
∫
f =

∫
ϕ+

∫
(f − ϕ) reduces the problem to

∗ a Monte Carlo integration of
∫
(f − ϕ)

∗ plus the known integral
∫
ϕ.

— If cov (f, ϕ) is large, variance is reduced
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• Importance Sampling

— Sample f(x) where its value is most important

— If p(x) > 0, and
∫ 1

0 p(x) dx = 1, then

I =

∫ 1

0

f(x) dx =

∫ 1

0

f(x)

p(x)
p(x) dx

— If xi is drawn with density p(x), then

Î =
1

N

N∑
i=1

f(xi)

p(xi)

is an unbiased estimate of I, and variance of Î is

σ2
Î
=

1

N

(∫ 1

0

f(x)2

p(x)
dx−

(∫ 1

0

f(x) dx

)2
)
.

— If f(x) > 0 and p(x) = f(x)/
∫ 1

0 f(x), then f(x) = I p(x) and σ2
Î
= 0.

— Add constant B to make f(x) positive

— Aim: find a p(x) similar to f(x)

— Thin tails problem

∗ In σ2
Î
formula, key term is f(x)2/p(x)

∗ if f(x)2/p(x) is large when p(x) is small, variance is large.

∗ Normal density often has thin tails problem
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Pseudorandom Number Generation

• Random numbers are seldom used

— Possible methods

∗ Flipping coins

∗ Geiger counters measuring radioactivity

— Disadvantages

∗ Expensive given RA salaries

∗ RA’s complain about radiation risk; now have legal rights

• Monte Carlo propagandists

— Use deterministic sequences

— Act as if they are random sequences

7



• Pseudorandom numbers are used instead

— They are deterministic sequences, Xk+1 = f(Xk, Xk−1,Xk−2, ...)

— They pass some randomness tests, such as

∗ Unbiasedness
1

N

N∑
k=1

Xk = μ ≡ E{X}

∗ Zero serial correlation

0 =
N∑
k=1

(Xk − μ)Xk+1

∗ Runs tests

∗ Lehmer: “each term is unpredictable to the uninitiated and .. digits pass a certain number

of tests traditional with statisticians.”

— They fail Brock-Dechert-Scheinkman tests for randomness
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Uniform Random Number Generation

• Linear congruential method (LCM):

Xk+1 = (aXk + c) modm (8.1.1)

— Will generate pseudorandom sequence if parameters chosen well

— Will eventually cycle; chose parameters to get long cycle

— Yn ≡ (X2n+1, X2n+2) is a pseudorandom two-dimensional set of points. Similar for Rd

— LCM generators have fallen into disfavor since they lie on a finite set of hyperplanes.

Linear congruential method function
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1500 Points generated by LCM
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• Nonlinear schemes:

— MPRNG: an example of LCM plus “random” shifts.

— Xk+1 = f(Xk) modm

— Fibonacci generator Xk = (Xk−1 +Xk−2) mod.m. This sequence has a number of poor prop-

erties. In particular, if Xk−1 and Xk−2 are small relative to m, so will be Xk.

— The Fibonacci-like scheme

Xk = (Xk−24 ·Xk−55) mod232 (8.1.2)

has a period ∼ 1025 and passes many randomness tests.
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Nonuniform Random Number Generation

• Need to generate nonuniform random numbers

• Inversion:

— Suppose X has distribution F (x)

— Then F−1(U) has distribution F (x)

— To approximate X, we compute yk = F−1(xk) where xk is a uniform pseudorandom sequence

• Normal random variables: A special method

— Suppose U1 and U2 ∼ U [0, 1]

— Then X1, X2 ∼ N(0, 1) are independent where

X1 = cos(2πU1)
√−2 lnU2 ,

X2 = sin(2πU1)
√−2 lnU2 ,

(8.1.3)
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Mathematical Justification of Using pseudo-Random Numbers

• Probability theory produces theorems about Monte Carlo methods

• Probability theorems do not apply to deterministic sequences such as pseudo-Monte Carlo se-

quences

• What is the connection?

— Probability theory tells us that there are many sequences of numbers that will have certain

statistical properties and successfully integrate functions

— The existence of such sequences encourages us to search for them

— The literature on random number generators engages in this search, and has found several

sequences that do well for a finite initial segment

• The only proof of the validity of a random generator is the computational properties we learn from

computing it.

• This is not theorem proving; it is more like experimental mathematics!!!
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Stochastic Approximation

• Consider

min
x

EZ{g(x, Z)}, (8.4.1)

where Z is a random variable.

• Conventional methods are impractical for empirical problems, such as

min
β

EZ{g(β,X,Z)}
where β are parameters, X is data, and Z is random

— Too costly - curse of dimensionality

— High-accuracy methods are not necessary in empirical problems since X data is noisy.

• Econometricians frequently fix S, and minimize
∑

z∈S g(β,X, z).

• Stochastic approximation is designed to deal with such problems.

— Begin with initial guess x1.

— Draw z1

— gx(x
1, z1) is an unbiased estimate of the gradient fx(x

1)

— Steepest descent method would change guess by −λ1fx(x
1) for some λ1 > 0.

— The stochastic gradient method executes the iteration

xk+1 = xk − λkgx(x
k, zk), (8.4.2)

where {zk} is a sequence of i.i.d. draws from Z and λk is a changing step size.
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Theorem 1 Suppose that f is C2. If λk → 0,
∑

∞

k=1 λk = ∞, and
∑

∞

k=1 λ
2
k < ∞, then the se-

quence xk generated by the stochastic gradient method, (8.4.2), confinded to U will almost surely have

a subsequence that converges to a point either on ∂U or at a (possibly local) minimum of f .

• Example:

— minx∈[0,1]E{(Z − x)2}, Z ∼ U [0, 1], with solution x = 0.5

— Let λk = 1/k

— (8.4.2) becomes

xk+1 = xk +
2

k
(zk − xk), (8.4.3)

Table 8.1: Statistics of (4.3) for 25 Runs

Iterate Average xk Standard Deviation

1 .375 .298

10 .508 .143

100 .487 .029

200 .499 .026

500 .496 .144

1000 .501 .010
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Standard Optimization Methods with Simulated Objectives

• Consider optimization problem for some random variable Z:

min
x∈U

E{g(x, Z)} = f(x) (8.5.1)

— For many problems, the objective f(x) and its derivatives can be computed only with nontrivial

error.

— When solving problems of the form (8.5.1) we need to determine how well we need to approxi-

mate the integral.

— We next consider optimization approaches that use simulation ideas.

• Idea: take a sample of Z of size N , and replace E{g(x, Z)} in (8.5.1) with its sample mean
1
N

∑N
i=1 g(x, Zi).

• For example, suppose that we want to solve

min
x∈[0,1]

E{(Z − x)2}, (8.5.2)

where Z ∼ U [0, 1].

• To solve (8.5.2), we take, say, three draws from U [0, 1]; suppose they are 0.10, 0.73, and 0.49. We

then minimize the sample average of (Z − x)2,

min
x∈[0,1]

1

3
((0.10− x)2 + (0.73− x)2 + (0.49− x)2). (8.5.3)

The solution to (8.5.3) is 0.43, a rough approximation of the true solution to (8.5.2) of 0.5.
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• Simple portfolio problem. u(c) = −e−c; safe return isR = 1.01; risky asset has returnZ ∼ N(μ, σ2)

with μ = 1.06 and σ2 = 0.04. Portfolio problem is

max
ω

−E{e−((1−ω)R+ωZ)}. (8.5.4)

• Optimal ω, denoted ω∗, and equals 1.25.

• Stochastic optimization uses Monte Carlo integration to evaluate the integral objective.

— Take N draws of Z ∼ N(μ, σ2), and replace (8.5.4) by

max
ω

− 1

N

N∑
i=1

e−((1−ω)R+ωZi). (8.5.5)

— Solution to (8.5.5) is ω̂∗; errors depend on N

Table 8.2: Portfolio Choice via Monte Carlo
N−1

∑N
i=1 u(ci) ω̂∗

Standard Standard

N mean deviation mean deviation

100 -1.039440 .021362 1.2496 .4885

1000 -1.042647 .007995 1.2870 .1714

10,000 -1.041274 .002582 1.2505 .0536

• Note: error in computing ω∗ is ten to twenty times larger than error in computing an expectation.
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Estimating Quality of MC procedures

• Suppose that you have a function

y = f (x)

which is computed by a procedure which of the form

Y = F (x, Z)

where

— x are inputs (such as data)

— y is the true answer given inputs x

— Z is a set of random draws

— The variance of the error, Y − y, goes to zero like N−1/2 as the N , cardinality of Z, goes to

infinity

• This is structure of many estimation procedures and stochastic programming methods.
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• Question: How can we tell if the random variable Y is a good estimate of the the true y?

• Answer: Use Monte Carlo to estimate the mean and variance of the error Y − y.

— Choose a number of repititions, K.

— Construct K independent sets Z, Zi, i = 1, ...,K

— Compute Yi = F (x, Zi) , i = 1, ...,K

— Compute sample mean and variance of the set {Yi|i = 1, ...,K}
• Econometrics application

— Need to distinguish between sample noise and noise from MC errors.

— The standard error measures only sample noise, and is a r.v. if you use MCmethods; therefore,

you need to also compute the variance of the estimate of the standard error!!

— Why is this not done? Because it makes “sample fishing” more difficult?
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