
PROJECTION METHODS FOR DYNAMIC MODELS

Kenneth L. Judd

Hoover Institution and NBER

June 28, 2006

1

Functional Problems

• Many problems involve solving for some unknown function
— Dynamic programming

— Consumption and investment policy functions

— Pricing functions in asset pricing models

— Strategies in dynamic games

• The projection method is a robust method for solving such problems

2

An Ordinary Differential Equation Example

• Consider the differential equation
y0 − y = 0, y(0) = 1, 0 ≤ x ≤ 3. (11.1.1)

• Define L
Ly ≡ y0 − y . (11.1.2)

— L is an operator mapping functions to functions; domain is C1 functions and range is C0.

— Define Y = {y(x)|y ∈ C1, y(0) = 1}
— (11.1.1) wants to find a y ∈ Y such that Ly = 0.

• Approximate functions: consider family

ŷ(x; a) = 1 +
nX

j=1

ajx
j. (11.1.3)

— An affine subset of the vector space of polynomials.

— Note that ŷ(0; a) = 1 for any choice of a, so ŷ(0; a) ∈ Y for any a.

• Objective: find a s.t. ŷ(x; a) “nearly” solves differential equation (11.1.1).

3

• Define residual function

R (x; a) ≡ Lŷ = −1 +
nX

j=1

aj(jx
j−1 − xj) (11.1.4)

— R (x; a) is deviation of Lŷ from zero, the target value.

— A projection method adjusts a until it finds a “good” a that makes R(x; a) “nearly” the zero
function.

— Different projection methods use different notions of “good” and “nearly.”

• Consider
ŷ(x; a) = 1 +

3X
j=1

ajx
j

• Least Squares:
— Find a that minimizes the total squared residual

min
a

Z 3

0

R(x; a)2 dx. (11.1.5)

4

• Method of moments:
— Idea: If R(x; a) were zero, then

R 3
0 R(x; a) f(x) dx = 0 for all f(x).

— Use low powers of x to identify a via projection conditions

0 =

Z 3

0

R(x; a)xj dx , j = 0, 1, 2. (11.1.9)

• Galerkin
— Idea: use basis elements, x, x2, and x3 in projection conditions

— Form projections of R against the basis elements

0 =

Z 3

0

R(x; a)xj dx , j = 1, 2, 3.

• Collocation
— Idea: If R(x; a) = 0 then it is zero at all x.

— Specify a finite set of X and choose a so that R(x; a) is zero x ∈ X. If X = {0, 3/2, 3}, the
uniform grid, this reduces to linear equations

• Chebyshev Collocation
— Idea: interpolation at Chebyshev points is best

— List the zeroes of T3(x) adapted to [0,3]

X =

½
3

2
(cos

π

6
+ 1),

3

2
,
3

2
(cos

5π

6
+ 1)

¾
5

• Solutions
Table 11.1: Solutions for Coefficients in (11.1.3)

Scheme: a1 a2 a3
Least Squares 1.290 -.806 .659

Galerkin 2.286 -1.429 .952
Chebyshev Collocation 1.692 -1.231 .821
Uniform Collocation 1.000 -1.000 .667

Optimal L2 1.754 -.838 .779

Table 11.2: Projection Methods Applied to (11.1.2): L2 errors of solutions
Uniform Chebyshev Least

n Collocation Collocation Squares Galerkin Best poly.
3 5.3(0) 2.2(0) 3.2(0) 5.3(-1) 1.7(-1)
4 1.3(0) 2.9(-1) 1.5(-1) 3.6(-2) 2.4(-2)
5 1.5(-1) 2.5(-2) 4.9(-3) 4.1(-3) 2.9(-3)
6 2.0(-2) 1.9(-3) 4.2(-4) 4.2(-4) 3.0(-4)
7 2.2(-3) 1.4(-4) 3.8(-5) 3.9(-5) 2.8(-5)
8 2.4(-4) 9.9(-6) 3.2(-6) 3.2(-6) 2.3(-6)
9 2.2(-5) 6.6(-7) 2.3(-7) 2.4(-7) 1.7(-7)
10 2.1(-6) 4.0(-8) 1.6(-8) 1.6(-8) 1.2(-8)

6

Simple Example: One-Sector Growth

• Consider

max
ct

∞X
t=1

βtu(ct)

kt+1 = f(kt)− ct

• Optimality implies that ct satisfies
u0(ct) = βu0(ct+1)f 0(kt+1)

• Problem: The number of unknowns ct, t = 1, 2, ... is infinite.
• Step 0: Express solution in terms of an unknown function

ct = C(kt) : consumption function

— Consumption function C(k) must satisfy the functional equation:

0=u0(C(k))− βu0(C(f(k)− C(k)))f 0(f(k)− C(k))

≡(N (C))(k)
— This defines the operator

N : C0+ → C0+

— Equilibrium solves the operator equation

0 = N (C)

13

• Step 1: Create approximation:
— Find bC ≡ nX

i=0

aik
i

which “nearly” solves
N (bC) = 0

— Convert an infinite-dimensional problem to a finite-dimensional problem in Rn

∗ No discretization of state space
∗ A form of discretization, but in spectral domain

• Step 2: Compute Euler equation error function:
R (k; �a) = u0(bC(k))− βu0(bC(f(k)− bC(k)))f 0(f(k)− bC(k))

14

• Step 3: Choose �a to make R(·;�a) “small” in some sense:
— Least-Squares: minimize sum of squared Euler equation errors

min
�a

Z
R(·;�a)2dk

— Galerkin: zero out weighted averages of Euler equation errors

Pi(�a) ≡
Z

R(k;�a)ψi(k)dk = 0, i = 1, · · · , n

for n weighting functions ψi(k).

— Collocation: zero out Euler equation errors at k ∈ {k1, k2, · · · , kn} :
Pi(�a) ≡ R(ki;�a) = 0 , i = 1, · · · , n

15

• Details of R ...dk computation:
— Exact integration seldom possible in nonlinear problems.

— Use quadrature formulas — they tell us what are good points.

— Monte Carlo — often mistakenly used for high—dimension integrals

— Number Theoretic methods — best for large dimension

• Details of solving �a:
— Jacobian, �P�a(�a), should be well-conditioned

— Newton’s method is quadratically convergent since it uses Jacobian

— Functional iteration and time iteration ignore Jacobian and are linearly convergent.

— Homotopy methods are almost surely globally convergent

— Least squares may be ill-conditioned (that is, be flat in some directions).

16

Bounded Rationality Accuracy Measure
Consider the one-period relative Euler equation error:

E(k) = 1− (u
0)−1 (βu0 (C (f(k)−C(k))) f 0 (f(k)−C(k)))

C(k)

• Equilibrium requires it to be zero.
• E(k) is measure of optimization error
— 1 is unacceptably large

— Values such as .00001 is a limit for people.

— E(k) is unit-free.

• Define the Lp, 1 ≤ p <∞, bounded rationality accuracy to be
log10 k E(k) kp

• The L∞ error is the maximum value of E(k).

Numerical Results

• Machine: Compaq 386/20 w/ Weitek 1167
• Speed: Deterministic case: < 15 seconds
• Accuracy: Deterministic case: 8th order polynomial agrees with 250,000—point discretization to
within 1/100,000.

17

General Projection Method

• Step 0: Express solution in terms of unknown functions
0 = N (h)

where the h(x) are decision and price rules expressing equilibrium dependence on the state x

• Step 1: Choose space for approximation:
— Basis for approximation for h:

{ϕi}∞i=1 ≡ Φ

— Norm:
h·, ·i : C0+ ×C0+ → R

basis should be complete in space of C0+ functions basis should be orthogonal w.r.t. h·, ·i norm
and basis should be easy to compute norm and basis should be “appropriate” for problem
norms are often of form hf, gi = RD f(x)g(x)w(x)dx for some w(x) > 0

— Goal: Find bh which “nearly” solves N (bh) = 0
bh ≡ nX

i=1

ai ϕi

— We have converted an infinite-dimensional problem to a problem in Rn

∗ No discretization of state space.
∗ Instead, discretize in a functional (spectral) domain.

18

— Example Bases:

∗ Φ = {1, k, k2, k3, · · · }
∗ Φ = {sin k, sin 2k, · · · }: Fourier — (periodic problems)
∗ ϕn = Tn (x): Chebyshev polynomials — (for smooth, nonperiodic problems)

∗ B-Splines (smooth generalizations of step and tent functions).
— Nonlinear generalization

∗ For some parametric form, Φ(x; a) bh(x; a) ≡ Φ(x; a)

∗ Examples:
· Neural networks
· Rational functions

— Goal: Find an bh ≡ Φ(x; a)

which “nearly” solves N (bh) = 0. Promising direction but tools of linear functional analysis
and approximation theory are not available.

19

• Step 2: Compute residual function:

R(·, a) = bN (bh) .
= N (bh) .

= N (h)
• Step 3: Choose �a so that R(·;�a) is “small” in h·, ·i.
— Alternative Criteria:

∗ Least-Squares
min
�a
hR(·;�a), R(·;�a)i

∗ Galerkin
Pi(�a) ≡ hR(·;�a), ϕii = 0, i = 1, · · · , n

∗ Method of Moments
Pi(�a) ≡

­
R(·;�a), ki−1® = 0 , i = 1, · · · , n

∗ Collocation
Pi(�a) ≡ R(ki;�a) = 0 , i = 1, · · · , n, ki ∈ {k1, k2, · · · , kn}

∗ Orthogonal Collocation (a.k.a. Pseudospectral)
Pi(�a) ≡ R(ki;�a) = 0 , i = 1, · · · , n, ki ∈ {k : ϕn(k) = 0}

20

• Details of h·, ·i computation:
— Exact integration seldom possible in nonlinear problems.

— Use quadrature formulas — they tell us what are good points.

— Monte Carlo — often mistakenly used for high—dimension integrals

— Number Theoretic methods — best for large dimension

• Details of solving �a:
— Jacobian, �P�a(�a), should be well-conditioned.

— Newton’s method is quadratically convergent since it uses Jacobian; functional iteration (e.g.,
parameterized expectations) and time iteration ignore Jacobian and are linearly convergent.

— If Φ is orthogonal w.r.t. h·, ·i, then Galerkin method uses orthogonal projections, helping with
conditioning.

— Least squares uses ¿
R,

∂R

∂ai

À
= 0

projection conditions, which may lead to ill-conditioning.

21

Coefficients of Solution

• Theoretical predictions
— Approximation theory says that the Chebyshev coefficients should fall rapidly ifC(k) is smooth.

— Orthogonal basis should imply that coefficients do not change as we increase n.

• Table 16.1 verifies these predictions.
Table 16.1: Chebyshev Coefficients for Consumption Function

k n = 2 n = 5 n = 9 n = 15

1 0.0589755899 0.0600095844 0.0600137797 0.0600137922
2 0.0281934398 0.0284278730 0.0284329464 0.0284329804
3 −0.0114191783 −0.0113529374 −0.0113529464
4 0.0007725731 0.0006990930 0.0006988353
5 −0.0001616767 −0.0001633928 −0.0001634209
6 0.0000427201 0.0000430853
7 −0.0000123570 −0.0000122160
8 0.0000042498 0.0000036367
9 −0.0000011464 −0.0000011212
10 0.0000003557
11 −0.0000001147
12 0.0000000370

Each entry is the coefficient of the k ’th Chebyshev polynomial (over the interval [.333, 1.667]) in the n-term approximation of the consumption

policy function in (4.3) for the case discussed in Section 4.2.

31

Errors in Consumption Policy Function

• “Truth” computed by a 1,000,000 state discrete approximation
• “True solution” also has some error because of discretization
• Table 16.2 displays difference between approximations and “truth”

Table 16.2: Policy Function Errors
k y c n = 20 n = 10 n = 7 n = 4 n = 2

0.5 0.1253211 0.1010611 1(-7) 5(-7) 5(-7) 2(-7) 5(-5)
0.6 0.1331736 0.1132936 2(-6) 1(-7) 1(-7) 2(-6) 8(-5)
0.7 0.1401954 0.1250054 2(-6) 3(-7) 3(-7) 1(-6) 2(-4)
0.8 0.1465765 0.1362965 1(-6) 4(-7) 4(-7) 4(-6) 2(-4)
0.9 0.1524457 0.1472357 1(-6) 3(-7) 3(-7) 5(-6) 2(-4)
1.0 0.1578947 0.1578947 4(-6) 0(-7) 1(-7) 2(-6) 1(-4)
1.1 0.1629916 0.1683016 4(-6) 2(-7) 2(-7) 1(-6) 9(-5)
1.2 0.1677882 0.1784982 3(-6) 2(-7) 2(-7) 4(-6) 7(-6)
1.3 0.1723252 0.1884952 7(-7) 4(-7) 4(-7) 3(-6) 9(-5)

32

Stochastic Dynamic General Equilibrium

• Canonical RBC Model

max
ct

E

(∞X
t=1

βtu(ct)

)
kt+1 = θtf(kt)− ct

ln θt+1 = ρ ln θt + εt

• Euler equation
u0(ct) = βE{u0(ct+1)θt+1f 0(kt+1)|θt}

— Consumption is determined by recursive function

ct = C(kt, θt)

— C(k, θ) satisfies functional equation

0 = u0(C(k, θ))− βE
n
u0
³
C
³
θf(k)−C(k, θ), θ̃

´´
θ̃f 0(θf(k)−C(k, θ)) | θ

o
• Transform Euler equation into the more linear form

0 = C(k, θ)− (u0)−1
³
βE

n
u0
³
C(θf(k)− C(k, θ), θ̃)

´
×θ̃f 0 (θf(k)−C(k, θ)) | θ

o´
≡ N (C)(k, θ)

but this rewriting is not essential

33

• Approximate policy function

bC(k, θ; a)= nkX
i=1

nθX
j=1

aijψij(k, θ)

ψij(k, θ)≡Ti−1
µ
2
k − km
kM − km

− 1
¶
Tj−1

µ
2
θ − θm
θM − θm

− 1
¶

• Define integrand of expectations
I(k, θ, a, z) = u0

³ bC ³θf(k)− bC(k, θ; a), eσzθρ, a´´× eσzθρf 0
³
θf(k)− bC(k, θ; a)´π−12

• N
³ bC (·, ·; a)´ (k, θ) becomes

bC(k, θ; a)− (u0)−1Ãβ Z ∞
−∞

I(k, θ; a, z)
e−z

2/2

√
2π

dz

!
• Use Gauss-Hermite quadrature over z:Z ∞

−∞
I(k, θ, a, z)

e−z
2/2

√
2

dz
.
=

mzX
j=1

I
³
k, θ, a,

√
2zj
´
ωj

where ωj, zj are Gauss-Hermite quadrature weights and points.

• The computable residual function is

R(k, θ; a) = bC(k, θ; a)− (u0)−1
⎛⎝β

mzX
j=1

I
³
k, θ, a,

√
2zj
´
wj

⎞⎠ ≡ bN ³ bC(·, ·; a)´ (k, θ).
34

• Fitting Criteria:
— Collocation:

∗ Choose nk capital stocks, {ki}nki=1, and nθ productivity levels, {θi}nθj=1
∗ Find a such that

R(ki, θj; a) = 0, i = 1, · · · , nk, j = 1, · · · , nθ
— Galerkin:

∗ Compute the nknθ projections with Chebyshev weightw (k, θ) adapted to [km, kM]×[θm, θM]

Pij(a) ≡
Z kM

km

Z θM

θm

R(k, θ; a)ψij(k, θ)w (k, θ) dθdk

∗ Approximate projections by Gauss-Chebyshev quadrature

P̂ij(a) ≡
mkX
ck=1

mθX
cθ=1

R(ki, θj; a)ψij(kck, θcθ),

where

kcθ=km +
1

2
(kM − km)

³
z
mk
ck
+ 1
´
, ck = 1, . . . ,mk

θcθ=θm +
1

2
(θM − θm)

³
z
mθ
cθ
+ 1
´
, cθ = 1, . . . ,mθ

znc ≡cos
µ
(2i− 1)π
2n

¶
, c = 1, . . . , n

∗ Coefficients, a, are fixed by the system (solved by Newton’s method)
P̂ij(a) = 0, i = 1, · · · , nk, j = 1, · · · , nθ

35

• Bounded Rationality Accuracy Measure
— Consider the computable Euler equation error

E(k, θ) =
bN (bC(·, ·; a))(k, θ)bC(k, θ; a)

where bN uses some integration formula for E{·}; need not be the same as used in computing
R(k, θ;a). In fact, should use better one.

— Define the Lp, 1 ≤ p <∞, bounded rationality accuracy to be
log10 k E(k) kp

• Verify solution: Accept solution to projection equations, a, only if it passes tests
— Check stability

∗ For example, there should be positive savings at low k, high θ

∗ Could simulate capital stock process implied by bC(k, θ; a) to see if it has a stationary
distribution

— Check Euler equation errors

∗ E(k, θ) should be moderate for most (k, θ) points in [km, kM]× [θm, θM]
∗ E(k, θ) should be small for most (k, θ) points frequently visited

— If bC(k, θ; a) does not pass these tests, go back and use higher values for nk and nθ, and
increasemk,and mθ

36

• Numerical Results
— Basis: Chebyshev polynomials

— Initial guess: Linear rule through deterministic steady state and zero.

— k ∈ [.333, 2.000]
— Method: Collocation and Galerkin.

— Newton’s method solved projection equations, Pi(a) = 0, for a.

— Machine: Compaq 386/20 (old, but relative speeds are still valid)

— Speed: Stochastic case: under two minutes for a 60 parameter fit.

— Errors: 2% for 6 parameter fit, .1% for 60 parameter fit — about a penny loss per $10,000 dollar
expenditure

— Orth. poly. + orthog. collocation + Gaussian quad. + Newton outperforms naive methods by
factor of 10 or greater; exceeded Monte Carlo methods by factor of 100+.

— bC(k, θ; a) is an ε-equilibrium with small ε — a bounded rationality interpretation.

37

Table 17.1: log10 Euler Equation Errors
k E k∞ k E k1 k E k∞ k E k1

γ ρ σ (2, 2, 2, 2)∗ (4, 3, 4, 3)

−15.00 0.80 0.01 −2.13 −2.80 −3.00 −3.83
−15.00 0.80 0.04 −1.89 −2.54 −2.44 −2.87
−15.00 0.30 0.04 −2.13 −2.80 −2.97 −3.83
− 0.10 0.80 0.04 0.01 −1.19 −1.48 −2.22
− 0.10 0.30 0.04 0.18 −1.22 −1.63 −2.65

(7, 5, 7, 5) (7, 5, 20, 12)

−15.00 0.80 0.01 −4.28 −5.19 −4.43 −5.18
−15.00 0.80 0.04 −3.36 −4.00 −3.30 −3.95
−15.00 0.30 0.04 −4.24 −5.19 −4.38 −5.18
− 0.10 0.80 0.04 −2.50 −3.22 −2.60 −3.17
− 0.10 0.30 0.04 −3.43 −4.37 −3.49 −4.39

(10, 6, 10, 6) (10, 6, 25, 15)

−15.00 0.80 0.01 −5.48 −6.43 −5.61 −6.42
−15.00 0.80 0.04 −3.81 −4.38 −3.88 −4.37
−15.00 0.30 0.04 −5.45 −6.43 −5.57 −6.42
−0.10 0.80 0.04 −2.99 −3.68 −3.09 −3.64
−0.10 0.30 0.04 −5.17 −6.12 −5.23 −6.14
∗(nk, nθ, mk, mθ)

38

Table 17.2: Alternative Implementations
nk = 7, nθ = 5,mk = 7,mθ = 5

γ ρ σ Ga Pb Uc UPd

errore time error time error time error time
−15 .8 .04 −3.18 1:15 −2.13 :40 −3.06 1:05 −2.19 :44

.3 .01 −4.35 :11 −4.35 :52 −4.07 :08 −4.07 1:47
−.9 .8 .04 −3.43 :05 −3.43 :19 −3.42 :08 −3.42 :39

.3 .01 −4.03 :07 −4.03 :30 −3.76 :07 −3.76 1:10

nk = 10, nθ = 6,mk = 25,mθ = 15

−15 .8 .04 −3.87 4:20 −3.90 24:44 −3.90 3:41 −3.36 42:15
.3 .01 −5.68 2:19 −5.14 11:31 −5.49 2:14 −5.30 8:06

−.9 .8 .04 −4.00 1:31 −4.00 5:17 −4.01 1:31 −4.01 5:02
.3 .01 −5.40 1:23 −4.63 7:13 −5.25 1:20 −5.13 6:01

aChebyshev polynomial basis, Chebyshev zeroes used in evaluating fit
bOrdinary polynomial basis, Chebyshev zeroes used in evaluating fit
cChebyshev polynomial basis, uniform grid points
dOrdinary polynomial basis, uniform grid points
eerror measure is k E(k) k∞

39

Table 17.3: Tensor Product vs. Complete Polynomialsa

Tensor Product Complete Polynomials
γ ρ σ n = 3 n = 6 n = 10 n = 3 n = 6 n = 10

−15.0 .8 .04 −2.34b −3.26 −3.48 −1.89 −3.10 −4.06
:01c :13 14:21 :03 :07 1:09

−.9 .3 .10 −2.19 −3.60 −5.27 −2.14 −3.55 −5.22
:01 :08 1:21 :01 :05 :32

−.1 .3 .01 −1.00 −2.84 −5.21 −0.99 −2.83 −5.17
:01 :08 1:24 :01 :05 :35

b log10 k E k∞; c Computation time expressed in minutes :seconds.
• Tensor product cases used orthogonal collocation with nk = nθ = mk = mθ = n to identify
the n2 free parameters. Complete polynomial cases used Galerkin projections to identify the
1 + n+ n(n + 1)/2 free parameters..

• General Observations:
— Tensor product of degree n takes more time, but achieves higher accuracy

— For a specific level of accuracy, complete polynomial method is faster

40

Summary of Projection Method

• Can be used for problems with unknown functions
• Uses approximation ideas
• Utilizes standard optimization and nonlinear equation solving software
• Can exploit a priori information about problem
• Flexible: users choose from a variety of approximation, integration, and nonlinear equation-solving
methods

Table 17.4: Projection Method Menu
Approximation Integration Projections Equation Solver
Piecewise Linear Newton-Cotes Galerkin Newton

Polynomials Gaussian Rules Collocation Powell
Splines Monte Carlo M. of Moments Fixed-pt. iteration

Neural Networks Quasi-M.C. Subdomain Time iteration
Rational Functions Monomial Rules Homotopy
Problem Specific Asymptotics

49

• Unifies literature: Previous work can be classified and compared
Choices

Authors Approximation Integration Sol’n Method
Gustafson(1959) piecewise linear Newt.-Cotes S.A.-time it.
Wright-W.(1982,4) poly. (of cond. exp.) Newt.-Cotes S.A.-time it.
Miranda-H.(1986) polynomials Newt.-Cotes S.A.-learning
Coleman(1990) finite element Gaussian S.A.-time it.
den Haan-M.(1990) poly. (of cond. exp.) Sim. M.C. S.A.-learning
Judd(1992) orthogonal poly. Gaussian Newton

50

