PROJECTION METHODS FOR DYNAMIC MODELS

Kenneth L. Judd

Hoover Institution and NBER

June 28, 2006

Functional Problems

- Many problems involve solving for some unknown function
 - Dynamic programming
 - Consumption and investment policy functions
 - Pricing functions in asset pricing models
 - Strategies in dynamic games
- The projection method is a robust method for solving such problems

_

An Ordinary Differential Equation Example

• Consider the differential equation

$$y' - y = 0, \quad y(0) = 1, \quad 0 \le x \le 3.$$
 (11.1.1)

• Define L

$$Ly \equiv y' - y \ . \tag{11.1.2}$$

- -L is an operator mapping functions to functions; domain is C^1 functions and range is C^0 .
- Define $Y = \{y(x)|y \in C^1, y(0) = 1\}$
- (11.1.1) wants to find a $y \in Y$ such that Ly = 0.
- Approximate functions: consider family

$$\hat{y}(x;a) = 1 + \sum_{j=1}^{n} a_j x^j.$$
(11.1.3)

- An affine subset of the vector space of polynomials.
- Note that $\hat{y}(0; a) = 1$ for any choice of a, so $\hat{y}(0; a) \in Y$ for any a.
- Objective: find a s.t. $\hat{y}(x; a)$ "nearly" solves differential equation (11.1.1).

• Define residual function

$$R(x;a) \equiv L\hat{y} = -1 + \sum_{j=1}^{n} a_j (jx^{j-1} - x^j)$$
(11.1.4)

- -R(x;a) is deviation of $L\hat{y}$ from zero, the target value.
- A projection method adjusts a until it finds a "good" a that makes R(x;a) "nearly" the zero function.
- Different projection methods use different notions of "good" and "nearly."
- Consider

$$\hat{y}(x; a) = 1 + \sum_{j=1}^{3} a_j x^j$$

- Least Squares:
 - Find a that minimizes the total squared residual

$$\min_{a} \int_{0}^{3} R(x; a)^{2} dx. \tag{11.1.5}$$

• Method of moments:

- Idea: If R(x; a) were zero, then $\int_0^3 R(x; a) f(x) dx = 0$ for all f(x).
- Use low powers of x to identify a via projection conditions

$$0 = \int_0^3 R(x; a) x^j dx , \quad j = 0, 1, 2.$$
 (11.1.9)

• Galerkin

- Idea: use basis elements, x, x^2 , and x^3 in projection conditions
- Form projections of R against the basis elements

$$0 = \int_0^3 R(x; a) x^j dx , \quad j = 1, 2, 3.$$

• Collocation

- Idea: If R(x; a) = 0 then it is zero at all x.
- Specify a finite set of X and choose a so that R(x; a) is zero $x \in X$. If $X = \{0, 3/2, 3\}$, the uniform grid, this reduces to linear equations

• Chebyshev Collocation

- Idea: interpolation at Chebyshev points is best
- List the zeroes of $T_3(x)$ adapted to [0,3]

$$X = \left\{ \frac{3}{2} \left(\cos \frac{\pi}{6} + 1 \right), \frac{3}{2}, \frac{3}{2} \left(\cos \frac{5\pi}{6} + 1 \right) \right\}$$

• Solutions

Table 11.1: Solutions for Coefficients in (11.1.3)

 Scheme:
 a_1 a_2 a_3

 Least Squares
 1.290
 -.806
 .659

 Galerkin
 2.286
 -1.429
 .952

 Chebyshev Collocation
 1.692
 -1.231
 .821

 Uniform Collocation
 1.000
 -1.000
 .667

 Optimal L_2 1.754
 -.838
 .779

Table 11.2: Projection Methods Applied to (11.1.2): L_2 errors of solutions

	Uniform	Chebyshev	Least			
n	Collocation	Collocation	Squares	Galerkin	Best poly.	
3	5.3(0)	2.2(0)	3.2(0)	5.3(-1)	1.7(-1)	
4	1.3(0)	2.9(-1)	1.5(-1)	3.6(-2)	2.4(-2)	
5	1.5(-1)	2.5(-2)	4.9(-3)	4.1(-3)	2.9(-3)	
6	2.0(-2)	1.9(-3)	4.2(-4)	4.2(-4)	3.0(-4)	
7	2.2(-3)	1.4(-4)	3.8(-5)	3.9(-5)	2.8(-5)	
8	2.4(-4)	9.9(-6)	3.2(-6)	3.2(-6)	2.3(-6)	
9	2.2(-5)	6.6(-7)	2.3(-7)	2.4(-7)	1.7(-7)	
10	2.1(-6)	4.0(-8)	1.6(-8)	1.6(-8)	1.2(-8)	

Simple Example: One-Sector Growth

• Consider

$$\max_{c_t} \sum_{t=1}^{\infty} \beta^t u(c_t)$$
$$k_{t+1} = f(k_t) - c_t$$

• Optimality implies that c_t satisfies

$$u'(c_t) = \beta u'(c_{t+1}) f'(k_{t+1})$$

- Problem: The number of unknowns c_t , t = 1, 2, ... is infinite.
- Step 0: Express solution in terms of an unknown function

$$c_t = C(k_t)$$
: consumption function

- Consumption function C(k) must satisfy the functional equation:

$$0 = u'(C(k)) - \beta u'(C(f(k) - C(k)))f'(f(k) - C(k))$$

$$\equiv (\mathcal{N}(C))(k)$$

- This defines the operator

$$\mathcal{N}: C^0_+ \to C^0_+$$

- Equilibrium solves the operator equation

$$0 = \mathcal{N}(C)$$

. .

- **Step 1:** Create approximation:
 - Find

$$\widehat{C} \equiv \sum_{i=0}^{n} a_i k^i$$

which "nearly" solves

$$\mathcal{N}(\widehat{C}) = 0$$

- Convert an infinite-dimensional problem to a finite-dimensional problem in \mathbb{R}^n
 - * No discretization of state space
 - * A form of discretization, but in spectral domain
- Step 2: Compute Euler equation error function:

$$R(k; \vec{a}) = u'(\widehat{C}(k)) - \beta u'(\widehat{C}(f(k) - \widehat{C}(k)))f'(f(k) - \widehat{C}(k))$$

- Step 3: Choose \vec{a} to make $R(\cdot; \vec{a})$ "small" in some sense:
 - Least-Squares: minimize sum of squared Euler equation errors

$$\min_{\vec{a}} \int R(\cdot; \vec{a})^2 dk$$

- Galerkin: zero out weighted averages of Euler equation errors

$$P_i(\vec{a}) \equiv \int R(k; \vec{a}) \psi_i(k) dk = 0, \ i = 1, \dots, n$$

for n weighting functions $\psi_i(k)$.

- Collocation: zero out Euler equation errors at $k \in \{k_1, k_2, \dots, k_n\}$:

$$P_i(\vec{a}) \equiv R(k_i; \vec{a}) = 0 , i = 1, \cdots, n$$

- Details of $\int ...dk$ computation:
 - Exact integration seldom possible in nonlinear problems.
 - Use quadrature formulas they tell us what are *good* points.
 - Monte Carlo often mistakenly used for high-dimension integrals
 - Number Theoretic methods best for large dimension

• Details of solving \vec{a} :

- Jacobian, $\vec{P}_{\vec{a}}(\vec{a})$, should be well-conditioned
- Newton's method is quadratically convergent since it uses Jacobian
- Functional iteration and time iteration ignore Jacobian and are linearly convergent.
- Homotopy methods are almost surely globally convergent
- Least squares may be ill-conditioned (that is, be flat in some directions).

Bounded Rationality Accuracy Measure

Consider the one-period relative Euler equation error:

$$E(k) = 1 - \frac{(u')^{-1} (\beta u' (C (f(k) - C(k))) f' (f(k) - C(k)))}{C(k)}$$

- Equilibrium requires it to be zero.
- E(k) is measure of optimization error
 - -1 is unacceptably large
 - Values such as .00001 is a limit for people.
 - -E(k) is unit-free.
- Define the L^p , $1 \leq p < \infty$, bounded rationality accuracy to be

$$\log_{10} \parallel E(k) \parallel_p$$

• The L^{∞} error is the maximum value of E(k).

Numerical Results

- Machine: Compaq 386/20 w/ Weitek 1167
- Speed: Deterministic case: < 15 seconds
- Accuracy: Deterministic case: 8th order polynomial agrees with 250,000–point discretization to within 1/100,000.

General Projection Method

• Step 0: Express solution in terms of unknown functions

$$0 = \mathcal{N}(h)$$

where the h(x) are decision and price rules expressing equilibrium dependence on the state x

- **Step 1:** Choose space for approximation:
 - Basis for approximation for h:

$$\{\varphi_i\}_{i=1}^\infty \equiv \Phi$$

- Norm:

$$\langle \cdot, \cdot \rangle : C^0_+ \times C^0_+ \to R$$

basis should be complete in space of C^0_+ functions basis should be orthogonal w.r.t. $\langle \cdot, \cdot \rangle$ norm and basis should be easy to compute norm and basis should be "appropriate" for problem norms are often of form $\langle f, g \rangle = \int_D f(x)g(x)w(x)dx$ for some w(x) > 0

– Goal: Find \hat{h} which "nearly" solves $\mathcal{N}\left(\hat{h}\right)=0$

$$\widehat{h} \equiv \sum_{i=1}^{n} a_i \, \varphi_i$$

- We have converted an infinite-dimensional problem to a problem in \mathbb{R}^n
 - * No discretization of state space.
 - * Instead, discretize in a functional (spectral) domain.

- Example Bases:

$$*\Phi = \{1, k, k^2, k^3, \cdots\}$$

*
$$\Phi = \{\sin k, \sin 2k, \cdots\}$$
: Fourier – (periodic problems)

*
$$\varphi_n = T_n(x)$$
: Chebyshev polynomials – (for smooth, nonperiodic problems)

- * B-Splines (smooth generalizations of step and tent functions).
- Nonlinear generalization
 - * For some parametric form, $\Phi(x; a)$

$$\widehat{h}(x;a) \equiv \Phi(x;a)$$

- * Examples:
 - · Neural networks
 - · Rational functions
- Goal: Find an

$$\widehat{h} \equiv \Phi(x; a)$$

which "nearly" solves $\mathcal{N}(\hat{h}) = 0$. Promising direction but tools of linear functional analysis and approximation theory are not available.

• **Step 2:** Compute residual function:

$$R(\cdot, a) = \widehat{\mathcal{N}}(\widehat{h}) \doteq \mathcal{N}(\widehat{h}) \doteq \mathcal{N}(h)$$

- Step 3: Choose \vec{a} so that $R(\cdot; \vec{a})$ is "small" in $\langle \cdot, \cdot \rangle$.
 - Alternative Criteria:
 - * Least-Squares

$$\min_{\vec{a}} \langle R(\cdot; \vec{a}), R(\cdot; \vec{a}) \rangle$$

* Galerkin

$$P_i(\vec{a}) \equiv \langle R(\cdot; \vec{a}), \varphi_i \rangle = 0, i = 1, \cdots, n$$

* Method of Moments

$$P_i(\vec{a}) \equiv \langle R(\cdot; \vec{a}), k^{i-1} \rangle = 0 , i = 1, \dots, n$$

* Collocation

$$P_i(\vec{a}) \equiv R(k_i; \vec{a}) = 0 , i = 1, \dots, n, k_i \in \{k_1, k_2, \dots, k_n\}$$

* Orthogonal Collocation (a.k.a. Pseudospectral)

$$P_i(\vec{a}) \equiv R(k_i; \vec{a}) = 0 , i = 1, \dots, n, k_i \in \{k : \varphi_n(k) = 0\}$$

- Details of $\langle \cdot, \cdot \rangle$ computation:
 - Exact integration seldom possible in nonlinear problems.
 - Use quadrature formulas they tell us what are *good* points.
 - Monte Carlo often mistakenly used for high-dimension integrals
 - Number Theoretic methods best for large dimension
- Details of solving \vec{a} :
 - Jacobian, $\vec{P}_{\vec{a}}(\vec{a})$, should be well-conditioned.
 - Newton's method is quadratically convergent since it uses Jacobian; functional iteration (e.g., parameterized expectations) and time iteration ignore Jacobian and are linearly convergent.
 - If Φ is orthogonal w.r.t. $\langle \cdot, \cdot \rangle$, then Galerkin method uses orthogonal projections, helping with conditioning.
 - Least squares uses

$$\left\langle R, \frac{\partial R}{\partial a_i} \right\rangle = 0$$

projection conditions, which may lead to ill-conditioning.

_ .

Coefficients of Solution

- Theoretical predictions
 - Approximation theory says that the Chebyshev coefficients should fall rapidly if C(k) is smooth.
 - Orthogonal basis should imply that coefficients do not change as we increase n.
- Table 16.1 verifies these predictions.

Table 16.1: Chebyshev Coefficients for Consumption Function

		•		
n = 15	n = 9	n=5	n=2	k
0.0600137922	0.0600137797	0.0600095844	0.0589755899	1
0.0284329804	0.0284329464	0.0284278730	0.0281934398	2
-0.0113529464	-0.0113529374	-0.0114191783		3
0.0006988353	0.0006990930	0.0007725731		4
-0.0001634209	-0.0001633928	-0.0001616767		5
0.0000430853	0.0000427201			6
-0.0000122160	-0.0000123570			7
0.0000036367	0.0000042498			8
-0.0000011212	-0.0000011464			9
0.0000003557				10
-0.0000001147				11
0.0000000370				12

Each entry is the coefficient of the k'th Chebyshev polynomial (over the interval [.333, 1.667]) in the n-term approximation of the consumption policy function in (4.3) for the case discussed in Section 4.2.

~ .

Errors in Consumption Policy Function

- \bullet "Truth" computed by a 1,000,000 state discrete approximation
- "True solution" also has some error because of discretization
- Table 16.2 displays difference between approximations and "truth"

			_				
k	y	c	n = 20	n = 10	n = 7	n=4	n=2
0.5	0.1253211	0.1010611	1(-7)	5(-7)	5(-7)	2(-7)	5(-5)
0.6	0.1331736	0.1132936	2(-6)	1(-7)	1(-7)	2(-6)	8(-5)
0.7	0.1401954	0.1250054	2(-6)	3(-7)	3(-7)	1(-6)	2(-4)
0.8	0.1465765	0.1362965	1(-6)	4(-7)	4(-7)	4(-6)	2(-4)
0.9	0.1524457	0.1472357	1(-6)	3(-7)	3(-7)	5(-6)	2(-4)
1.0	0.1578947	0.1578947	4(-6)	0(-7)	1(-7)	2(-6)	1(-4)
1.1	0.1629916	0.1683016	4(-6)	2(-7)	2(-7)	1(-6)	9(-5)
1.2	0.1677882	0.1784982	3(-6)	2(-7)	2(-7)	4(-6)	7(-6)
1.3	0.1723252	0.1884952	7(-7)	4(-7)	4(-7)	3(-6)	9(-5)

Stochastic Dynamic General Equilibrium

• Canonical RBC Model

$$\max_{c_t} E \left\{ \sum_{t=1}^{\infty} \beta^t u(c_t) \right\}$$
$$k_{t+1} = \theta_t f(k_t) - c_t$$
$$\ln \theta_{t+1} = \rho \ln \theta_t + \varepsilon_t$$

• Euler equation

$$u'(c_t) = \beta E\{u'(c_{t+1})\theta_{t+1}f'(k_{t+1})|\theta_t\}$$

- Consumption is determined by recursive function

$$c_t = C(k_t, \theta_t)$$

 $-C(k,\theta)$ satisfies functional equation

$$0 = u'(C(k,\theta)) - \beta E\left\{u'\left(C\left(\theta f(k) - C(k,\theta), \tilde{\theta}\right)\right) \tilde{\theta} f'(\theta f(k) - C(k,\theta)) \mid \theta\right\}$$

• Transform Euler equation into the more linear form

$$0 = C(k, \theta) - (u')^{-1} \left(\beta E \left\{ u' \left(C(\theta f(k) - C(k, \theta), \tilde{\theta}) \right) \times \tilde{\theta} f' \left(\theta f(k) - C(k, \theta) \right) \mid \theta \right\} \right)$$

$$\equiv \mathcal{N}(C)(k, \theta)$$

but this rewriting is not essential

• Approximate policy function

$$\widehat{C}(k,\theta; \mathbf{a}) = \sum_{i=1}^{n_k} \sum_{j=1}^{n_\theta} a_{ij} \psi_{ij}(k,\theta)$$

$$\psi_{ij}(k,\theta) \equiv T_{i-1} \left(2 \frac{k - k_m}{k_M - k_m} - 1 \right) T_{j-1} \left(2 \frac{\theta - \theta_m}{\theta_M - \theta_m} - 1 \right)$$

• Define integrand of expectations

$$I(k,\theta, \mathbf{a}, z) = u' \left(\widehat{C} \left(\theta f(k) - \widehat{C}(k,\theta; \mathbf{a}), e^{\sigma z} \theta^{\rho}, \mathbf{a} \right) \right) \times e^{\sigma z} \theta^{\rho} f' \left(\theta f(k) - \widehat{C}(k,\theta; \mathbf{a}) \right) \pi^{-\frac{1}{2}}$$

• $\mathcal{N}\left(\widehat{C}\left(\cdot,\cdot;\mathbf{a}\right)\right)(k,\theta)$ becomes

$$\widehat{C}(k,\theta; \mathbf{a}) - (u')^{-1} \left(\beta \int_{-\infty}^{\infty} I(k,\theta; \mathbf{a}, z) \frac{e^{-z^2/2}}{\sqrt{2\pi}} dz \right)$$

• Use Gauss-Hermite quadrature over z:

$$\int_{-\infty}^{\infty} I(k, \theta, \mathbf{a}, z) \frac{e^{-z^2/2}}{\sqrt{2}} dz \doteq \sum_{j=1}^{m_z} I\left(k, \theta, \mathbf{a}, \sqrt{2}z_j\right) \omega_j$$

where ω_j, z_j are Gauss-Hermite quadrature weights and points.

• The computable residual function is

$$R(k,\theta; \mathbf{a}) = \widehat{C}(k,\theta; \mathbf{a}) - (u')^{-1} \left(\beta \sum_{j=1}^{m_z} I\left(k,\theta, \mathbf{a}, \sqrt{2}z_j\right) w_j \right) \equiv \widehat{\mathcal{N}}\left(\widehat{C}(\cdot, \cdot; \mathbf{a})\right) (k,\theta).$$

- Fitting Criteria:
 - Collocation:
 - * Choose n_k capital stocks, $\{k_i\}_{i=1}^{n_k}$, and n_{θ} productivity levels, $\{\theta_i\}_{j=1}^{n_{\theta}}$
 - * Find a such that

$$R(k_i, \theta_j; \mathbf{a}) = 0, \ i = 1, \dots, n_k, \ j = 1, \dots, n_{\theta}$$

- Galerkin:
 - * Compute the $n_k n_\theta$ projections with Chebyshev weight $w(k, \theta)$ adapted to $[k_m, k_M] \times [\theta_m, \theta_M]$

$$P_{ij}(\mathbf{a}) \equiv \int_{k_m}^{k_M} \int_{\theta_m}^{\theta_M} R(k, \theta; \mathbf{a}) \psi_{ij}(k, \theta) w(k, \theta) d\theta dk$$

* Approximate projections by Gauss-Chebyshev quadrature

$$\hat{P}_{ij}(\mathbf{a}) \equiv \sum_{\ell_k=1}^{m_k} \sum_{\ell_{\theta}=1}^{m_{\theta}} R(k_i, \theta_j; \ \mathbf{a}) \psi_{ij}(k_{\ell_k}, \theta_{\ell_{\theta}}),$$

where

$$k_{\ell_{\theta}} = k_m + \frac{1}{2}(k_M - k_m) \left(z_{\ell_k}^{m_k} + 1 \right), \ \ell_k = 1, \dots, m_k$$

$$\theta_{\ell_{\theta}} = \theta_m + \frac{1}{2}(\theta_M - \theta_m) \left(z_{\ell_{\theta}}^{m_{\theta}} + 1 \right), \ \ell_{\theta} = 1, \dots, m_{\theta}$$

$$z_{\ell}^n \equiv \cos \left(\frac{(2i - 1)\pi}{2n} \right), \ \ell = 1, \dots, n$$

* Coefficients, a, are fixed by the system (solved by Newton's method)

$$\hat{P}_{ij}(\mathbf{a}) = 0, \ i = 1, \dots, n_k, \ j = 1, \dots, n_{\theta}$$

~ . .

- Bounded Rationality Accuracy Measure
 - Consider the computable Euler equation error

$$E(k,\theta) = \frac{\widehat{\mathcal{N}}(\widehat{C}(\cdot,\cdot;\mathbf{a}))(k,\theta)}{\widehat{C}(k,\theta;\mathbf{a})}$$

where $\widehat{\mathcal{N}}$ uses some integration formula for $E\{\cdot\}$; need not be the same as used in computing $R(k,\theta;\mathbf{a})$. In fact, should use better one.

– Define the L^p , $1 \leq p < \infty$, bounded rationality accuracy to be

$$\log_{10} \parallel E(k) \parallel_p$$

- Verify solution: Accept solution to projection equations, a, only if it passes tests
 - Check stability
 - * For example, there should be positive savings at low k, high θ
 - * Could simulate capital stock process implied by $\widehat{C}(k,\theta; \mathbf{a})$ to see if it has a stationary distribution
 - Check Euler equation errors
 - * $E(k,\theta)$ should be moderate for most (k,θ) points in $[k_m,k_M]\times[\theta_m,\theta_M]$
 - * $E(k,\theta)$ should be small for most (k,θ) points frequently visited
 - If $\widehat{C}(k, \theta; \mathbf{a})$ does not pass these tests, go back and use higher values for n_k and n_{θ} , and increase m_k , and m_{θ}

• Numerical Results

- Basis: Chebyshev polynomials
- Initial guess: Linear rule through deterministic steady state and zero.
- $-k \in [.333, 2.000]$
- Method: Collocation and Galerkin.
- Newton's method solved projection equations, $P_i(\mathbf{a}) = 0$, for \mathbf{a} .
- Machine: Compaq 386/20 (old, but relative speeds are still valid)
- Speed: Stochastic case: under two minutes for a 60 parameter fit.
- Errors: 2% for 6 parameter fit, .1% for 60 parameter fit about a penny loss per \$10,000 dollar expenditure
- Orth. poly. + orthog. collocation + Gaussian quad. + Newton outperforms naive methods by factor of 10 or greater; exceeded Monte Carlo methods by factor of 100+.
- $-\widehat{C}(k,\theta; \mathbf{a})$ is an ε -equilibrium with small ε a bounded rationality interpretation.

~ _

Table 17.1: \log_{10} Euler Equation Errors

			$\parallel E \parallel_{\infty} \parallel E \parallel_{1}$	$\parallel E \parallel_{\infty} \parallel E \parallel_{1}$
γ	ho	σ	$(2, 2, 2, 2)^*$	(4, 3, 4, 3)
-15.00	0.80	0.01	-2.13 -2.80	-3.00 -3.83
-15.00	0.80	0.04	-1.89 -2.54	-2.44 -2.87
-15.00	0.30	0.04	-2.13 -2.80	-2.97 -3.83
- 0.10	0.80	0.04	0.01 -1.19	-1.48 -2.22
- 0.10	0.30	0.04	0.18 -1.22	-1.63 -2.65
			(7, 5, 7, 5)	(7, 5, 20, 12)
-15.00	0.80	0.01	-4.28 -5.19	-4.43 -5.18
-15.00	0.80	0.04	-3.36 -4.00	-3.30 -3.95
-15.00	0.30	0.04	-4.24 -5.19	-4.38 -5.18
-0.10	0.80	0.04	-2.50 -3.22	-2.60 -3.17
-0.10	0.30	0.04	-3.43 -4.37	-3.49 -4.39
			(10, 6, 10, 6)	(10, 6, 25, 15)
-15.00	0.80	0.01	-5.48 -6.43	-5.61 -6.42
-15.00	0.80	0.04	-3.81 -4.38	-3.88 -4.37
-15.00	0.30	0.04	-5.45 -6.43	-5.57 -6.42
-0.10	0.80	0.04	-2.99 -3.68	-3.09 -3.64
-0.10	0.30	0.04	-5.17 -6.12	-5.23 -6.14
$*(n_k, n_\theta)$	$, m_k,$	$m_{ heta})$		

Table 17.2: Alternative Implementations

$n_k = 7, n_\theta = 5, m_k = 7, m_\theta = 5$								
time								
:44								
1:47								
:39								
1:10								
42:15								
8:06								
5:02								
6:01								

^aChebyshev polynomial basis, Chebyshev zeroes used in evaluating fit

^bOrdinary polynomial basis, Chebyshev zeroes used in evaluating fit

^cChebyshev polynomial basis, uniform grid points

 $[^]d$ Ordinary polynomial basis, uniform grid points

^eerror measure is $\parallel E(k) \parallel_{\infty}$

Table 17.3: Tensor Product vs. Complete Polynomials^a

			Tens	sor Prod	duct	Con	nplete Po	olynomials
γ	ρ	σ	n=3	n = 6	n = 10	n=3	n = 6	n = 10
-15.0	.8	.04	-2.34^{b}	-3.26	-3.48	-1.89	-3.10	-4.06
			$:01^{c}$:13	14:21	:03	:07	1:09
9	.3	.10	-2.19	-3.60	-5.27	-2.14	-3.55	-5.22
			:01	:08	1:21	:01	:05	:32
1	.3	.01	-1.00	-2.84	-5.21	-0.99	-2.83	-5.17
			:01	:08	1:24	:01	:05	:35

^b $\log_{10} \parallel E \parallel_{\infty}$; ^c Computation time expressed in minutes :seconds.

• Tensor product cases used orthogonal collocation with $n_k = n_\theta = m_k = m_\theta = n$ to identify the n^2 free parameters. Complete polynomial cases used Galerkin projections to identify the 1 + n + n(n+1)/2 free parameters.

• General Observations:

- Tensor product of degree n takes more time, but achieves higher accuracy
- For a specific level of accuracy, complete polynomial method is faster

. ~

Summary of Projection Method

- Can be used for problems with unknown functions
- Uses approximation ideas
- Utilizes standard optimization and nonlinear equation solving software
- Can exploit a priori information about problem
- Flexible: users choose from a variety of approximation, integration, and nonlinear equation-solving methods

Table 17.4: Projection Method Menu

	J		
Approximation	Integration	Projections	Equation Solver
Piecewise Linear	Newton-Cotes	Galerkin	Newton
Polynomials	Gaussian Rules	Collocation	Powell
Splines	Monte Carlo	M. of Moments	Fixed-pt. iteration
Neural Networks	Quasi-M.C.	Subdomain	Time iteration
Rational Functions	Monomial Rules		Homotopy
Problem Specific	Asymptotics		

 \bullet Unifies literature: Previous work can be classified and compared

	Choices		
Authors	Approximation	Integration	Sol'n Method
Gustafson(1959)	piecewise linear	NewtCotes	S.Atime it.
Wright-W.(1982,4)	poly. (of cond. exp.)	NewtCotes	S.Atime it.
Miranda-H.(1986)	polynomials	NewtCotes	S.Alearning
Coleman(1990)	finite element	Gaussian	S.Atime it.
den Haan-M.(1990)	poly. (of cond. exp.)	Sim. M.C.	S.Alearning
Judd(1992)	orthogonal poly.	Gaussian	Newton