Dynamic Programming with Piecewise Linear Interpolation Dynamic Programming with Piecewise Linear
Interpolation
Kenneth Judd and Yongyang Cai
April 20, 2011
0.1 Piecewise Linear Interpolation
If Lagrange data $\{(x_i, v_i) : i = 1, ..., m\}$ is given, then its piecewise linear inter-Programming with Piecew

Interpolation

Kenneth Judd and Yongyang Cai

April 20, 2011

inear Interpolation

 $\hat{v}_i, v_i) : i = 1, ..., m\}$ is given, then its p
 $\hat{V}(x) = b_{j,0} + b_{j,1}x,$ if $x \in [x_j, x_{j+1}],$ be interpolation

by Judd and Yong

h Judd and Yong

h Judd and Yong

h Judd and Yong

terpolation
 $\text{tr}_1, \ldots, m\}$ is given
 $\text{tr}_i, 0 + b_{j,1}x, \quad \text{if } x \in$
 $b_{j,1} = \frac{v_{j+1} - v_j}{x_{j+1} - x_j}$ g with
olation
nd Yong
20, 2011
tion
} is given
if $x \in$
 $\frac{v_{j+1} - v_j}{x_{j+1} - x_j}$

Kenneth Judd and Yongyang Cai

April 20, 2011

0.1 Piecewise Linear Interpolation

polation is **0.1 Piecewise L**
If Lagrange data {(*x*
polation is
where
for $j = 1, \ldots, m - 1$.

$$
\hat{V}(x) = b_{j,0} + b_{j,1}x, \quad \text{if } x \in [x_j, x_{j+1}],
$$

where

Continuting with the Judd and Yongys

\nApril 20, 2011

\ninterpolation

\n
$$
= 1, \ldots, m
$$
 is given,

\n
$$
b_{j,0} + b_{j,1}x, \quad \text{if } x \in
$$

\n
$$
b_{j,1} = \frac{v_{j+1} - v_j}{x_{j+1} - x_j},
$$

\n
$$
b_{j,0} = v_i - b_{j,1}x_i,
$$

In the maximization step of numerical DP algorithms, one could directly solve the maximization problem tions v_i^t merical DP algori $u_t(x_i, a_i) + \beta \hat{V}$ (thr merical DP a
 $u_t(x_i, a_i) + \beta$
 $x^+ = g(x, a)$ In the maximization step of numerical DP algorithms, one could directly solve

maximization problem
 $v_i^t = \max_{a_i \in \mathcal{D}(x_i, t)} u_t(x_i, a_i) + \beta \hat{V}(x_i^+; \mathbf{b}^{t+1})$

are
 $x^+ = g(x, a)$

Problem: $\hat{V}(x; \mathbf{b}^{t+1})$ is not differ

$$
v_i^t = \max_{a_i \in \mathcal{D}(x_i, t)} u_t(x_i, a_i) + \beta \hat{V}(x_i^+; \mathbf{b}^{t+1})
$$

where

$$
x^+ = g(x, a)
$$

In the maximization step
the maximization problem
 $v_i^t = \max_{a_i \in \mathcal{C}}$
where
Problem: $\hat{V}(x; \mathbf{b}^{t+1})$ is
optimization problem for a.

0.2 Min-Function Approach \mathbf{u} -**I**
 v_i^t

The differentiability problem is solved as follows:

1-Function Approach

\nntiability problem is solved as follows:

\n
$$
v_i^t = \max_{a_i \in \mathcal{D}(x_i, t), y_{ik}, x_{ik}^+} u_t(x_i, a_i) + \beta y_i
$$
\n
$$
\text{s.t.} \quad x_i^+ = g(x_i, a)
$$
\n
$$
y_i \le b_{j,0}^{(t+1)} + b_{j,1}^{(t+1)} x_i^+, \quad 1 \le j < m
$$

The objective function is smooth and inequality constraints are linear and sparse so that we can apply fast Newton type optimization algorithms to solve this prob-**0.2** Min-Function Approach

The differentiability problem is solved as follows:
 $v_i^t = \max_{a_i \in \mathcal{D}(x_i, t), y_{ik}, x_{ik}^+} u_t(x_i, a_i) + \beta y_i$

s.t. $x_i^+ = g(x_i, a)$
 $y_i \leq b_{j,0}^{(t+1)} + b_{j,1}^{(t+1)} x_i^+, \quad 1 \leq j < m$

The objective funct constraints, few of them will be active, such that optimization softwares can still solve the new model quickly. **Min-Function Approach**

edifferentiability problem is solved as follows:
 $v_i^t = \max_{a_i \in \mathcal{D}(x_i, t), y_{ik}, x_{ik}^+} u_t(x_i, a_i) + \beta y_i$

s.t. $x_i^+ = g(x_i, a)$
 $y_i \leq b_{j,0}^{(t+1)} + b_{j,1}^{(t+1)} x_i^+, \quad 1 \leq j <$

e objective function is smoo

Moreover, this way does not need to find the interval where x_{ik}^{+} locates, while the naive way has to.

0.3 Convex-Set Approach

Both previous methods need to calculate coefficients; this is very complicated for multi-dimensional piecewise linear interpolation. $\begin{array}{c} \text{See} \ \text{at} \ \text{l} \ \text{in} \ \text{in} \ \text{v}_i^t \end{array}$ ficients; this is very complicated for
ion.
ipute the coefficients explicitly:
 $u_t(x_i, a_i) + \beta y_i,$ (1)

The following method has no need to compute the coefficients explicitly:

Set Approach
athods need to calculate coefficients; this is very complicated for
l piecewise linear interpolation.
; method has no need to compute the coefficients explicitly:

$$
v_i^t = \max_{a_i \in \mathcal{D}(x_i, t), \mu_j \ge 0, y_i, x_i^+} u_t(x_i, a_i) + \beta y_i,
$$
(1)
s.t.
$$
x_i^+ = g(x_i, a),
$$

$$
x_i^+ \le \sum_{j=1}^m \mu_j x_j^{(t+1)}
$$

$$
y_i = \sum_{j=1}^m \mu_j v_j^{(t+1)}
$$

$$
\sum_{j=1}^m \mu_j = 1
$$