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ABSTRACT
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business cycle models. The following ingredients help us reduce the cost in high-dimensional problems:
an endogenous grid enclosing the ergodic set, linear approximation methods, fixed-point iteration
and efficient integration methods, such as non-product monomial rules and Monte Carlo integration
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1 Introduction

In the present paper, we show how to apply two ergodic-set algorithms for
solving a collection of multi-country real business cycle models proposed
by Den Haan, Judd and Juillard (2010) (henceforth, DJJ). One of these
algorithms is the stochastic simulation algorithm (SSA) described in Judd,
Maliar and Maliar (2009, 2010b).12 The other is the projection cluster-grid
algorithm (CGA) developed in Judd, Maliar and Maliar (2010a) (henceforth,
JMM). The models studied in the current JEDC project include up to 10
countries (i.e., 20 state variables) and feature heterogeneity in fundamentals
(preferences and technology) and endogenous labor-leisure choice, as well as
complete markets, adjustment costs, continuously valued state variables, and
non-additively separable preferences and technology.
SSA and CGA build on strategies that allow to reduce the cost of finding

global solutions in high-dimensional applications. The first and most impor-
tant distinctive feature of these two methods is that they operate on endoge-
nous domains which enclose the ergodic set: SSA computes a solution on a
set of simulated points, whereas CGA does so on a grid of points constructed
by clustering simulated data (the center of each cluster represents one grid
point). Focusing on the ergodic set allows us to avoid the costs associated
with computing solutions in those areas of the state space that are never vis-
ited in equilibrium. Second, to approximate policy functions, SSA and CGA
use polynomials with additively separable terms, estimate the polynomial co-
efficients using numerically stable linear approximation methods and update
the coefficients along iterations using a fixed-point iteration method. These
choices ensure that the cost of approximating the policy functions does not
increase significantly with the dimensionality of the problem (in particular,
because we iterate on policy functions of all countries simultaneously rather
than country by country). Finally, to evaluate conditional expectations, SSA
and CGA rely on integration methods that are particularly suitable for high-

1JMM (2009) present SSA in the context of a one-country model. In a more recent
version of the paper, JMM (2010b) extend the results to include the case of a multi-country
model similar to Model 1 of the current JEDC project.

2SSA is similar to the simulation-based parameterized expectations algorithm (PEA)
by Marcet (1988) and Den Haan and Marcet (1990) in how it uses stochastic simulation
to compute an ergodic distribution, its support and the associated policy functions. SSA
differs from the simulation-based PEA in that it relies on a mixture of techniques that
ensures numerical stability; see JMM (2009) for a discussion.
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dimensional applications. Namely, SSA combines Monte Carlo integration
and regression in a manner that makes it possible to approximate expec-
tations (integrals) in all simulated points at once, whereas CGA performs
numerical integration using low-cost non-product monomial rules and the
product Gauss-Hermite rule with small numbers of nodes in each dimension
(including the rule with one node).
The models considered in JMM (2010a, 2010b) include up to 200 coun-

tries and thus, are more challenging in the dimensional aspect than those
studied in the JEDC project. However, the models of the JEDC project are
more challenging in another aspect, namely, in that solving for consumption
and labor of heterogeneous countries is a non-trivial task. Let us separate
the intertemporal choice (capital) and intratemporal choice (consumption
and labor). The intertemporal choice is concerned with dynamics and is
characterized by the capital policy functions defined in terms of state vari-
ables. Such functions are also the laws of motion for capital and allow to
compute an entire capital path without solving for consumption and labor.
The intratemporal-choice problem is static: Given a capital path, in each
period of time, we must solve a system of static optimality conditions (in-
cluding a resource constraint) with respect to consumption and labor. In
the models of the JEDC project, this system cannot be solved analytically.
Solving this system numerically a large number of times (in each time pe-
riod, iteration, grid point, integration node) is costly, especially when the
number of countries is large. Moreover, as we show in the present paper,
the intratemporal choice must be computed with a high degree of accuracy;
otherwise, the overall accuracy of solutions decreases.
In the present paper, we describe two novel intratemporal-choice ap-

proaches that can find the consumption and labor allocations both accu-
rately and quickly. Our first approach, called iteration-on-allocation, relies
on a numerical solver that implements fixed-point iteration directly on the
intratemporal-choice variables. (The policy functions for the intratemporal-
choice variables are never constructed explicitly). This approach allows us
to achieve effectively zero errors in all intratemporal-choice conditions (in-
cluding the resource constraint) so that the only source of errors for us is
Euler-equation errors.3 The iteration-on-allocation solver does not require
derivatives (Jacobian and Hessian), and its cost does not increase signifi-

3This approach was originally proposed in the context of PEA in Maliar and Maliar
(2004) and was later implemented for SSA and CGA.
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cantly with dimension. Moreover, it can work with vectors and matrices,
making it fast in vectorized applications.
Our second approach, called precomputation, constructs the intratemporal-

choice functions on an appropriately chosen grid of points outside the main
iterative cycle and uses the precomputed functions to interpolate the in-
tratemporal choice inside the main iterative cycle as if a closed-form solution
was available.4 Like iteration-on-allocation, this approach can work with
vectors and matrices and attains high accuracy in the examples considered.
The iteration-on-allocation and precomputation approaches can be vec-

torized because of the separation of the intertemporal and intratemporal
choices. Given the laws of motion for capital, we construct a capital path
without solving for the intratemporal-choice variables (consumption and la-
bor). Then, given a capital path, we compute all the consumption and labor
allocations at once rather than one by one.
The accuracy and speed of the SSA and CGA methods under our base-

line implementation are assessed in Kollmann, Maliar, Malin and Pichler
(2010) (henceforth, KMMP). In the present paper, we report a few additional
experiments that show how the performance of the CGA method depends
on the specific integration method, approximating polynomial function and
intratemporal-choice approach.
First, we find that CGA can compute solutions of essentially the same

accuracy as those submitted for the comparison in KMMP (2010) but at a
significantly lower cost. Our baseline integration method (used to compute
solutions submitted to the comparison in KMMP, 2010) is an accurate but
expensive two-step procedure that combines a cheap non-product monomial
rule and an expensive product Gauss-Hermite rule. It turns out that such a
high-accuracy integration method is not needed for the models of the JEDC
project since cheaper and less accurate integration methods also produce ac-
curate solutions. For example, it took us 35 hours to solve an asymmetric
ten-country model using our two-step integration procedure (see Table 3 in
KMMP, 2010). In the present paper, we solve the same model in 7 minutes
using only the first step of our two-step integration procedure without a visi-
ble accuracy loss (solution errors are identical up to the fourth digit). More-
over, using the one-node Gauss-Hermite rule advocated in JMM (2010a), we

4Maliar and Maliar (2005) introduce the precomputation approach in the context of the
standard neoclassical growth model for computing labor-leisure choice outside the main
iterative cycle. Maliar and Maliar (2007) implement this approach in the context of the
current JEDC project.
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solve this model in 2 minutes with a modest accuracy loss (maximum error
increases by 5%).
Second, we find that the third-degree polynomial delivers solutions that

are almost an order of magnitude more accurate than those produced by
our baseline second-degree polynomial (used to generate the results for the
comparison in KMMP, 2010). We also find that the Smolyak polynomial,
used in the Smolyak collocation algorithm by Malin, Krueger and Kubler
(2010) (henceforth, MKK), allows CGA to achieve nearly the same accuracy
as does the third-degree polynomial. However, under the Smolyak polyno-
mial, the cost grows less rapidly with dimension than under the third-degree
polynomial (independently of dimension, the Smolyak polynomial has only
four times more terms than the second-degree polynomial).
Third, our approach in which consumption and labor are approximated

by functions of both the current-period state variables and the current period
capital choices (i.e., next period’s values of the endogenous state variables)
delivers much better accuracy than the standard intratemporal-choice ap-
proach that approximates policy functions for consumption and labor by
functions of state variables only. To be more specific, we approximate the
consumption policy function(s) by a polynomial of the same (second) degree
as that used to approximate the capital policy functions, and we obtain sub-
stantially larger approximation errors in the intratemporal-choice conditions
than in the intertemporal-choice conditions (Euler equations).5 For com-
parison, we also solve the same model using the precomputation approach.
Neither our baseline iteration-on-allocation approach (used to compute the
solutions reported in KMMP, 2010) nor our precomputation approach (im-
plemented in the present paper) restrict the overall accuracy of solutions.
Finally, we propose a way to increase the accuracy of the solution methods

that do not accurately compute the intratemporal choice in their own solution
procedures. We specifically take the capital policy functions delivered by such
a method and replace its low-accuracy solution for consumption and labor
with a high-accuracy solution (computed by the iteration-on-allocation and
precomputation approaches). In our examples, this replacement increases
the overall accuracy of solutions by an order of magnitude. We apply this
idea for constructing a hybrid solution algorithm that combines the pertur-
bation method (a cheap way to compute capital policy functions) and our

5The importance of accuracy in intratemporal choice for the overall accuracy of solu-
tions is also seen from Table 6 of the comparison paper by KMMP (2010).
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intratemporal-choice methods (a cheap way to accurately compute consump-
tion and labor allocations).
The rest of the paper is as follows: Section 2 presents the model and

derives the first-order conditions. Section 3 describes how SSA and CGA
address challenges of high-dimensional problems. Section 4 develops two ap-
proaches for computing the intratemporal choice. Section 5 outlines the steps
of SSA and CGA. Section 6 describes the baseline and alternative implemen-
tations of SSA and CGA. Section 7 presents the numerical results for CGA
and constructs a hybrid of the perturbation and accurate intratemporal-
choice methods. Finally, Section 8 concludes.

2 The model

We consider a model with a finite number of countries, N , in which each coun-
try is populated by a representative consumer. A social planner maximizes a
weighted sum of the expected lifetime utilities of the countries’ representative
consumers subject to the aggregate resource constraint, i.e.,

max
{cjt ,cjt ,kjt+1}j=1,...,Nt=0,...,∞

E0

NX
j=1

τ j

Ã ∞X
t=0

βtuj
¡
cjt , c

j
t

¢!
(1)

subject to

NX
j=1

cjt =
NX
j=1

⎡⎣ajtf j ¡kjt , cjt¢− φ

2
kjt

Ã
kjt+1

kjt
− 1
!2
+ kjt − kjt+1

⎤⎦ , (2)

where Et is the operator of conditional expectation; c
j
t , c

j
t , k

j
t , a

j
t , u

j, f j and
τ j are consumption, labor, capital, productivity level, utility function, pro-
duction function and welfare weight of a country j ∈ {1, ..., N}, respectively;
β is the discount factor; and φ is the adjustment-cost parameter. Initial con-
dition (k0,a0) is given, where k0 ≡

¡
k10, ..., k

N
0

¢
and a0 ≡

¡
a10, ..., a

N
0

¢
. The

process for productivity levels in country j is given by

ln ajt = ρ ln ajt−1 + σεjt , (3)

where εjt ≡ et + ejt with et and ejt being common and country-specific pro-
ductivity shocks, respectively, et, e

j
t ∼ N (0, 1); ρ is the autocorrelation coef-

ficient of the productivity level; and σ determines the standard deviation of
the productivity level.
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An interior solution to the social planner’s problem (1) − (3) satisfies
first-order conditions (FOCs) of the form

ujc
¡
cjt , c

j
t

¢
τ j = uj

0
c

³
cj
0

t , c
j0

t

´
τ j

0
, (4)
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j
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¢
= −ujc

¡
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j
t

¢
ajtf

j
c

¡
kjt , c

j
t

¢
, (5)

ujc
¡
cjt , c
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¢
ωj
t = βEt

©
ujc
¡
cjt+1, c

j
t+1

¢ £
πjt+1 + ajt+1f

j
k

¡
kjt+1, c

j
t+1

¢¤ª
, (6)

where j, j0 ∈ {1, ..., N}, and ωj
t and πjt are defined as

ωj
t ≡ 1 + φ

Ã
kjt+1

kjt
− 1
!
,

πjt ≡ 1 +
φ

2

Ã
kjt+1

kjt
− 1
!Ã

kjt+1

kjt
+ 1

!
.

Here, and further on, notation of type Fxm stands for the first-order partial
derivative of a function F (..., xm, ...) with respect to a variable xm.
In the project, eight models are considered. Models 1, 2, 3 and 4 have

the same types of preferences and technology as do Models 5, 6, 7 and 8,
respectively, however, the former models assume identical preferences and
technology parameters for all countries, while the latter models have different
parameters across countries. Models 1 and 5 do not have endogenous labor-
leisure choice, while the other models do. A description of the models studied
is provided in Juillard and Villemot (2010).

Intertemporal versus intratemporal choices Let us make a distinction
between intertemporal and intratemporal choices. Consider a capital policy
function that determines a country’s j end-of-period capital stock, kjt+1, as a
function of the current state variables, kt and at,

kjt+1 = Kj (kt,at) , (7)

where kt ≡
¡
k1t , ..., k

N
t

¢
and at ≡

¡
a1t , ..., a

N
t

¢
. We call kjt+1 an intertemporal-

choice variable because it captures dynamic aspects of the planner’s choice.
A capital policy function is an equilibrium law of motion for capital.
For each period t, given kt, at and kt+1, we must solve a system of 2N sta-

tic optimality conditions (i.e., one resource constraint (2),N−1 conditions (4)
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and N conditions (5)) with respect to ct ≡
¡
c1t , ..., c

N
t

¢
and `t ≡

¡
c1t , ..., c

N
t

¢
.

A solution to this system is given by solution manifolds for consumption and
labor:

cjt = Φj (kt,at,kt+1) and cjt = Θj (kt,at,kt+1) , j = 1, ..., N. (8)

We refer to consumption ct and labor `t as intratemporal-choice variables
because under our representation, such variables are determined within pe-
riod t if the state, (kt,at), and the intertemporal choice, kt+1, are given. For
Model 1, the intratemporal choice can be expressed analytically, while for
Models 2-8, it must be approximated numerically.

3 Addressing challenges of high dimensions

The high-dimensional models described in DJJ (2010) pose four challenges
for numerical methods designed to find a global solution: (i) a large size of
the domain on which the solution is computed, (ii) a high cost of finding the
polynomial coefficients in the approximating polynomial functions, (iii) a
large number of integration nodes for evaluating the conditional expectation
functions, and (iv) a high cost of solving for the intratemporal choice.
JMM (2010a, 2010b) show how to address the first three challenges in the

context of CGA and SSA, respectively. The problems solved in JMM (2010a,
2010b) are of higher dimensionality (they include up to 200 countries) but
simpler in the structure of the intratemporal choice (which can be charac-
terized analytically) than those studied in the current JEDC project. The
strategies used by JMM (2010a, 2010b) to address challenges (i), (ii) and (iii)
are discussed in Sections 3.1, 3.2 and 3.3, respectively, and the coordination
of these strategies is described in Section 3.4. The last challenge, (iv), which
is concerned with the intratemporal choice in high-dimensional problems, is
not studied in JMM (2010a, 2010b). In the present paper, solving for the
intratemporal choice accurately proved to be crucial for the overall accuracy
of solutions. We address the intratemporal-choice challenge separately, in
Section 4.

3.1 Multi-dimensional domain

To make a numerical method suitable for high-dimensional applications, we
must restrict attention to a relatively small set of grid points in the multi-
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dimensional space.6 Both SSA and CGA achieve this goal by focusing on
the ergodic set of points realized in equilibrium. In Figure 1a, we show
the ergodic set constructed from a simulated series of 10, 000 observations,
which are produced by the standard representative-agent neoclassical sto-
chastic growth model. SSA computes the solution on the given set of simu-
lated points (the number of simulated points is controlled by the researcher
and needs not necessarily increase with the number of countries, N). CGA
chooses a more efficient representation of the ergodic set; namely, it replaces
a large number of closely situated simulated points with relatively few rep-
resentative points constructed by grouping similar points into clusters (the
number of representative points is again controlled by the researcher). To
be specific, CGA transforms correlated variables into uncorrelated principal
components (denoted PC1

t and PC2
t ) using principal components (PCs) de-

composition (see Figure 1b); normalizes the principal components to zero
mean and unit variance (see Figure 1c); and constructs I clusters applying
a clustering algorithm. It subsequently uses the centers of the constructed
clusters as a grid for projections; see JMM (2010a) for details. (Note that
CGA does not compute different solutions in each cluster, but a global so-
lution on the entire cluster grid). Making the domain endogenous to the
model allows SSA and CGA to compute a solution only in the relevant area
of the state space (an ellipsoid area shown in Figure 1a). This eliminates an
enormously large number of grid points that are never visited in equilibrium.
For example, for a model with 100 state variables, a hypersphere is only
about a 2 · 10−70 fraction of a multi-dimensional hypercube which encloses
the hypersphere; see JMM (2010a) for a further discussion.

3.2 Multi-dimensional polynomials

SSA and CGA parameterize policy functions by an additively separable com-
plete polynomial. For example, parameterizing the end-of-period capital
stock of a country j by a first-degree polynomial yields

kjt+1 = vj0 + vj1k
1
t + ...+ vjNk

N
t + vjN+1a

1
t + ...+ vj2Na

N
t , (9)

6The literature commonly considers a multi-dimensional hypercube domain composed
of the tensor product of discretized state variables. In this case, the total number of
grid points grows exponentially with the dimensionality of the state space (the curse of
dimensionality).
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where
¡
vj0, v

j
1, ..., v

j
N , v

j
N+1, ..., v

j
2N

¢0 ≡ vj ∈ R(2N+1)×1 is country’s j vector of
the polynomial coefficients. The number of polynomial terms in the first-,
second- and third-degree complete polynomials grows with the dimensionality
of the problem linearly, quadratically and cubically, respectively; see Table 1
in JMM (2010a). When the dimensionality is large, high-degree polynomials
are costly.
The assumption of additively separable polynomials allows us to estimate

the polynomial coefficients using fast and numerically stable linear approx-
imation methods, such as the least-squares methods using SVD and QR
factorization, Tikhonov regularization, least-absolute deviation methods and
the principal components method; see JMM (2009). Moreover, it allows us to
estimate the polynomial coefficients for all N countries at once rather than
country by country.
To update the polynomial coefficients along iterations, SSA and CGA use

fixed-point iteration, which is a simple derivative-free iteration method whose
cost does not significantly increase with the dimensionality of the problem;
see Judd (1998, p. 555-557).7 Fixed-point iteration computes the coefficients
for the next iteration as a weighted average of the coefficients at the beginning
and at the end of the previous iteration. It works for vectors and matrices
and allows to iterate on policy functions of all countries simultaneously. A
shortcoming of fixed-point iteration is that it does not guarantee convergence.
However, a slow updating is typically sufficient to ensure convergence; see
Section 4.2 for a discussion. In the models of the JEDC project, fixed-point
iteration was always numerically stable.

3.3 Multi-dimensional integration

SSA and CGA require the calculation of integrals that represent conditional
expectation functions in the Euler equations. SSA employs Monte Carlo
integration combined with regression, as is used in Den Haan and Marcet
(1990). This integration procedure makes it possible to infer expectations
(to compute integrals) simultaneously in all simulated points. If the length

7Fixed-point iteration is simpler to implement than alternative iterative schemes such as
time iteration (that involves finding a solution to a system non-linear equation; see Judd,
1998, p. 553-555) or Newton methods (that require to compute Jacobian and Hessian
matrices and to use optimization methods; see Judd, 1998, p. 103-119). Also, Gaspar
and Judd (1997) argue that fixed-point iteration has a lower computational cost than time
iteration and Newton methods for problems of medium and high dimensionality.
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of simulations T is held fixed, the cost of this integration procedure does not
grow substantially with the dimensionality of the problem (though accuracy
may decrease as more polynomial coefficients must be identified); see JMM
(2010b) for the corresponding results. In particular, JMM (2010b) find that
under T = 10, 000, first- and second-degree complete polynomials are feasible
for a model (similar to Model 1 of the present project) with up to N = 200
and up to N = 30 countries, respectively.
CGA is a projection method and relies on deterministic methods of inte-

gration. The choice of an integration method depends on the dimension-
ality of the problem. One-dimensional integrals can be computed accu-
rately using the Gaussian quadrature approach (as is done, for example,
in Judd’s (1992) Galerkin algorithm). For a given weighting function w (ε),
Gaussian quadrature approximates an integral (conditional expectation) by

E [G (ε)w (ε)] =
R
RG (ε)w (ε) dε ≈

HX
h=1

whG (εh) for some nodes {εh}h=1,...,H

and weights {wh}h=1,...,H . One can extend the Gaussian quadrature approach
to multi-dimensional integration problems using a product rule. However,
product rules are not feasible in high-dimensional problems due to the curse
of dimensionality: the total number of integration nodes HN increases ex-
ponentially with dimension. To reduce the cost of numerical integration
in economic applications of high dimensionality, Judd (1998) proposes to
use non-product monomial integration formulas; see Judd (1998, p.271 and
p.331). A large collection of such formulas is available in Stroud (1971).
JMM (2010a) elaborate the monomial formulas for a heterogeneous-agent

model similar to those studied in the present paper, illustrate the use of such
formulas by way of examples and provide an exhaustive comparison of the
performance of the CGA method under different integration strategies. Such
strategies include the product Gauss-Hermite rule with 1, 2 and 3 nodes
in each dimension (referred to as Q (1), Q (2) and Q (3), respectively) and
non-product monomial rules with 2N and 2N2+1 nodes (referred to as M1
and M2, respectively). Using second-degree polynomials, JMM (2010a) find
that the integration formulas Q (3), Q (2), M2, M1 and Q (1) are feasible
for the models with up to N = 6, N = 8, N = 12, N = 20 and N = 40
countries, respectively. Using first-degree polynomials, JMM (2010a) find
that the formulas M1 and Q (1) are feasible for the models with up to N =
100 and N = 200 countries, respectively.
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3.4 Coordinating the approximation, integration and
intratemporal-choice strategies

As is argued in JMM (2010a), making a numerical method cost-efficient re-
quires proper coordination between the approximation and integration strate-
gies. For example, if a polynomial approximation of a given degree can deliver
accuracy of no more than 10−4, it would be inefficient to compute integrals
with accuracy of 10−10 (doing so would increase costs without increasing
the overall accuracy of the solutions). It is therefore important to identify
combinations of the approximation and integration strategies that are well
matched in terms of accuracy.
JMM (2010a) identifies the following regularities: For a first-degree poly-

nomial, all integration methods lead to the same level of accuracy, including
the one-node Gauss-Hermite quadrature rule. For a second-degree polyno-
mial, the two- and three-node Gauss-Hermite rule and the monomial formulas
lead to the same level of accuracy (up to the fourth digit), while the one-node
Gauss-Hermite rule leads to Euler-equation errors that are 5 − 10% larger
than those calculated with more accurate integration methods. JMM (2010a)
give an example of coordination between the approximation and integration
strategies that consists in combining the second-degree polynomial and the
one-node Gauss-Hermite integration rule. This combination makes it possi-
ble to increase the number of countries, N , from 20 to 40 at a cost of a small
decrease in accuracy.
In the presence of endogenous labor-leisure choice, the approximation

and integration strategies should be properly coordinated not only with each
other, but also with the intratemporal-choice strategy. The numerical results
in Section 7.1 show that insufficient accuracy in intratemporal choice can
drastically reduce the overall accuracy of the solutions; the importance of
accuracy in intratemporal choice is also seen in Table 6 of the comparison
paper by KMMP (2010).

4 Intratemporal choice

In Section 4.1, we discuss intratemporal-choice approaches that currently
exist in the literature. In Sections 4.2 and 4.3, we describe two novel ap-
proaches, iteration-on-allocation and precomputation, that allow us to solve
for the intratemporal choice both accurately and quickly. Finally, in Section

12



4.4, we show that combining iteration-on-allocation and precomputation can
produce additional gains in speed.

4.1 Standard intratemporal-choice approaches

Existing literature provides two approaches to computing the intratemporal
choice. First, given kt, at and kt+1, one can solve a system of 2N equations,
(2), (4) and (5), with respect to 2N unknowns, ct and `t, using a standard
Newton method. The cost of this approach can be prohibitive because we
must find a numerical solution to the 2N-dimensional system of equations
a large number of times (in each time period, grid point, integration node)
within an iterative cycle.
Second, one can treat the intratemporal choice in the same way as the

intertemporal choice, i.e., one can compute the policy functions for the
intratemporal-choice variables, cjt = Cj (kt,at) and cjt = Lj (kt,at) satis-
fying the corresponding optimality conditions (2), (4) and (5) inside the
main iterative cycle. (In contrast to the intratemporal-choice manifolds
Φj (kt,at,kt+1) and Θj (kt,at,kt+1) in (8) defined for any kt+1, the pol-
icy functions Cj (kt,at) and Lj (kt,at) do not include kt+1 as an argument
because such functions are defined for the equilibrium intertemporal choice,
kt+1, determined by the capital policy functions (7)). In our experiments,
this approach does not produce sufficiently accurate results; see Section 7.1.
Moreover, simultaneous iterations on policy functions for the intertemporal-
and intratemporal-choice variables reduce both the numerical stability and
the speed of convergence.

4.2 Iteration-on-allocation

The first intratemporal-choice approach we use relies on a numerical solver,
(fixed-point) iteration-on-allocation, proposed by Maliar and Maliar (2004).
This method’s name emphasizes that fixed-point iteration is applied to the
intratemporal-choice allocations and distinguishes it from a different fixed-
point iteration procedure, described in Section 5, that is applied to the coef-
ficients of an approximating polynomial function.
The iteration-on-allocation approach proceeds as follows:

• Step 1. Re-write conditions (2), (4) and (5) to define a mapping g that
explicitly and uniquely maps a set of values zt = (ct, `t) into a new set
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of values ezt = ³ect, èt´ (this is possible to do for all of the eight models
studied in the current JEDC project):

ezt = g (zt) . (10)

• Step 2. Use some initial guess on zt and calculate ezt via mapping (10).
• Step 3. Use partial updating (damping) to compute an input for the
next iteration as (1− ς)zt + ςezt, where ς ∈ (0, 1) is a damping para-
meter.

Iterate until a fixed point, zt = g (zt), is found with a given degree
of accuracy, i.e.,

1

ς · T

TX
t=1

°°°°ezt − ztzt

°°°° < 10−θ, (11)

where θ > 0, and k·k is some vector norm.

On the initial iteration, we can assume that zt is equal to its steady-state
value. Typically, we need not iterate on all 2N unknown elements of ct and `t
since there are explicit closed-form expressions relating these variables, and
fixing one or a few of them allows to analytically find the values of all the
intratemporal-choice variables. As an example, we describe how to construct
a mapping of type (10) for Model 5; the mappings for Models 6-8 are given
in Appendix A.

Example 1 (Model 5). There is no labor-leisure choice, so condition (5) is
absent. The remaining intratemporal-choice conditions (4) and (2), written
in a form suitable for iteration-on-allocation, respectively, are

ecjt = h¡c1t¢−1/γ1 τ 1/τ ji−γj , j = 2, ..., N, (12)

ec1t = NX
j=1

⎡⎣kjt + ajtA
¡
kjt
¢α − φ

2
kjt

Ã
kjt+1

kjt
− 1
!2
− kjt+1

⎤⎦− NX
j=2

ecjt , (13)

where {γj}j=1,...,N are the utility-function parameters, and A is a normalizing
constant. For given kt, at and kt+1, equations (12) and (13) define a mapping
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ec1t = g (c1t ). We iterate on consumption of the first country, c
1
t , as follows:

Assume some value for c1t ; compute
©ecjtªj=2,...,N from (12); obtain ec1t from

(13); if c1t 6= ec1t , compute the input for the next iteration as (1− ς) c1t + ςec1t .
Iterate until convergence.

Iteration-on-allocation has two advantages over standard Newton-type
methods. First, iteration-on-allocation does not require to compute deriva-
tives (such as Jacobian or Hessian) but instead performs a straightforward
summation; as a result, its cost does not increase considerably with the di-
mensionality of the problem. Second, iteration-on-allocation can operate on
a time series or on all grid points simultaneously while Newton-type methods
compute a solution point by point and are more difficult to vectorize.
Convergence of fixed-point iteration is in general not guaranteed; for for-

mal results about convergence of fixed-point iteration, see Judd (1998 p.165-
166). However, damping can often help achieve convergence. In particular,
by choosing an appropriate value of the damping parameter, ς, we were able
to achieve convergence in all eight models of the current JEDC project. Be-
low, we discuss the issue of convergence using Model 5 as an example.

Example 2 (Model 5). Conditions (12) and (13) together imply

c1t = g
¡
c1t
¢
≡ ct −

NX
j=2

∙
τ 1

τ j
¡
c1t
¢−1/γ1¸−γj

, (14)

where ct is aggregate consumption that is given. Note that if {γj}j=1,...,N are
of the same sign, then g0 (c1t ) < 0. There is a unique fixed point (c1t )

∗ satis-
fying (c1t )

∗
= g

¡
(c1t )

∗¢ (at this point, g (c1t ) crosses the 45o line). However,
applying g iteratively to some initial guess c1t , i.e., g (...g (g (c

1
t ))) does not

guarantee the convergence to this fixed point. Depending on whether g0 is
larger than, smaller than or equal to minus one, the result will be conver-
gence, divergence or cycling, respectively. (Note that the slope of g depends
on the model’s parameters and welfare weights, as well as on the specific way
in which g is constructed). Figures 2a and 2b show, respectively, the cases
of convergence and divergence of fixed-point iteration. Figures 2c and 2d il-
lustrate fixed-point iteration with damping (1− ς) c1t + ςg (c1t ). In particular,
Figure 2d demonstrates that a sufficiently small damping parameter ς can
help restore convergence.
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4.3 Precomputation

The second intratemporal-choice approach we use is precomputation, which
consists of constructing intratemporal-choice manifolds defined in (8) out-
side the main iterative cycle using either analytical derivations or numerical
computations or a combination of both. This approach was originally pro-
posed by Maliar and Maliar (2005) for constructing a labor manifold outside
the main iterative cycle in the standard neoclassical growth model. Maliar
and Maliar (2007) introduced the precomputation approach in the context
of the current JEDC project. In the present paper, we give a more elaborate
description of the precomputation approach.
A general version of the precomputation approach, applied to the model

(1)− (3), constructs the intratemporal-choice manifolds Φj (kt,at,kt+1) and
Θj (kt,at,kt+1) in (8) as follows:

• Step 1. Outside the main iterative cycle, choose a grid of P values for
kt, at, kt+1, i.e.,

©
kp,ap,k

0
p

ª
p=1,...,P

. For each grid point p = 1, ...P ,
solve equations (2), (4) and (5) using a numerical solver with respect
to consumption cjp and labor c

j
p for j = 1, ..., N .

• Step 2. Extend the constructed set functions to the relevant continuous
domain using some interpolation method (a global polynomial approxi-
mation, piecewise linear polynomial approximation, splines, etc.), such
that

cj = bΦj (k,a,k0) and cj = bΘj (k,a,k0) , j = 1, ..., N, (15)

where bΦj and bΘj are the precomputed consumption and labor manifolds
of a country j, and (k,a,k0) ∈ R3N .

• Step 3. In the main iterative cycle, use the precomputed manifoldsbΦj (k,a,k0) and bΘj (k,a,k0) to find the intratemporal choice given the
state, (kt,at), and the intertemporal choice, kt+1.

Many applications have enough structure to simplify the precomputation
approach in two ways. First, it might be not necessary to precompute all
the intratemporal-choice manifolds because some of these manifolds can be
constructed analytically. Second, it may be possible to precompute the in-
tratemporal choice in terms of a set of arguments that is smaller than kt, at,
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kt+1 or that is given by some function of kt, at, kt+1. We illustrate these two
points by way of example for Model 5 described in Maliar and Maliar (2007).
In this case, we precompute a single manifold, consumption of country 1, c1t ,
in terms of one argument, aggregate consumption, ct (which is a function of
kt, at, kt+1).

Example 3 (Model 5). Outside the main iterative cycle, take P values
for aggregate consumption ct, i.e., {cp}p=1,...,P . For each cp, use a numerical
solver to find a solution c1p to equation (14) written as

c1p +
NX
j=2

∙
τ 1

τ j
¡
c1p
¢−1/γ1¸−γj

= cp. (16)

Interpolate the constructed set function to a continuous domain to obtain the
manifold bc1 (c). Inside the main iterative cycle, given kt, at, kt+1, compute
ct from resource constraint (2), use the precomputed manifold to find con-
sumption of country 1, c1t = bc1 (ct) and compute consumption of the other
countries as cjt =

h
τ1

τj
(c1t )

−1/γ1
i−γj

, j = 2, ..., N .

As with Model 5, precomputing a single intratemporal-choice manifold
(either consumption or labor manifolds) is sufficient for Models 2 and 6; see
the formulas in Appendix A. For Models 3, 4, 7 and 8, we can precompute
N labor manifolds and find the corresponding consumption allocations using
the formulas provided in Appendix A; note that for these models, we cannot
precompute N consumption manifolds and find the corresponding labor allo-
cations analytically: there is a closed-form expression for consumption given
labor but there is no closed-form expression for labor given consumption.8

We can precompute the intratemporal choice in Model 2 in terms of two
composite arguments (see Appendix B for details). For the remaining mod-
els - Models 3, 4, 6, 7 and 8 - the intratemporal-choice manifolds must be
precomputed in terms of 3N arguments kt, at, kt+1. To make the precompu-
tation approach feasible for high-dimensional problems, we can precompute
the intratemporal-choice manifolds on the ergodic set realized in equilib-

8The advantage of solving for labor over solving for consumption was exploited by
Maliar and Maliar (2005) to simplify finding the intratemporal choice in the standard
neoclassical growth model.
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rium.9 For SSA, the domain for precomputation is a set of simulated points;
for CGA, it is a set of the clusters’ centers obtained from simulated points.
The domains of SSA and CGA are discussed in Section 5.

4.4 Combining iteration-on-allocation and precompu-
tation

For Models 3, 4, 7 and 8, the pure iteration-on-allocation approach requires
to iterate simultaneously on labor allocations of N countries

©
cjt
ªj=1,...,N

(see
Appendix A). In turn, the pure precomputation approach requires to pre-
compute the labor choice of each country as a function of 3N arguments kt,
at, kt+1. We now show that under the assumption of additively separable
production across countries, we can combine iteration-on-allocation and pre-
computation into a single method that precomputes the labor manifolds in
terms of three arguments and iterates on one allocation.10 This is possible
because conditions (4) and (5) implicitly define the intratemporal choice of
each country j in terms of its own capital kjt , its own productivity level a

j
t

and aggregate consumption ct; i.e., c
j
t = Ωj

¡
kjt , a

j
t , ct

¢
and cjt = Λj

¡
kjt , a

j
t , ct

¢
,

j = 1, ..., N . Model 2 is an example of the economy in which such manifolds
can be constructed analytically (see Appendix B); generally, however, such
manifolds must be precomputed numerically.11

We combine iteration-on-allocation and precomputation as follows:

• Step 1. Outside the main iterative cycle, for each country j, choose
a grid of P values for kjt , a

j
t , ct, i.e.,

©
kjp, a

j
p, cp

ª
p=1,...,P

. For each grid
point p = 1, ...P , solve equations (4) and (5) using a numerical solver
with respect to cjp and cjp for j = 1, ..., N .

9To construct the domain for the intratemporal-choice manifolds, one can use a tensor-
product grid of 3N arguments kt, at, kt+1. However, the number of grid points will grow
exponentially with dimension, and the precomputation method will not be feasible even
for a moderately large number of countries.
10Combining iteration-on-allocation and precomputation is also possible for Models 2

and 6, but does not provide any advantages over the pure iteration-on-allocation method
described in Section 4.2.
11Maliar and Maliar (2001, 2003a) construct similar intratemporal-choice manifolds an-

alytically for certain classes of heterogeneous-agent economies and use these manifolds to
derive non-Gorman aggregation results.
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• Step 2. Interpolate the constructed set functions to the relevant con-
tinuous domain,

cj = bΩj
¡
kj, aj, c

¢
and cj = bΛj

¡
kj, aj, c

¢
, j = 1, ..., N, (17)

where bΩj and bΛj are the precomputed consumption and labor manifolds
of a country j, and (kj, aj, c) ∈ R3.

• Step 3. Substitute the precomputed labor manifolds bΛj (kj, aj, c) for
j = 1, ..., N into resource constraint (2) to define the mapping of the
form ect = g (ct),

ect = NX
j=1

⎡⎣ajtf j ³kjt , bΛj
¡
kjt , a

j
t , ct

¢´
− φ

2
kjt

Ã
kjt+1

kjt
− 1
!2
+ kjt − kjt+1

⎤⎦ .
(18)

Inside the main iterative cycle, compute aggregate consumption, ct,
using the iteration-on-allocation approach. For each t, given kt, at,
kt+1, assume some value for ct and calculate ect from (18); if ct 6= ect,
compute an input for the next iteration equal to (1− ς) ct+ςect. Iterate
until convergence.

Like the pure iteration-on-allocation and precomputation methods, their
combination allows to solve for the intratemporal allocations (including ag-
gregate consumption, ct) with a high degree of accuracy.

5 Two ergodic-set algorithms

In this section, we describe two ergodic-set algorithms, SSA and CGA, that
we use to solve the models (1)− (3). Both algorithms find a solution on the
ergodic set. However, they differ in how they use information on the ergodic
set: SSA uses simulated points both as a domain for finding the solution
and as nodes for integration, while CGA uses such points exclusively for
constructing the domain (it performs integration using deterministic methods
unrelated to the estimated density function). For both methods, we re-write
Euler equation (6) in a form suitable for parameterizing the capital policy
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function kjt+1 = Kj (kt,at):

kjt+1 = Et

(
β
ujc
¡
cjt+1, c

j
t+1

¢
ujc
¡
cjt , c

j
t

¢
ωj
t

£
πjt+1 + ajt+1f

j
k

¡
kjt+1, c

j
t+1

¢¤
kjt+1

)
(19)

' Ψj
¡
kt,at;v

j
¢
,

where Ψj (kt,at;v
j) is a flexible functional form used to parameterize the

capital policy function, and vj is a vector of coefficients.12 See Appendix C
for the specifications of (19) corresponding to Models 5-8. We denote by v
a matrix composed of the vectors of polynomial coefficients of all countries,
v≡

¡
v1, ...,vj, ...,vN

¢
.

We assume thatΨj is given by a complete set of ordinary polynomials, i.e.,
Ψj (kt,at;v

j) ≡Xtv
j, whereXt is a row vector composed of t-period mono-

mial terms of the state variables, kt and at. For the first-degree polynomial
function in the example given in (9), we haveXt =

¡
1, k1t , ..., k

N
t , a

1
t , ..., a

N
t

¢
∈

R1×(2N+1), and vj =
¡
vj0, v

j
1, ..., v

j
N , v

j
N+1, ..., v

j
2N

¢0 ∈ R(2N+1)×1.
We should emphasize that the end-of-period capital stocks kt+1 are the

only variables we approximate by functions of the state variables, kt and at.
The remaining variables (consumption and labor) are either computed by the
iteration-on-allocation solver or obtained from the precomputed intratemporal-
choice manifolds in form (8).
Properly separating the intertemporal and intratemporal choices is cru-

cial for the speed of SSA and CGA. Approximating the policy functions for
capital, as in (19), has an important advantage over approximating the pol-
icy functions for other variables such as consumption and leisure. Namely,
the equilibrium capital policy functions are the equilibrium capital laws of
motion kjt+1 = Kj (kt,at) , j = 1, ..., N . As a result, we can first construct
a path for capital, {kt+1}t=0,...,T , and subsequently fill in the corresponding
intratemporal allocations {ct, `t}t=1,...,T . The iteration-on-allocation and pre-
computation methods can work with vectors and even matrices and can thus
find the intratemporal choice in all periods, grid points, integration nodes at
once rather than one by one.

12This kind of parameterization was used by Den Haan (1990) as a device to implement
the simulation-based parameterized expectations algorithm in a model with more than
one Euler equation.
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5.1 Stochastic simulation algorithm

SSA simultaneously computes the ergodic distribution of state variables, its
support and the associated policy functions. It proceeds as follows:
Fix the simulations length T and initial condition (k0,a0). Draw and fix

for all simulations a sequence of productivity levels {at}t=1,...,T using equation
(3). If precomputation is used, construct the intratemporal-choice manifolds
of type (8) as described in Section 4.3, and if precomputation is combined
with iteration-on-allocation, do so as described in Section 4.4.

• Step 1. For an iteration s, fix some matrix of coefficients v (s). For each
country j = 1, ..., N , use the assumed capital policy function kjt+1 =
Xtv

j to recursively calculate a sequence of capital stocks {kt+1}t=0,...,T
corresponding to a given sequence of productivity levels {at}t=0,...,T .

• Step 2. Given {kt,at,kt+1}t=0,...,T , calculate {ct, `t}t=0,...,T using a vec-
torized version of either iteration-on-allocation or precomputation or
their combination.

• Step 3. For each country j = 1, ..., N , compute the integrand of (19),

yjt ≡ β
ujc
¡
cjt+1, c

j
t+1

¢
ujc
¡
cjt , c

j
t

¢
ωj
t

£
πjt+1 + ajt+1f

j
k

¡
kjt+1, c

j
t+1

¢¤
kjt+1 (20)

for t = 0, ..., T − 1.

• Step 4. For each country j = 1, ..., N , run a linear regression of the
constructed variable yjt on a set of explanatory variables Xt using the
numerically stable approximation methods described in JMM (2009,
2010b),

yjt =Xtv
j + �jt , (21)

where �jt is a t-period regression error corresponding to country j. Let
the matrix of coefficients estimated on iteration s be called bv (s).

• Step 5. Compute the matrix of coefficients for the subsequent iteration
s+ 1 using fixed-point iteration:

v (s+ 1) = (1− ξ)v (s) + ξbv (s) , (22)

where ξ ∈ (0, 1) is a damping parameter.
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Iterate on Steps 1− 5 until a fixed point is found such that for ϑ > 0:

1

T ·N

TX
t=1

NX
j=1

¯̄̄̄
¯kjt+1(s)− kjt+1(s+ 1)

kjt+1(s)

¯̄̄̄
¯ < 10−ϑξ, (23)

where kjt+1 (s) and k
j
t+1 (s+ 1) are the j-th country’s capital stocks obtained

on iterations, s and s+ 1, respectively, and |·| denotes the absolute value.

5.2 Cluster-grid algorithm

CGA is a projection method that computes a solution on a grid constructed
from clusters of simulated points. It proceeds as follows: Make an initial guess
about the capital policy functions kjt+1 = Xtv

j, j = 1, ..., N . Given initial
condition (k0,a0), draw a sequence of productivity levels {at}t=1,...,T using
(3), and simulate the time series solution {kt+1}t=0,...,T . Using simulated data,
construct I clusters and compute the centers of the clusters, {ki,ai}i=1,...,I ,
to be used as a grid for projections; see JMM (2010a) for a description of
clustering methods and illustrative examples. In each grid point i = 1, ..., I,
construct a function Γj (ki,ai, ε) that represents the integrand in (19),

Γj (ki,ai, ε) ≡ β
ujc

³¡
cji
¢0
,
¡
cji
¢0´

ujc
¡
cji , c

j
i

¢
ωj

h¡
πji
¢0
+
¡
aji
¢0
f jk

³¡
kji
¢0
,
¡
cji
¢0´i ¡

kji
¢0
,

(24)
where ε ≡

¡
ε1, ..., εN

¢
is the next-period shock. Furthermore, if precompu-

tation is used, construct the intratemporal-choice manifolds of type (8) as
described in Section 4.3, and if precomputation is combined with iteration-
on-allocation, do so as described in Section 4.4.

• Step 1. On an iteration s, fix a matrix of coefficients v (s). For each
country j, use the assumed capital policy function to calculate the end-
of-period capital stock in all grid points,

¡
kji
¢0 ≡Xiv

j for i = 1, ..., I.

• Step 2. Given {ki,ai,k0i}i=1,...,I , calculate {ci, `i}i=1,...,I using a vector-
ized version of iteration-on-allocation, precomputation or their combi-
nation.

• Step 3. For each country j = 1, ..., N , use a numerical integration
method (such as non-product monomial rules or product Gauss-Hermite
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rule) to approximate the conditional expectations of equation (24). Call

the result
³bkji´0, i.e., ³bkji´0 ≡ E

£
Γj (ki,ai, ε)

¤
, (25)

where the expectation is computed with respect to ε ≡
¡
ε1, ..., εN

¢
.

To calculate the next-period intratemporal choice {c0i, `0i}i=1,...,I , for
each integration node, use a vectorized version of either iteration-on-
allocation or precomputation or their combination as described in Sec-
tion 4.

• Step 4. For each country j = 1, ..., N , run a linear regression of the con-

structed variable
³bkji´0 on a set of explanatory variables Xi using the

numerically stable approximation methods described in JMM (2009,
2010b), ³bkji´0 =X iv

j + �ji , (26)

where �ji is an i-grid-poind regression error corresponding to country j.
Let the matrix of coefficients estimated on iteration s be called bv (s).

• Step 5. Compute the matrix of coefficients for the subsequent iteration
s+ 1 using fixed-point iteration (22).

Iterate on Steps 1− 5 until a fixed point is found, such that for ϑ > 0:

1

I ·N

IX
i=1

NX
j=1

¯̄̄̄
¯̄̄
¡
kji
¢0 − ³bkji´0¡
kji
¢0

¯̄̄̄
¯̄̄ < 10−ϑ, (27)

where
¡
kji
¢0
and

³bkji´0 are the end-of-period capital stocks before and after
the iteration, respectively.
After achieving convergence, we should generally re-run CGA using the

obtained policy functions for capital as an initial guess for simulation. Do-
ing so controls for the possibility that the initial guess for the capital policy
functions was far from the true solution, and the simulated series (and con-
sequently, our cluster grid) did not adequately represent the true ergodic
set.
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6 Implementation details

In Section 6.1, we describe the baseline implementation of SSA and CGA
that was used to generate the results presented in the comparison paper by
KMMP (2010). In Section 6.2, we discuss alternative implementations of
these algorithms that are not included in KMMP (2010). Calibration of the
models’ parameters is provided in Juillard and Villemot (2010).

6.1 Baseline implementation of SSA and CGA

Below, we describe the details of the baseline implementation of our methods,
as well as the solution-output, hardware, software and measures of accuracy
and cost.

Stochastic simulation algorithm SSA computes solutions using the first-
degree ordinary polynomial (9). To start the iterative process, we use an
(arbitrary) initial guess: kjt+1 = 0.9k

j
t + 0.1a

j
t for all j = 1, ...N . Since the

steady-state levels of capital and productivity are normalized to one, the
above guess matches the steady-state level of capital. In terms of the vector
of coefficients vj, this guess implies that vjj = 0.9, v

j
N+j = 0.1, j = 1, ...N ,

and that the remaining coefficients in vj are equal to zero. Initial capital
and productivity level are set at their steady-state values: kj0 = 1 and a

j
0 = 1

for all j = 1, ..., N . The simulation length is T = 10, 000.
To estimate the coefficients in the linear regression (21), we use a least-

squares truncated QR factorization method; see JMM (2009) for a discussion.
We set the damping parameter in (22) to be the largest values of ξ that
lead to convergence: ξ = 0.05 for Models 1 and 5, and ξ = 0.03 for the
remaining models. We target seven digits of accuracy in the simulated data
by fixing ϑ = 7 in convergence criterion (23). To rule out explosive and
implosive behavior on initial iterations, we restrict the simulated series for
capital using moving bounds as described in Maliar and Maliar (2003b); in
most cases, however, the artificial bounds were not necessary as the initial
guess led to a stationary simulated series.

Cluster-grid algorithm CGA computes solutions using a second-degree
ordinary polynomial. To start the iterative process, we use the first-degree
polynomial solution computed by SSA as an initial guess. The SSA solution
was used both to compute an initial guess for the matrix of coefficients v
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and to construct 500 clusters. The clusters were constructed by applying an
hierarchical clustering algorithm with Ward’s linkage to the principal com-
ponents of the simulated data; see JMM (2010a) for a description of the
clustering methods and illustrative examples.
To estimate linear regression (26), we again use a least-squares truncated

QR factorization method. We set the damping parameter in (22) at ξ = 0.1
for Models 1 and 5, and ξ = 0.05 for all other models. We use ϑ = 7 for
convergence criterion (27). We solve the model twice: first, we compute the
solution using a cheap non-product monomial rule M1 with 2N nodes, and
then, we recompute it using an expensive product Gauss-Hermite rule Q(2)
with two nodes in each dimension (2N nodes in total); see JMM (2010a) for
a description of these integration methods.

Iteration-on-allocation In the baseline versions of both SSA and CGA,
we solve for the intratemporal choice using the iteration-on-allocation ap-
proach. We use the damping parameter ς = 0.01 in all cases except for
Models 1 and 5 under CGA in which case we use ς = 0.05. To start itera-
tions under SSA, we assume that consumption and labor are equal to their
steady-state values. Under CGA, we compute an initial guess for consump-
tion and labor using the solution produced by SSA.
We would like to direct attention to an important aspect of the implemen-

tation of iteration-on-allocation. Finding consumption and labor allocations
with a high degree of accuracy on each iteration requires a high computa-
tional cost and is in fact of no use, since on the next iteration, we must
re-compute consumption and labor allocations for a different matrix of coef-
ficients v. We thus do not target any accuracy criteria in consumption and
labor allocations in each iteration on v, but instead perform 10 subiterations
on mapping (10) as described in Section 4 (except for Models 1 and 5 under
CGA in which we perform 3 subiterations). We store in memory consump-
tion and labor allocations obtained after each round of subiterations and use
these allocations as inputs for the next round of the iteration-on-allocation
process. Thus, as the policy functions for capital (characterized by v) are
refined along the iterations, so do our consumption and labor allocations.
To enhance the numerical stability on initial iterations when the solution

is inaccurate, we impose fixed lower and upper bounds (equal to 50% and
150% of the steady-state level, respectively) on consumption in Model 5 and
on labor in Models 6-8. This technique is similar to the moving bounds
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used to restrict simulated series for capital under SSA. With the imposition
of bounds, the iteration-on-allocation procedure was numerically stable and
converged to a fixed point at a good pace in all of our experiments. In
convergence criterion (11), we use θ = 7.

Solution-output delivered to the testing bench of Juillard and Ville-
mot (2010) Under the iteration-on-allocation approach, SSA and CGA do
not deliver explicit policy functions for consumption and labor. The only
solution-output they produce is a matrix of the polynomial coefficients for
the capital policy functions (laws of motion) of N heterogeneous countries,
v =

¡
v1, ...,vj, ...,vN

¢
. Thus, in addition to the polynomial coefficients v, we

supply to the testing bench of Juillard and Villemot (2010) four iteration-
on-allocation routines (one per each asymmetric model and its symmetric
counterpart) that allow to find the intratemporal choice in simulation.13

The simulation of our solutions includes two steps: First, the capital laws
of motion, kjt+1 = Ψj (kt,at;v

j) , j = 1, ...N , are used to generate the capital
path {kt+1}t=0,...,T . Then, given {kt,at,kt+1}t=0,...,T , the corresponding in-
tratemporal choice {ct, `t}t=0,...,T is filled in using the iteration-on-allocation
method described in Section 4.2 and Appendix A. To begin the iteration-on-
allocation process, we set consumption and labor equal to their steady-state
values; we use the damping parameter ς = 0.01, and we perform iterations
until the results satisfy convergence criterion (11) with θ = 10.

Software, hardware, accuracy and cost Our programs are written in
Matlab, version 7.6.0.324 (R2008a). We use a desktop computer with a
Quad processor Intel(R) Core(TM) i7 CPU920 @2.67GHz, RAM 6,00GB
and Windows Vista 64 bits. For each model studied, we report the running
time in seconds: for SSA, the running time is defined as the time needed to
compute a linear solution starting from a given initial guess, and for CGA, the
running time is defined as the time needed to compute a quadratic solution
starting from a linear SSA solution. Accuracy tests are performed using the
testing bench of Juillard and Villemot (2010), and the results of these tests
are described in KMMP (2010).

13Using the iteration-on-allocation routines in simulation plays a key role in the overall
accuracy of SSA and CGA because it allows us to solve for the intratemporal choice with
essentially zero errors; see Table 4.3 in KKMP (2010). This would not be possible if we
constructed and supplied the standard explicit consumption and/or labor policy functions
in terms of state variables.
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6.2 Exploring alternative implementations

The current JEDC project was launched in 2003, and since then, we have
implemented many versions of the studied methods. We now compare our
baseline implementation of SSA and CGA to alternative implementations
explored, some of which are illustrated with numerical results in Section 7.

Stochastic simulation algorithm At an early stage of the project, Maliar
and Maliar (2004, 2007) implemented a stochastic simulation approach using
the simulation-based parameterized expectation algorithm (PEA) by Den
Haan and Marcet (1990). Under the PEA, policy functions are parame-
terized by an exponentiated polynomial and are estimated using non-linear
least-squares regression methods. The least-squares problem is typically ill-
conditioned, which leads to numerical problems.14 Moreover, non-linear re-
gression methods require a good initial guess and involve costly computations
of Jacobian and Heissian matrices. Also, such methods cannot be easily vec-
torized to estimate the policy functions of all countries simultaneously, which
is critical for speed in multi-country settings; see JMM (2010b) for an exten-
sive discussion. In the present paper, we rely on numerically stable stochastic
simulation approaches described in JMM (2009): we use a linear regression
model and employ a least-squares truncated QR factorization method suited
for use with ill-conditioned problems. This approximation method (imple-
mented in Matlab with the backslash operator) delivers the standard OLS
estimator in the absence of ill-conditioning but removes highly collinear prin-
cipal components in the presence of ill-conditioning.
We submitted for the comparison in KMMP (2010) the first-degree poly-

nomial approximation because under the chosen simulation length T = 10, 000,
it was more accurate than the second-degree polynomial approximation. This
result is explained in JMM (2010b): The accuracy of Monte Carlo integration
employed by SSA depends on how large the simulation length T is relative
to the number of polynomial coefficients in v. The higher is the polyno-
mial degree and/or the dimensionality of the problem, N , the larger is the
number of the coefficients in v, and the larger simulation length is needed
to appropriately identify the coefficients. The simulation length assumed,

14To be specific, polynomial terms in the approximating polynomial function are highly
correlated (multicollinear), and the regression model cannot be estimated with the stan-
dard least-squares method; see Den Haan and Marcet (1990), Christiano and Fisher (2000)
and JMM (2009).
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T = 10, 000, is sufficient to accurately identify the coefficients of the first-
but not the second-degree polynomial. In a model similar to Model 1 of the
current JEDC project, JMM (2010b) find that T should be increased from
10, 000 to 50, 000 and to 100, 000 to make the second-degree polynomial ap-
proximation more accurate than the first-degree polynomial approximation
for the model with up to N = 4 and with up to N = 6, respectively. Running
such a long simulation would be costly both in terms of time and memory.
As follows from the comparison in KMMP (2010), even the linear solutions
delivered by SSA are sufficiently accurate. This is because SSA fits a poly-
nomial exclusively in the relevant area of the state space (the ergodic set)
and also because it solves accurately for the intratemporal choice using the
iteration-on-allocation method.

Cluster-grid algorithm In the case of CGA, we submitted for the com-
parison in KMMP (2010) the second-degree polynomial approximation. CGA
relies on accurate numerical integration methods, and the second-degree poly-
nomial approximation is considerably more accurate than the first-degree
one. The third-degree polynomial approximation is even more accurate. In
particular, JMM (2010a) find that an increase in the polynomial degree used
in CGA increases accuracy roughly by an order of magnitude in the examples
considered. In Section 7, we compare the accuracy of the CGAmethod in the
context of the current JEDC project using the first-, second- and third-degree
ordinary polynomials, as well as using alternative Smolyak polynomials.
We also test how sensitive the CGA solutions are to the way in which the

cluster grid is constructed. First, we tried to initialize CGA using a linear
solution delivered by a log-linearization method instead of the one delivered
by SSA.15 Second, we tried to construct clusters using an alternative K-
means clustering algorithm and/or different linkage methods instead of the
baseline hierarchical algorithm with Ward’s linkage. These modifications
do not visibly affect the accuracy and speed of CGA. Finally, concerning
the number of clusters, JMM (2010a) find that oversampling (when there are
more grid points than the polynomial coefficients) increases the accuracy and
numerical stability of the CGA method compared to collocation (when the
number of grid points is the same as the number of polynomial coefficients).

15In JMM (2010a), CGA is initialized without help of other methods: time series are
simulated for an arbitrary initial guess and used to construct clusters on which a solution
is computed. The obtained solution serves as a more accurate initial guess.
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In line with this finding, we choose to oversample and use 500 clusters to
identify between 15 to 231 polynomial coefficients in models with N ranging
from 2 to 10, respectively.
To perform numerical integration, we tried to choose the most accurate

integration strategy feasible for problems of given dimensionality, N ≤ 10.
To this purpose, we design a two-step integration procedure that combines
a low-cost monomial rule with 2N nodes (step one) and a costly monomial
(quadrature) rule with 2N nodes (step two). It turned out that, in the studied
models, gains from so accurate integration are minimal relative to less costly
integration alternatives. In Section 7, we investigate how accuracy and cost
of CGA depend on the specific integration method.

Intratemporal-choice approaches In addition to our baseline iteration-
on-allocation procedure, we explored other approaches for solving for the
intratemporal choice. For all eight models studied, we computed the con-
sumption and/or labor policy functions in terms of state variables within the
main iterative cycle as described in Section 4.1, and we implemented a general
version of the precomputation approach presented in Section 4.3. Also, for
Model 5, we implemented the precomputation approach as described in Ex-
ample 3, and for Models 6 and 7, we combined the precomputation approach
and a numerical solver as described in Section 4.4.
To generate the results used for comparison in KMMP (2010), we opt for

the most accurate method, which is iteration-on-allocation. However, our
precomputation approach is a useful alternative to consider as it is faster than
the iteration-on-allocation approach. In particular, it was adopted by Pichler
(2010) for his solution method. In Section 7, we compare the performance of
alternative intratemporal-choice approaches in the context of Model 5.

7 Additional numerical results

Accuracy and speed of SSA and CGA under the baseline implementation is
assessed in KMMP (2010). In this section, we provide additional numerical
results for CGA, which show how its accuracy and speed depend on the spe-
cific intratemporal-choice approach, approximating polynomial function and
integration method. To assess the accuracy of solutions, we implement a test
that computes the average and maximum solution errors along a stochas-
tic simulation of 10, 000 observations as described in Juillard and Villemot
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(2010).

7.1 Comparison of intratemporal choice approaches

To illustrate the role of the specific intratemporal-choice approach in deter-
mining the accuracy of solutions, we use a two-country version of Model 5.
We allow an intratemporal-choice approach used in the solution procedure
differ from that used in the simulation procedure. We report the results
obtained using the second-degree polynomial approximation; the regularities
under the first-order polynomial approximation are similar.
In the solution procedure, we consider four alternative intratemporal-

choice approaches: (i) parameterize the consumption policy functions of
both countries with a polynomial of the state variables and compute the
polynomial coefficients inside the main iterative cycle; (ii) parameterize and
compute only the consumption policy function of country 1 inside the main
iterative cycle and find consumption of country 2 from closed-form expres-
sion (12); (iii) precompute the consumption manifold of country 1 outside the
main iterative cycle in terms of aggregate consumption as described in Exam-
ple 3 and find consumption of country 2 from (12); (iv) solve for consumption
of both countries using the iteration-on-allocation approach, as described in
Example 1.
In the simulation procedure, we solve for the intratemporal choice using

four approaches that are parallel to those used in the solution procedure: (a)
use the computed solution to construct the consumption policy functions for
both countries in terms of the state variables (if not constructed by the solu-
tion method used); (b) use the solution to construct the consumption policy
function of country 1 in terms of the state variables (if not constructed by
the solution method used) and find consumption of country 2 from (12); (c)
find consumption of country 1 using the consumption manifold precomputed
by method (iii) and find consumption of country 2 from (12); (d) solve for
consumption of both countries using the iteration-on-allocation approach.
To implement precomputation in (iii), we consider an interval for aggre-

gate consumption equal to ±20% of the steady-state value, and we split this
interval into 300 equally spaced points. Outside the main iterative cycle,
for each value of aggregate consumption cp, we compute c1p numerically from
(16). Inside the main iterative cycle, we compute aggregate consumption ct
from (2) and find the corresponding c1t using a piecewise linear polynomial
interpolation. We tried other interpolation schemes such as a global high-
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order polynomial approximations, piecewise cubic polynomial interpolation,
splines, etc., and found that piecewise low-order polynomial interpolation
schemes lead to more accurate solutions (though are more costly) than global
high-order polynomial approximations.
In Table 1, we present the results of combining methods (i)-(iv) in the

solution procedure with methods (a)-(d) in the simulation procedure (all er-
rors that are less than 10−10 are replaced by −∞). As the table indicates,
if in both the solution and simulation procedures, we approximate a policy
function for consumption using a second-degree polynomial of state variables,
the resulting accuracy is low (namely, errors in the intratemporal-choice con-
ditions including the resource constraint are large). If in the solution proce-
dure, we solve for consumption very accurately (using precomputation and
iteration-on-allocation) but in simulation, we solve for consumption not so
accurately (using second-degree polynomials of state variables), the result-
ing accuracy is again low. Finally, if in the solution procedure, we solve for
consumption not very accurately (using second-degree polynomials of state
variables), but in simulation, we solve for consumption very accurately (us-
ing precomputation and iteration-on-allocation), the accuracy gets restored.
These tendencies lead us to conclude that it is not so important for accuracy
how we compute the intratemporal choice in the solution procedure but how
we compute it in simulation (when running accuracy tests).
We would like to highlight two additional findings about accuracy in Table

1. First, accuracy does not depend significantly on whether we approximate
one or more than one intratemporal-choice variable using second-degree poly-
nomials of state variables; in both cases, we suffer approximately the same
accuracy loss. Second, the methods solving for the intratemporal choice ac-
curately lead to considerably larger Euler-equation errors than those solving
for the intratemporal choice less accurately.
Finally, Table 1 also shows the time, TCPU , needed to run the test on

a stochastic simulation of 10, 000 observations. Under the precomputation
approach, TCPU is only slightly larger than under the standard approach
constructing the consumption and labor policy functions in terms of state
variables, while under the iteration-on-allocation approach, TCPU is almost
20 times larger. The iteration-on-allocation approach performs slowly in the
test because our testing procedure is not vectorized along the time dimension;
i.e., we use the iteration-on-allocation solver 10, 000 times to compute c1t and
c2t period by period.
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7.2 Cost of iteration-on-allocation

We now quantify the benefits of vectorizing the iteration-on-allocation ap-
proach along the time dimension. In Table 2, we compare the time necessary
to simulate a time-series solution of length T under two alternative simula-
tion procedures: one in which the intratemporal choice is computed using the
standard policy functions represented by second-degree polynomials of state
variables (CPU1) and the other in which the intratemporal choice is com-
puted using the iteration-on-allocation solver (CPU2). As an initial guess
for allocations in the latter procedure, we use the allocations obtained in the
former procedure.
Since our simulation routines are written in a vectorized form, the cost of

iteration-on-allocation depends dramatically on the simulation length. When
we simulate only one period entry (i.e., T = 1), the iteration-on-allocation
approach is about 67 and 362 times more costly for Models 1 and 4, respec-
tively, than the standard approach based on policy functions. However, as T
increases, the relative cost of iteration-on-allocation decreases; in particular,
for T = 10, 000, the iteration-on-allocation approach is about 4% and 250%
more costly for Models 1 and 4, respectively, than the standard approach
based on policy functions. The latter value is an upper bound. In other
cases, the relative cost of iteration-on-allocation is even lower.

7.3 Approximating functions and integration methods

In Table 3, we assess the effect of the specific approximating function and
integration method on the accuracy of CGA in the context of two-country
versions of Models 5-8. For each model studied, we consider four alternative
approximating functions: the first-, second- and third-degree ordinary poly-
nomials, as well as the Smolyak polynomial used in MKK (2010). We also
consider five alternative integration methods: the product Gauss-Hermite
rule with 1, 2N , 3N nodes, denoted Q (1), Q (2) and Q (3), respectively; and
the monomial formulas with 2N and 2N2 + 1 nodes, denoted M1 and M2,
respectively.
We observe the following regularities from the table. First, all of the inte-

gration rules considered, except for the one-node Gauss-Hermite rule Q (1),
deliver solutions of virtually the same accuracy, with errors that are identical
to the fourth digit. The Q (1) rule produces errors that are slightly larger;
however, this rule has a substantially lower cost than the other integration
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methods and thus allows to solve problems of much higher dimensionality.
In particular, JMM (2010a) use the Q (1) rule to compute first- and second-
degree polynomial solutions to a model (similar to Model 1 of the current
project) with up to N = 200 and N = 40 countries, respectively.
Second, when solutions are computed using ordinary polynomials, in-

creasing the polynomial degree from one to two raises accuracy (reduces
errors) by more than an order of magnitude; increasing the polynomial de-
gree from two to three does so by slightly less than an order of magnitude.
However, it is costly to increase the degree of a complete polynomial in high-
dimensional problems. As is seen from Table 3, the Smolyak polynomial is a
useful alternative for CGA: It leads to as nearly as accurate solutions as the
third-degree complete polynomial, but its number of terms grows quadrati-
cally instead of cubically with dimension (the Smolyak polynomial has only
four times more terms than the second-degree complete polynomial indepen-
dently of dimension); see MKK (2010) for a discussion and definition of the
Smolyak polynomial.
In Table 4, we investigate how the cost and accuracy of CGA depend

on the specific integration method used. To this purpose, we recompute the
solutions to Models 5-8 under four alternative integration methods: Q(1),
Q(2), M1 and M2. The accuracy measures in our Table 4 are analogous
to those reported in Table 5 of KMMP (2010); however, our testing proce-
dure uses random draws, which are different from those used by Juillard and
Villemot (2010). As Table 4 shows, the errors we found are very close to
those shown in Table 5 of KMMP (2010). Furthermore, all of the integra-
tion methods considered again lead to solutions of nearly the same accuracy,
with the exception of the Q(1) rule (which produces slightly less accurate
solutions).
The key finding in our Table 4 is that CGA can compute solutions of the

same accuracy as those submitted for the comparison in KMMP (2010), but
at a much lower cost. For example, we reduce the computational time for
Model 5 with N = 10 countries from about 35 hours (reported in Table 3 of
KMMP, 2010) to 7 minutes (reported in our Table 4) without a visible loss
in accuracy by replacing our costly, baseline two-step integration procedure
with just its first step based on theM1 monomial rule with 2N nodes.16 Al-

16At the moment of submission of our solutions for the comparison in KMMP (2010), we
did not have a reliable accuracy test, and we submitted the solutions obtained under the
most accurate integration procedure feasible for CGA, which is a two-step combination of
the M1 and Q(2) rules.
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ternatively, we can solve a ten-country version of Model 5 in about 2 minutes
using theQ(1) rule at the cost of a modest loss in accuracy. InModels 6-8, the
cheaper integration rules reduce the computational time in roughly the same
proportion as in Model 5. However, Models 6-8 are generally more costly
to solve than Model 5 because of higher costs of computing the intratem-
poral choice. The computational time for these models can be reduced (at
the cost of some accuracy loss) by combining the iteration-on-allocation and
precomputation approaches, as described in Section 4.3. In addition, we can
decrease the computational time for all models by reducing the number of
clusters; see JMM (2010a) for the corresponding experiments.

7.4 Hybrid of perturbation and accurate intratemporal-
choice methods

In Section 7.1, we show that using accurate intratemporal-choice approaches
in simulation can increase the accuracy of solution methods that compute the
intratemporal choice with insufficient accuracy. A prominent example of such
a method is perturbation, which in the studied models, produces small errors
in the Euler equations but large errors in the intratemporal-choice conditions
(especially, in the resource constraint); see Table 6 of KMMP (2010) for the
accuracy by equation for the first- and second-order perturbation methods
by Kollmann, Kim and Kim (2010) (referred to as PER1 and PER2, respec-
tively). Consequently, there are potential benefits from constructing a hybrid
of the standard perturbation method (used as a low-cost method for com-
puting capital policy functions), and accurate intratemporal-choice methods
(used to solve for consumption and labor after capital is computed).
To verify the above conjecture, we take the capital policy functions pro-

duced by the standard log-linearization method for two-country versions of
Models 5-8 and accurately solve for consumption and labor in simulation us-
ing the iteration-on-allocation method. In Table 5, we compare the accuracy
of the resulting hybrid method with that of the SSA, CGA, PER1 and PER2
methods, as reported in Table 5 of KMMP (2010).
As Table 5 indicates, our hybrid method is far more accurate (by more

than an order of magnitude) than PER1. It is even more accurate than
PER2 and is only slightly less accurate than SSA. The hybrid method is still
considerably less accurate than CGA. However, when comparing the hybrid
method against CGA, we should take into account that the latter uses the
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second-degree polynomial, while the former uses the first-degree polynomial.
The second-order hybrid perturbation method is likely to be more accurate
than the first-order one.
Finally, to construct the hybrid perturbation method, we can use any

numerical procedure that can accurately solve the system of intratemporal-
choice conditions with respect to consumption and labor; e.g., a standard
Newton-type solver. However, as we argued before, the iteration-on-allocation
solver has advantages over other solvers. It is a good candidate for a fusion
with perturbation.

8 Conclusion

In this paper, we offer a mix of techniques that taken together allows us to
address the challenges of high-dimensional problems. First, SSA and CGA
operate on ergodic-set domains which in high-dimensional problems, are nor-
mally just a tiny fraction of the standard hypercube domain used by other
methods. Second, we use efficient and numerically stable linear approxi-
mation approaches described in JMM (2009). Third, we rely on low-cost
integration methods, namely, a Monte Carlo integration method combined
with regression under SSA, and non-product monomial rules and the Gauss-
Hermite rule with one node under CGA. Fourth, we solve for the intratem-
poral choice using the accurate iteration-on-allocation and precomputation
methods. Fifth, we show that other polynomial families (such as Smolyak
polynomials studied in MKK, 2010) can help increase accuracy and speed of
our solution methods relative to our baseline family of ordinary polynomials.
Finally, we argue that proper coordination of the approximation, integra-
tion and intratemporal-choice strategies is critical for accuracy, speed and
numerical stability of our solution methods.
If one uses a standard desktop computer (as we do), it is crucial for speed

to vectorize computations. We iterate on policy functions of all countries si-
multaneously rather than country by country, and we solve for the intratem-
poral choice in all points at once rather than point by point. In contrast,
if one uses parallel computing tools, it is essential to separate computations
by country, grid point, integration node, etc. We should emphasize that the
methods described in the paper are naturally parallelizable.
In addition to our main SSA and CGA algorithms, we construct a hy-

brid solution algorithm that combines perturbation (used to compute policy
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functions for capital) and accurate intratemporal-choice methods (used to
solve for consumption and labor allocations). We find that such a hybrid
method delivers solutions that are more than an order of magnitude more
accurate than those delivered by the pure perturbation method. This hy-
brid perturbation method can be useful for solving problems of much higher
dimensionality than those studied in the present paper.
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9 Appendix

In this section, we present formulas used to implement the iteration-on-
allocation and precomputation methods, as well as those used to parame-
terize the capital policy functions.

9.1 Appendix A

This section describes howwe implement the iteration-on-allocation approach
in Models 6-8 (and their corresponding symmetric counterparts, Models 2-4).

Model 6 Conditions (4), (5) and (2) can be represented as

ecjt =
"
ajt
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τ jbj

# ηj

1+αηj ¡
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ljt ≡ ecjt , j = 2, ..., N , (29)
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(30)
where {γj, ηj, bj}j=1,...,N are the utility-function parameters, and α is the
share of capital in production. Condition (28) is obtained by combining (4)
and (5), and conditions (29) and (30) follow from (5) and (2), respectively.
For given kt, at, kt+1, equations (28)−(30) define a mapping ec1t = g (c1t ). We
iterate on labor of the first country, ec1t , as follows: Assume some initial c1t ;
compute

necjtoj=2,...,N from (28); find
©ecjtªj=1,...,N from (29); obtain ec1t from

(30); if c1t 6= ec1t , compute the next-iteration input as (1− ξ) c1t + ξec1t . Iterate
until convergence.

Model 7 Conditions (5) and (4), respectively, are
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, (31)
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# 1
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, j = 2, ..., N,

(32)
where ψ is the utility-function parameter, and Le is the labor endowment
of the representative agent. The resource constraint is given by (30) and
determines ec1t . For given kt, at, kt+1, equations (30), (31) and (32) define a
mapping

necjtoj=1,...,N = g
³©

cjt
ªj=1,...,N´

. We iterate on labor of all countries,necjtoj=1,...,N , as follows: Assume some initial ©cjtªj=1,...,N , find ©ecjtªj=1,...,N
from (31); compute

necjtoj=2,...,N and ec1t from (32) and (30), respectively; if

cjt 6= ecjt for j = 1, ..., N , calculate the next-iteration input as (1− ξ) cjt + ξecjt .
Iterate until convergence.
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Model 8 Conditions (5), (4) and (2), respectively, are

ecjt =
⎡⎢⎢⎣(1− α) ajtA

¡
cjt
¢μj−1 ³

α
¡
kjt
¢μj
+ (1− α)

¡
cjt
¢μj´1/μj−1

bj

⎤⎥⎥⎦
χj ¡

Le − cjt
¢
,

(33)

ecjt = Le −

⎡⎢⎣ 1
bj

Ã
u1c,tτ

1¡ecjt¢−1/χj τ j
! 1−1/χj

1/χj−1/γj

−
¡ecjt¢1−1/χj

bj

⎤⎥⎦
1

1−1/χj

, j = 2, ..., N,

(34)

ec1t =
⎡⎣Ã f1t

a1tA (1− α)1/μ
1

!μj

− α (k1t )
μ1

1− α

⎤⎦ 1
μ1

, (35)

where {χj, μj}j=1,...,N are the utility-function parameters; ujc,t for j = 1 and
f1t are, respectively, the t-period marginal utility of consumption and output
of country 1, defined as

ujc,t ≡
h¡
cjt
¢1−1/χj

+ bj
¡
Le − cjt

¢1−1/χji 1/χj−1/γj1−1/χj ¡
cjt
¢−1/χj

, (36)

f1t ≡
NX
j=1

⎡⎣ecjt + kjt+1 − kjt +
φ

2
kjt

Ã
kjt+1

kjt
− 1
!2⎤⎦ (37)

−
NX
j=2

ajt+1A
³
α
¡
kjt
¢μj
+ (1− α)

¡
cjt
¢μj´1/μj

.

For given kt, at, kt+1, equations (33)− (35) define a mapping
necjtoj=1,...,N =

g
³©

cjt
ªj=1,...,N´

. We iterate on labor of all countries,
necjtoj=1,...,N , as fol-

lows: Assume some initial
©
cjt
ªj=1,...,N

; find
©ecjtªj=1,...,N from (33); computenecjtoj=2,...,N and ec1t using (34) and (35), respectively; if cjt 6= ecjt for j = 1, ..., N ,

calculate the next-iteration input as (1− ξ) cjt+ξecjt . Iterate until convergence.
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9.2 Appendix B

In this section, we show that in Model 2, the solution manifold for aggre-
gate consumption can be precomputed in terms of two composite arguments
independently of the number of agents. Since all agents are identical in pref-
erences and have identical welfare weights, τ j = 1 for j = 1, ..., N , the ratio
of marginal utilities of any two agents in (4) is equal across agents. As a
result, cjt = ct/N for all j. From the intratemporal FOC (5), we obtain

cjt =

"
c
1/γ
t N−1/γb

(1− α)Aajt
¡
kjt
¢α
#− η

1+αη

. (38)

Substituting (38) into resource constraint (2), we obtain

ct = c
− η(1−α)
γ(1+αη)

t qt + dt, (39)

with the composite variables qt and dt being defined as

qt =

PN
j=1

h
Aajt

¡
kjt
¢αi1+η(1−α)

1+αη

h
N−1/γb
(1−α)

iη(1−α)
1+αη

, dt = −
φ

2
kjt

Ã
kjt+1

kjt
− 1
!2
+ kjt − kjt+1.

(40)
We can use equation (39) to precompute consumption ct in terms of two
variables qt and dt. (If welfare weights differ across agents and consequently,
individual consumption is not equal to average consumption, we can still
construct the intratemporal-choice manifolds in terms of the same composite
variables; see Maliar and Maliar, 2001, 2003b, for related results).
Outside the main iterative cycle, take a grid of P values for qt and dt,

i.e., {qp, dp}p=1,...,P . For each grid point p = 1, ..., P , use a numerical solver
to find a solution for cp from equation (39) represented in a form suited
for precomputation. Interpolate the constructed set function to the relevant
continuous domain to obtain the manifold bc (q, d). Inside the main iterative
cycle, given kt, at, kt+1, compute qt and dt from (40) for each t, use the
precomputed manifold to find aggregate consumption, ct = bct (qt, dt), and
compute individual labor cjt from (38) for j = 1, ..., N .

9.3 Appendix C

In this section, we provide Euler equation (19) corresponding to Models 5-8.
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Model 5

kjt+1 = Et

⎧⎨⎩β

¡
cjt+1

¢−1/γj¡
cjt
¢−1/γj

ωj
t

h
θjt+1 + αajt+1A

¡
kjt+1

¢α−1i
kjt+1

⎫⎬⎭ . (41)

Model 6

kjt+1 = Et

⎧⎨⎩β

¡
cjt+1

¢−1/γj¡
cjt
¢−1/γj

ωj
t

h
θjt+1 + αajt+1A

¡
kjt+1

¢α−1 ¡
cjt+1

¢1−αi
kjt+1

⎫⎬⎭ . (42)

Model 7

kjt+1 = Et

⎧⎪⎪⎪⎨⎪⎪⎪⎩β

(cjt+1)
ψ
(Le−cjt+1)

1−ψ 1−1/γj

cjt+1

(cjt)
ψ
(Le−cjt)

1−ψ 1−1/γj

cjt
ωj
t

h
θjt+1 + αajt+1A

¡
kjt+1

¢α−1 ¡
cjt+1

¢1−αi
kjt+1

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

(43)

Model 8

kjt+1 = Et

(
β
ujc,t+1

ujc,tω
j
t

∙
θjt+1 + αajt+1A

¡
kjt+1

¢μj−1 ³
α
¡
kjt+1

¢μj
+ α

¡
cjt+1

¢μj´1/μj−1¸
kjt+1

)
,

(44)
where ujc,t is defined as in (36).
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Figure 2a. Iteration-on-allocation under -1<g'<0:
                    convergence without damping.                      
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Figure 2b. Iteration-on-allocation under g'<-1:
                     divergence without damping.                     
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Figure 2d. Iteration-on-allocation under g'<-1:
                    convergence with damping.                      
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Figure 2c. Iteration-on-allocation under -1<g'<0:
                   convergence with damping.                         
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Note: Figures 2a-2d illustrate possible outcomes of the iteration-on-allocation method; ct
1 is consumption of the first country; g is the mapping 

used in the iteration-on-allocation method and g' is the first derivative of g.



Table 1. Accuracy and time needed to run the test for the two-country version of Model 5 under alternative intratemporal-choice  
approaches.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note: ∆mean and ∆max are, respectively, the average and maximum errors in the corresponding optimality condition (in log10 
units) in the test on a stochastic simulation of 10,000 observations; TCPU is the time needed to run the test (in seconds). 
Abbreviations “Euler”, “RC” and “Intrat” denote the Euler equations, resource constraint and intratemporal-choice conditions, 
respectively.  

Intratemporal choice in the simulation procedure 
(a) Two policy 

functions 
(b) One policy 

function 
(c) Precomputation 

 
(d) Iteration-on- 

-allocation 

Intratemporal  
choice in  

the solution  
procedure 

Equation

∆mean ∆max TCPU ∆mean ∆max TCPU ∆mean ∆max TCPU ∆mean ∆max TCPU

(i) Euler -6.14 -4.55 15 -6.02 -4.55 15 -5.68 -4.29 17 -5.73 -4.29 226 

Two policy RC -4.93 -3.48  -4.54 -3.09  -5.89 -5.61  - ∞ - ∞  

functions Intrat -4.64 -3.22  - ∞ - ∞  - ∞ - ∞  - ∞ - ∞  

(ii) Euler -5.98 -4.57 15 -6.06 -4.57 15 -5.68 -4.29 17 -5.72 -4.28 226 

One policy RC -4.68 -3.60  -4.54 -3.09  -5.89 -5.61  - ∞ - ∞  

function Intrat -4.69 -3.17  - ∞ - ∞  - ∞ - ∞  - ∞ - ∞  

(iii)  Euler -5.98 -4.42 14 -5.91 -4.42 14 -5.69 -4.35 16 -5.74 -4.35 231 

Precomputation RC -4.66 -3.63  -4.43 -3.17  -5.89 -5.61  - ∞ - ∞  

 Intrat -4.65 -3.28  - ∞ - ∞  - ∞ - ∞  - ∞ - ∞  

(iv) Euler -5.99 -4.42 15 -5.92 -4.42 15 -5.69 -4.35 17 -5.74 -4.35 232 

Iteration-on- RC -4.66 -3.63  -4.42 -3.18  -5.89 -5.61  - ∞ - ∞  

allocation  Intrat -4.65 -3.28  - ∞ - ∞  - ∞ - ∞  - ∞ - ∞  



Table 2. Time for simulating Models 5-8 under two alternative simulation procedures: one using policy functions and the other using 
iteration-on-allocation.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
Note: CPU1 and CPU2 are, respectively, the time necessary to simulate a time-series solution of length T under the simulation 
procedure using policy functions and the one using iteration-on-allocation (in seconds); N is the number of countries.  

T=1 T=10 T=100 T=1,000 T=10,000 
N 

CPU1 CPU2 CPU1 CPU2 CPU1 CPU2 CPU1 CPU2 CPU1 CPU2 
Model 5 

2 0.0001 0.0071 0.0004 0.0090 0.0030 0.0182 0.0415 0.1038 5.4893 5.7720
4 0.0001 0.0041 0.0004 0.0055 0.0037 0.0144 0.0645 0.1218 22.1597 22.4737
6 0.0001 0.0033 0.0004 0.0046 0.0045 0.0171 0.2483 0.3546 48.7948 49.0005
8 0.0001 0.0028 0.0005 0.0040 0.0055 0.0173 0.5870 0.6553 82.8177 83.3027

10 0.0001 0.0022 0.0006 0.0036 0.0072 0.0184 0.9490 1.0325 124.5969 124.5281
Model 6 

2 0.0001 0.0035 0.0004 0.0056 0.0032 0.0219 0.0416 0.1754 5.4723 6.0610
4 0.0001 0.0019 0.0006 0.0038 0.0041 0.0204 0.0694 0.1941 22.4622 22.9424
6 0.0002 0.0011 0.0006 0.0027 0.0052 0.0167 0.2573 0.3730 49.1699 49.5512
8 0.0002 0.0015 0.0007 0.0033 0.0067 0.0205 0.5774 0.7385 83.1369 83.7333

Model 7 
2 0.0001 0.0302 0.0003 0.0430 0.0033 0.1544 0.0410 1.0800 5.5069 9.8106
4 0.0001 0.0200 0.0004 0.0422 0.0038 0.2006 0.0645 1.3623 22.4296 28.5446
6 0.0001 0.0227 0.0004 0.0506 0.0048 0.2958 0.2525 2.0232 49.0937 58.5057

Model 8 
2 0.0001 0.0381 0.0004 0.0622 0.0033 0.2730 0.0412 2.1903 5.5690 14.0949
4 0.0001 0.0555 0.0004 0.1076 0.0041 0.6396 0.0664 5.1589 22.4694 53.7229
6 0.0002 0.0694 0.0006 0.1595 0.0050 0.9718 0.2472 8.5013 49.2921 101.2122



Table 3. Effect of the specific polynomial on accuracy of CGA under five integration rules in the two-country versions of Models 5-8.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 

Note: ∆mean and ∆max are, respectively, the average and maximum absolute errors across all optimality conditions (in log10 units) in the 
test on a stochastic simulation of 10,000 observations. Abbreviations “1st”, “2nd”, “3rd” and “SMOL” denote the first-, second-, third-
degree ordinary polynomials and the Smolyak polynomial, respectively.  

Q(3) Q(2) M2 M1 Q(1) Poly- 
nomial ∆mean ∆max ∆mean ∆max ∆mean ∆max ∆mean ∆max ∆mean ∆max 
Model 5 

1st -4.90195 -3.13194 -4.90194 -3.13194 -4.90193 -3.13194 -4.90193 -3.13194 -4.88823 -3.13396
2nd -6.38976 -4.34742 -6.38976 -4.34735 -6.38974 -4.34730 -6.38974 -4.34730 -5.86835 -4.30024
3rd -7.15921 -5.15528 -7.15696 -5.15517 -7.15966 -5.15600 -7.15709 -5.15556 -5.89480 -4.96021

SMOL -7.06458 -5.05292 -7.06445 -5.05265 -7.06427 -5.05233 -7.06425 -5.05236 -5.89095 -4.83609
Model 6 

1st -4.82343 -3.02274 -4.82342 -3.02274 -4.82340 -3.02274 -4.82341 -3.02274 -4.75012 -3.03238
2nd -6.27646 -4.30442 -6.27647 -4.30437 -6.27646 -4.30432 -6.27647 -4.30432 -5.70532 -4.23380
3rd -7.15049 -5.15572 -7.15109 -5.15531 -7.15136 -5.15497 -7.15144 -5.15489 -5.72017 -4.78838

SMOL -6.98459 -4.98077 -6.98441 -4.98053 -6.98414 -4.98026 -6.98409 -4.98026 -5.71619 -4.70282
Model 7 

1st -4.77765 -3.03091 -4.77765 -3.03091 -4.77763 -3.03091 -4.77764 -3.03091 -4.73123 -3.03668
2nd -6.07533 -4.24781 -6.07537 -4.24774 -6.07538 -4.24771 -6.07539 -4.24770 -5.65946 -4.20806
3rd -7.06964 -4.99023 -7.07030 -4.99064 -7.07040 -4.99073 -7.07057 -4.99098 -5.67346 -4.75051

SMOL -6.78548 -4.72708 -6.78540 -4.72691 -6.78532 -4.72679 -6.78525 -4.72677 -5.66775 -4.54921
Model 8 

1st -4.58750 -2.80045 -4.58750 -2.80045 -4.58749 -2.80045 -4.58749 -2.80045 -4.53314 -2.80015
2nd -5.87377 -3.83040 -5.87378 -3.83037 -5.87377 -3.83035 -5.87378 -3.83035 -5.52168 -3.79411
3rd -6.81686 -4.38437 -6.81684 -4.38446 -6.81679 -4.38448 -6.81674 -4.38452 -5.57508 -4.27229

SMOL -6.69808 -4.56910 -6.69794 -4.56898 -6.69782 -4.56889 -6.69777 -4.56889 -5.57173 -4.40082



Table 4. Accuracy and speed of CGA for Models 5-8 under four integration rules.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
Note: ∆mean and ∆max are, respectively, the average and maximum absolute errors across all optimality conditions (in log10 units) in the 
test on a stochastic simulation of 10,000 observations; CPU is the time necessary to compute a solution (in seconds); N is the number of 
countries. 

 

Q(2) M2 M1 Q(1) N 
∆mean ∆max CPU ∆mean ∆max CPU ∆mean ∆max CPU ∆mean ∆max CPU 

Model 5 
2 -6.39 -4.35 72 -6.39 -4.35 91 -6.39 -4.35 73 -5.87 -4.30 63
4 -6.44 -4.45 145 -6.44 -4.45 227 -6.44 -4.45 105 -5.70 -4.36 76
6 -6.44 -4.66 575 -6.44 -4.66 661 -6.44 -4.66 161 -5.64 -4.50 94
8 -6.42 -4.76 4319 -6.42 -4.76 1822 -6.42 -4.76 290 -5.62 -4.57 115

10 -6.39 -4.74 144327 -6.38 -4.75 4425 -6.38 -4.75 420 -5.62 -4.56 137
Model 6 

2 -6.28 -4.30 1231 -6.28 -4.30 1417 -6.28 -4.30 1234 -5.71 -4.23 963
4 -6.31 -4.45 2687 -6.31 -4.45 3804 -6.31 -4.45 1781 -5.52 -4.35 1104
6 -6.32 -4.62 8556 -6.32 -4.62 8128 -6.32 -4.62 2207 -5.46 -4.40 1052
8 -6.31 -4.66 38392 -6.31 -4.66 19635 -6.31 -4.66 3864 -5.44 -4.46 1444

Model 7 
2 -6.08 -4.25 759 -6.08 -4.25 912 -6.08 -4.25 768 -5.66 -4.21 614
4 -6.09 -4.21 1842 -6.09 -4.21 2745 -6.09 -4.21 1402 -5.52 -4.16 887
6 -6.09 -4.33 6254 -6.09 -4.33 7723 -6.09 -4.33 2449 -5.46 -4.23 1173

Model 8 
2 -5.87 -3.83 1185 -5.87 -3.83 1400 -5.87 -3.83 1177 -5.52 -3.79 894
4 -5.93 -4.13 3807 -5.93 -4.13 5631 -5.93 -4.13 2913 -5.38 -4.05 1790
6 -5.96 -4.22 13414 -5.96 -4.22 14385 -5.96 -4.22 3869 -5.32 -4.09 1756



Table 5. Accuracy of the hybrid perturbation method and other solution methods for the two-country versions of Models 5-8.  
 

 
 
 
 
 
 
 
 

Note: ∆mean and ∆max are, respectively, the average and maximum absolute errors across all optimality conditions (in log10 units) in 
the test on a stochastic simulation of 10,000 observations: The results for SSA, CGA, PER1 and PER2 are reproduced from KMMP 
(2010).  

 

SSA CGA PER1 PER2 Hybrid Model 
∆mean ∆max ∆mean ∆max ∆mean ∆max ∆mean ∆max ∆mean ∆max 

5 -4.79 -3.20 -6.39 -4.53 -3.69 -1.70 -5.13 -2.60 -4.50 -2.88
6 -4.79 -3.12 -6.38 -4.50 -3.53 -1.45 -4.84 -2.30 -4.56 -2.84
7 -4.08 -3.08 -6.15 -4.19 -3.05 -1.20 -4.21 -1.90 -4.57 -2.87
8 -4.62 -2.90 -5.98 -4.07 -3.11 -1.25 -4.35 -2.09 -4.36 -2.64




