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Abstract

We develop a method to robustly estimate dynamic models even if their discount factor

is “poorly identified”, or not identified at all: We use homotopy continuation to trace the

solution to the first-order conditions of the MPEC formulation of the estimation problem

(Su and Judd, 2012)—and thus the estimates of the model parameters—as a function of

the discount factor. We apply this method to the bus engine replacement model of Rust

(1987), a.k.a. the “Harold Zurcher model”, whose discount factor is believed to be poorly

identified. Instead, we find that it is well identified with estimates that are greater than

one in various model specifications. We demonstrate that this does not contradict economic

theory, given the prolonged periods of negative real interest rates in the US during the

sampling period, 1974 to 1985. Moreover, we implement a natural experiment: In August

1979, Paul Volcker became chairman of the US Federal Reserve, immediately taking drastic

steps to curb inflation, which led to a significant rise in nominal and real interest rates.

We introduce an unanticipated structural break in discounting, finding that the estimate of

Harold Zurcher’s discount factor decreases significantly one month after Volcker took office.
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1 Introduction

The estimation of the discount factor in dynamic discrete choice models (DDCMs) is considered

to be difficult: First, it is non-parametrically non-identified (Rust, 1994). That is, without strong

assumptions on the primitives of the model, there exist a function mapping state and actions

to (immediate) utility for all values of the discount factor—which is commonly restricted to the

range of the half-open interval [0, 1)—explaining the observed state and action combinations

equally well. Furthermore, as shown by Magnac and Thesmar (2002), the discount factor is—

together with the distribution of the error terms—key to identification. Therefore, substantial

effort has been put into finding conditions and restrictions under which the former is indeed

identified, among them Komarova et al. (2018); Daljord et al. (2018); Abbring and Daljord

(2020). Second, even if the model complies with the structure and the assumptions needed for

its discount factor to be identified theoretically, a widespread conception is that it is still often

difficult to estimate “because it is poorly identified” (Aguirregabiria and Mira, 2010, Footnote

7).

In this paper, we develop a homotopy continuation approach to estimation for models with

poorly or even non-identified discount factors in a maximum likelihood setting. Our approach

traces the estimates of the model primitives, such as the parameters of the utility function and

those of the state transition distribution, together with the solution of the model as a func-

tion (or, more precisely, a correspondence) of the non-identified parameter. This approach is

inspired by the insight of Su and Judd (2012) that the estimation problem can be solved as a

constrained optimization problem, maximizing the likelihood function subject to the constraints

induced by the model equations, an approach referred to as mathematical programming with

equilibrium constraints (MPEC). We go one step beyond, taking the first-order conditions of the

MPEC formulation parametrized by non-identified parameter, and trace the resulting system of

equations using homotopy continuation. It is well-known in the literature that this approach

is numerically well-behaved even if the optimization problem including the non-identified pa-

rameter has a singular Hessian (i.e., the discount factor is non-identified); for an introduction

to homotopy continuation, see, e.g., Zangwill and Garcia (1981); Allgower and Georg (2012).

Although we consider discount factors in this paper, our approach is not limited to that; in fact,

it is applicable in many situations where a parameter constitutes a “trouble-maker” in terms of

identification—even if defined implicitly only; we demonstrate this in our application below.

We apply this homotopy estimation method to the bus engine replacement model and the

original data set of Rust (1987). The model features a manager of the maintenance service

department for a fleet of public transportation buses located in Madison (Wisconsin), a person

named Harold Zurcher (b 1926, d 2020): On a monthly basis, he has to decide for each of his

buses whether completely overhaul them (most importantly, replacing their engine), or whether

to do small maintenance work only; in general, the complete overhaul is much more expensive

compared to the regular maintenance work. However, Rust (1987) quotes evidence that mainte-

nance costs increase with “age”, measured in terms of mileage traveled since the last complete

overhaul. Therefore, this decision constitutes a dynamic decision problem, as the decision to

overhaul the bus impacts not only immediate but also future maintenance costs. Rust (1987)

models the behavior of Harold Zurcher as a dynamic programming problem and, using a data set
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of his decisions between 1974 to 1985, estimates the parameters of the cost function underlying

Zurcher’s decisions.

The “bus engine replacement model”, or the “Harold Zurcher model” as some call it, is

considered to be pioneering the work on the estimation of dynamic discrete choice problems, and

Rust (1987), together with Rust (1988), also provides a complete, general numerical approach

to estimate such models: the nested fixed-point algorithm (NFXP). At the same time, it might

also have contributed to the discount factor’s nimbus of not being estimable—from the very

early days of this literature on. In fact, the discount factor in the paper is not estimated, but

fixed at a value of 0.9999. The author explains this as follows (Rust, 1987, p. 1023):

I was not able to precisely estimate the discount factor β. Changing β to .98 or

.999999 produced negligible changes in the likelihood function and parameter esti-

mates of (RC, θ11). The reason for this insensitivity is that β is highly collinear with

the replacement cost parameter RC . . . Thus, if I treated β as a free parameter,

the estimated information matrix was nearly singular, causing difficulties for the

maximization algorithm.

However, at the same time he notes that (ibid.):

I did note a systematic tendency for the estimated value of β to be driven to 1. This

curious behavior may be an artifact of computer round-off errors, or it could indicate

a deeper result.

We investigate this conundrum using our homotopy estimation method, which appears to be

perfectly suited in the presence of a near-singular Hessian, and indeed find a deeper root behind

it.

Before we can address the econometric problem of estimating a supposedly poorly identified

parameter, we have to mitigate an issue that comes with the second statement from above.

Rust notes that his algorithm tends to push the estimate of the discount factor towards one,

and thus we have to be prepared for the potential implications of this situation in the context

of the underlying dynamic programming problem. Generally speaking, discount factors equal

to—or greater than—one are not a problem, as long as the dynamic problem which attempts

to maximize the (expected) sum of discounted future utilities has a finite horizon. In fact, it is

a standard procedure in the field of operations research to solve total reward problems through

finite horizon dynamic programming without a discount factor, i.e., a discount factor identical

to one; see, for example, Barz (2007). Of those who attempt to estimate it, Erdem and Keane

(1996), among others, find it to be even larger than one; importantly, they do not preclude this

result, arguing (Erdem and Keane, 1996, Footnote 11):

The intertemporal factor is usually assumed to be between 0 and 1 because it is

assumed to be 1 / (1 + interest rate) although behaviorally this does not have to

hold.

The problem with discount factors equal to or larger than one becomes more apparent if

the horizon of the dynamic programming problem is infinite. In such a setup, the sum of

(expected) future discounted utilities diverges unless there exists an absorbing state with zero
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utility. Therefore, it is a legitimate question if such configuration makes economic sense. Tech-

nically speaking, an infinite horizon problem is simply the limit of a finite horizon problem with

T periods, as T → ∞. Indeed, quite early in the literature on dynamic programming, Morton

and Wecker (1977) provide conditions under which the infinite horizon problem constitutes a

valid approximation to the finite horizon problem even for discount factors equal to or larger

than one, and they find that these conditions are fulfilled for many important classes of applied

problems (the one studied in this paper included). Consequently, if one is willing to accept

discount factors greater than one for finite horizon problems, accepting the same for the infinite

case is almost inevitable, given that no human being can seriously be assumed to look ahead

billions of years or more when making their decisions (and particularly not when deciding about

bus engines. . . ).

Still, a problem that remains with a discount factor equal to or greater than one in infinite

horizon dynamic programming is the question of how to actually solve for a value function that is

equal to infinity. In fact, the operations research literature has developed concepts for this case

quite early on: In particular, White (1963) developed what is known as “relative value iteration”,

for example in order to solve the frequently occurring “minimum average cost problem”. Here,

one does not solve for the values themselves but instead for the values relative to some reference

state. It can be shown that such procedure converges for many classes of problems (again,

the one we address included), and the policies implied by relative values are the same as for

conventional values, whenever the latter can be computed; see, e.g., Puterman (2014) for more

details. Interestingly, relative values have a very natural economic intuition: Even if an agent

has to choose between two alternatives that will give him or her infinite value down the road, he

or she might still prefer one over the other if the aggregated per-period utility is growing faster.1

Finally, the most blatant economic interpretation of a discount factor is simply the inverse

of the gross interest rate. Obviously, this cannot be taken literally in models and data sets

that span a significant period of time, because discount factors typically are constant whereas

interest rates are not. If one accepts that the link between the discount factor and interest rates

is imperfect and more like a link to the inverse of some average gross interest rate, this definition

does, however, imply that discount factors greater than one go with negative net interest rates,

and vice versa.

Equipped with our homotopy estimation approach as well as with relative value iteration,

we investigate the question of whether the discount factor in the model and the data set of Rust

(1987) is identified or not, and to which extent it is “driven to 1”, or even beyond that. Indeed,

in a series of estimation experiments using different sub-samples of the original data set and

different degrees of observed heterogeneity among the types of buses in the sample, we find all

estimates for the discount factors to be larger than one, some of them even with statistical signif-

icance2 (cf. Rust, 1987, Table IX): The estimate for the simplest model with no cost parameter

heterogeneity (i.e., bus-type specific cost functions) based on the sub-sample used in the original

paper is as high as 1.08 and significant, but drops to 1.05—and becomes insignificant—once we

1A similar argument outlining the possibility of a macroeconomic model with well-defined outcomes despite a
discount factor greater than one was introduced and debated following Kocherlakota (1990).

2In the following, we call a discount factor estimate that is larger than one “significant” if the null hypothesis
of it being equal to one can be rejected.
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respect the difference in bus types. If we use the full data set containing some buses that Rust

did not take into account in his reported experiments, but which are relevant to us as their engine

replacements happen early in the sampling period, the estimated discount factor further drops

to 1.03, but is, again, significantly larger than one. Moreover, in all experiments, the likelihood

is nicely shaped and has a clearly distinguished, unique local maximum. We conclude, at this

point, that the reported identification issues were indeed artifacts from numerical instabilities

arising when the likelihood maximization process attempted to push the discount factor towards

one, causing the conventional value functions used in the paper to diverge. We give detailed

evidence based on the condition numbers of the corresponding Hessian matrices in Section 3.3

to back this claim.

The more interesting question is, however, how realistic an estimated discount factor greater

than one really is from an economic perspective. In fact, looking at the federal funds rate which

peaked at an unprecedented level of 20% in 1980, and was well in the two-digits even in the years

before, it is hard to argue for negative interest rates at first sight. However, this is only one

side of the medal, as the US was in a situation of extraordinarily high inflation in the 1970s and

early 1980s—a period now rereferred to as the “great inflation”. That same year, the annual

increase in consumer prices peaked at almost 15%. And for the arguments to follow, note that

all these dates lie in the very interior of the sampling period of Rust (1987).

The embedding of the decision maker, Harold Zurcher, in this macroeconomic environment

immediately raises two questions relevant for the model and data set at hand: First, what is

the appropriate notion of interest rate when it comes to the link to discounting—nominal or

real—and second, is the aforementioned “average interest rate” a good measure for discounting

in our context. The former question can be answered rather unambiguously: Given that the

accumulated inflation over the sampling period is beyond 100%, but, at the same time, the model

primitives which quantify the costs of the alternatives have no time dependence and therefore

do not account for increasing prices in any way, interpreting the model in nominal terms would

not be very credible.3 To address the second question, a little more historical context is needed.

After a period of already high inflation, high interest rates, significant unemployment, and

a substantial devaluation of the Dollar, there was a widespread concern that the 1979 oil price

shock would act as the final straw that pushed the US into a serious recession. Nevertheless,

there also was a consensus that inflation had gotten out of control, but that the measures taken

against it by then Federal Reserve Chairman William Miller, who was appointed in 1978 as by

President Jimmy Carter, did not show sufficient effect. Therefore, after only a little more than

a year, President Carter appointed a new Chairman of the Fed: Paul Volcker (b 1927, d 2019).

While the procedure that led to Volcker’s appointment was unprecedentedly short, his state-

ments in the course of it—most notably the congressional hearings on July 30, 1979—were the

beginning of an enormously disruptive shock to the US economy. In particular, he made very

clear that even while at the dawn of a recession, he was putting a higher priority on fighting

inflation, even if the rise in interest rates that would accompany the monetary discipline needed

to achieve this goal would put extra harm on the economy. Being asked by a Senator whether

he wouldn’t “see anything abnormal about going into an international recession with interest

3Although Rust (1987) does not explicitly comment on this question, all reported dollar values in the paper
are assigned a year, predominantly 1985.
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rates at 10, 12, to 15 percent?” he answered (US House, 1979, p. 10):

I think our economic situation is abnormal. [...] You say going into a recession; I

think there is a clear danger there. [...] But what’s abnormal is that we’re going

into it with an inflation rate of the sort we have. That’s what’s unprecedented, and

I think that the interest rates are a byproduct.

Volcker then continued to express his view on how the macroeconomic environment impacted

every day (micro)economic decision making in America in a negative way, and how important

a change of people’s expectations was (US House, 1979, p. 29):

the American people have, I suspect, become convinced as never before that inflation

is here to stay and that it may rise. That affects activity; it affects the way they

invest; it affects what they buy; it affects what they do. It makes our job more

difficult. The first priority is to demonstrate that that’s not the case, that we don’t

face a situation where inflation inevitably has to rise. And I hope—and perhaps

at this point I should put it no more strongly than that—that we can get that

psychology turned around through persistence and disciplined policies, and as we do

we can find it possible to move more rapidly to restore stability.

The measures that Volcker took to break the spiral of increasing interest rates and infla-

tion created some short-term turmoil in all measures of interest—including inflation as well as

nominal and real interest rates—but eventually achieved their intention: Both the level and the

volatility of all those quantities stabilized, and real interest rates increased from low or even

negative values to higher levels, without becoming excessive. Due to the enormous commitment

that the Fed showed by allowing the nominal rates to reach historically high levels, the real

interest rate adjusted already in 1980, while it took a little longer for inflation to reach the levels

that then characterized the environment of the “great moderation”.

In the context of the data set of Rust (1987), this unique historical context allows for a

revealing natural experiment : If Volcker’s view about the American people factoring in the

macroeconomic environment in their decisions is correct, and if discounting is really inversely

linked to gross real interest rates in this model, we should observe decisions that indicate a drop

in discounting somewhen after Paul Volcker announced and implemented his policies. More-

over, this drop should be mostly unanticipated, as the appointment of Volcker was itself not

anticipated given the short time into the term of his predecessor, William Miller. Using our

model, implementing such an experiment can be done in a straightforward manner through a

structural break : We assume that Harold Zurcher discounts at some factor, say β1, before the

break, and at some other factor, β2, thereafter; the change in discounting is unanticipated, as

we just “switch” the underlying dynamic programming problems that yield the corresponding

decision probabilities for the likelihood function. We can obtain estimates for both discount fac-

tors and, moreover, the timing of the break, and finally run a statistical test on the hypothesis

H0 : β1 = β2.

Indeed, we find strong empirical evidence for this economically reasonable, qualitative link

between the discount factor and the real interest rates: Estimating the model with two discount

factors, we find that the estimate of the discount factor before the break is larger than the
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estimate of the discount factor thereafter: β̂1 = 1.04 and β̂2 = 1.02, respectively. In fact, the

likelihood ratio test for equality rejects the null hypothesis with a p-value in the order of 10−4.

This is in line with the significant rise in real interest rates due to Paul Volcker’s monetary

policy shortly after he took office—just about half way into the sample period. Moreover, we

also estimate the most likely timing of the structural break in discounting. Our estimate is

September 1979, which happens to be just two months after the congressional hearings, and

one month after Paul Volcker actually became Chair in August 1979. Finally, we assess the

simultaneous identification of the two discount factors by tracing the difference between them,

and hence the implicitly defined parameter ∆β = β1−β2, using our homotopy approach. Again,

we find that everything is well-behaved and fully identified.

In a second extension, we demonstrate that the overall level of the discount factor estimates

decreases if—in addition to the structural break in discounting—we allow for a more flexible state

transition process. This extension is motivated by our observation that mileage transitions are

indeed non-stationary in the original sample. We estimate β̂1 = 1.03 and β̂2 = 1.00, respectively.

This suggests that miss-specification of state transition probabilities can bias the discount factor

estimator, because it potentially corrects for too high (or too low) an expected value function. We

conclude that the estimates from both experiments for the discount factor before the structural

break, β̂1—although being larger than 1—do not contradict the time value of money since the

real interest rates have been largely negative in that period. Moreover, the discount factor

estimate after the structural break, β̂2, from the second extension is consistent with an agent

maximizing his or her long-run average utility, or, in Harold Zurcher’s case, minimizing long-run

average cost.

We conclude the introduction with a couple of bibliographic remarks: Our estimation method

loosely relates to some approaches from the statistics and computational economics literature.

First, DiCiccio and Tibshirani (1991), a technical report, develops an approximation of the

profile likelihood function of unconstrained likelihood maximization problems in which all pa-

rameters are well identified. Second, Eaves and Schmedders (1999), Besanko et al. (2010), and

Aguirregabiria (2012) apply homotopy continuation to trace general equilibrium model solutions

and dynamic game equilibria as a function of a parameter value, in particular, to detect and

handle the presence of multiple solutions of the model for a given parameter value.4 Third,

Tiahrt and Poore (1990) and Poore (1990) apply homotopy continuation to general parametric

constrained optimization problems.

The remainder of this paper is organized as follows: Section 2 defines the original estimation

problem, formalizes the concept of the augmented profile likelihood problem and its represen-

tation by first-order conditions, briefly outlines homotopy continuation, and synthesizes the

concepts. Moreover, an extension to likelihood ratio confidence intervals of the free parameters

is given. Section 3 introduces the model of Rust (1987), introduces relative value iteration for

discount factors β > 1, traces the estimates of the model parameters as a function of β, and

empirically establishes the qualitative link between β and the real interest rates. Section 4

concludes.

4For more details on the application of homotopy continuation methods in economics, see Judd (1998) and
Borkovsky et al. (2010).
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2 Structural Estimation by Homotopy Continuation

2.1 The Structural Model

We closely follow Su and Judd (2012) in its notation of a structural model due to its generality:

Structural parameters A p-dimensional vector of structural parameters, θ ∈ Θ ⊂ Rp and a

scalar, real-valued parameter within a compact interval, β ∈ [a, b]. These include, e.g.,

parameters of statistical distributions, preference parameters, and the discount factor.

State variables A m-dimensional vector of states, x ∈ S ⊆ Rm; note that the state space does

not have to be discrete to obtain a finite dimensional problem.

Endogenous variables A n-dimensional vector of endogenous variables, σ ∈ Σ ⊆ Rn. For

computational feasibility, we restrict σ to a finite-dimensional vector, and assume that all

objects have been discretized and truncated if necessary. Important examples of endoge-

nous variables are value or policy functions of the state variables after they have been

discretized by projection onto a finite set of basis functions.

Model equations A structural model further specifies relations between these variables and

parameters. These can, for example, be first-order optimality conditions or Bellman equa-

tions approximated through projection or collocation conditions. We subsume these rela-

tions into a system of (nonlinear) equations h : Σ×Θ× [a, b]→ Rk and require

h(σ; θ, β) = 0. (1)

Note that equation (1) is symbolic and the state vector x may enter h, e.g., in that (1) has

to hold for all x ∈ D ⊆ S. The domain D depends on the chosen discretization method;

for projection methods, we typically choose the number of elements in D to be n.

Equilibrium outcomes We denote the set of all equilibrium outcomes of σ as a function of

(θ, β) by

Λ(θ, β) ≡ {σ ∈ Σ : h(σ; θ, β) = 0}. (2)

At this point, we do not impose any structure on Λ(θ, β) and thus allow it to be a singleton,

a finite set of outcomes—commonly referred to as “multiple equilibria”—or even a non-

trivially connected set if (1) is under-identified.

2.2 The Parameter Estimation Problem

To estimate the structural parameters, (θ, β), the econometrician obtains data on the variables

predicted by the model. These variables are usually a subset of the state variables and the

endogenous variables, or functions thereof.5 We denote the full sample of observations by X . In

the case of DDCMs, the sample usually comprises a subset of the state variables and the decision

outcomes; the latter depend on the endogenous variables through the decision probabilities.

5Often, we can only observe a subset of the variables that the model predicts; the details of the treatment of
unobserved and occasionally observed variables depend on the estimation method, but often forms some kind of
expectation and thus an integral; see Reich (2018) and Lanz et al. (2021).
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In this paper, we utilize the likelihood function implied by the model (1) as a measure to

which extent particular values of the parameters “explain” these observations. We assume the

likelihood function and the system of equations h to be twice continuously differentiable w.r.t.

the structural parameters and the endogenous variables. There exist two main likelihood-based

approaches to the estimation of structural models that fit into our definition:

The nested fixed point (NFXP) approach of Rust (1987) maximizes the likelihood over (θ, β).

For each candidate vector (θ, β), we are required to find all equilibrium outcomes of σ—that is,

the set Λ(θ, β)—and choose the equilibrium outcome that returns the highest likelihood value:

(θ̂, β̂) = arg max
θ∈Θ, β∈[a,b]

{
max

σ∈Λ(θ,β)
L(θ, β, σ;X )

}
. (3)

We denote the maximum likelihood estimates of the structural parameters θ and β by (θ̂, β̂),

respectively.

The mathematical programming with equilibrium constraints (MPEC) approach by Su and

Judd (2012) maximizes the augmented likelihood over θ, β, and σ altogether, while imposing the

model equations, h, as constraints:

(θ̂, β̂, σ̂) = arg max
θ∈Θ, β∈[a,b], σ∈Σ

L(θ, β, σ;X )

s.t. h(σ; θ, β) = 0.

(4)

We additionally denote the maximum likelihood estimate of σ by σ̂. Su (2014) and Egesdal et al.

(2015) argue that this approach avoids searching for all equilibrium solutions for each candidate

vector (θ, β). To develop our concepts in this paper, we rely on the constrained optimization

formulation (4).

2.3 First-Order Conditions

We consider estimation problems in which the point or interval estimation of the structural pa-

rameter β is insufficient or infeasible: Suppose the structural parameter β is “poorly identified”.

In this case, solving the estimation problem for β fixed to values close to its maximum likeli-

hood estimate, β̂, yields a very similar likelihood. Thus these estimates explain the observed

data (almost) equally well, even though they may be drastically different from their maximum

likelihood estimates. We argue that only β together with parametric estimates of the remaining

parameters and variables as a function of β, (θ̂(β), σ̂(β)), convey a complete picture.

We derive this parametric estimation in β by extending the well known notion of a profile

likelihood function from unconstrained to constrained maximum likelihood estimation, and refer

to the new notion as the augmented profile likelihood :

Lp(β;X ) ≡ max
θ∈Θ, σ∈Σ

L(θ, β, σ;X )

s.t. h(σ; θ, β) = 0.
(5)

In the following, we refer to β as the controlled parameter, and skip the dependency on the

sample for notational brevity.
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In principle, each evaluation of the augmented profile likelihood for a particular β requires

solving the nonlinear constrained optimization problem (5). Solving the system of first-order

necessary conditions (FOCs) of (5) for this particular β—and checking the second-order suffi-

cient conditions—is, however, mathematically equivalent. We use these FOCs to develop our

estimation approach further.

Consider the Lagrangian L of the augmented profile likelihood (5),

L(θ, σ, µh;β) ≡ L(θ, β, σ)− µThh(σ; θ, β), (6)

with µh ∈ Rk denoting the Lagrange multipliers. The gradient of the Lagrangian (6) with

respect to µh, θ, and σ reads

∇µh,θ,σL(θ, σ, µh;β) ≡

(
−h(σ; θ, β)

∇θ,σL(θ, β, σ)− (µThDθ,σh(σ; θ, β))T

)
, (7)

where Dθ,σh(σ; θ, β) denotes the Jacobian of h(σ; θ, β) w.r.t. θ and σ. If the gradients of

the constraints are linearly independent,6 then the following Karush-Kuhn-Tucker FOCs hold:

suppose (θ̂, σ̂;β) is a local optimum of the constrained optimization problem (5) for fixed β, and

µ̂ are the corresponding Lagrange multipliers then

∇µh,θ,σL(θ̂, σ̂, µ̂h;β) = 0. (8)

Note that the first-order necessary conditions only imply stationary points; see Section A.2 for

a discussion of second-order criteria.

2.4 Homotopy Parameter Continuation

After deriving the FOCs of the augmented profile likelihood (8), we face a system of nonlinear

equations—parameterized by β—instead of the continuum of constrained optimization problems

(8). We apply homotopy continuation algorithms to solve this system of equations robustly for

“all” β in the compact interval [a, b].

Let us define the homotopy map, ρ : Θ × σ × Rk × [a, b] → Rp+n+k, as the parameterized

system of FOCs:

ρ((θ, σ, µh), β) ≡ ∇µh,θ,σL(θ, σ, µh;β). (9)

The zero set of this homotopy map, ρ−1(0) ≡ {(θ, σ, µh, β) : ρ((θ, σ, µh), β) = 0}, equals the set

of stationary points of the FOCs (8). Homotopy continuation algorithms approximate this zero

set by tracing the curve ξ ⊆ ρ−1(0) that emanates from an initial solution; the initial solution

equals the estimates for fixed β = a, which we obtain by standard constrained optimization.

There exist two popular types of homotopy continuation algorithms: predictor-corrector

and piecewise-linear; see Allgower and Georg (2012) for details. We employ predictor-corrector

homotopy algorithms for our estimation approach. The idea behind them is to numerically

6This condition is referred to as the linear independence constraint qualification (LICQ) and constitutes a
constraint qualification to the system of KKT conditions.
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approximate the curve ξ through a sequence of points ξ̂i, i = 1, 2, . . . along ξ, by alternating

predictor and corrector steps: Starting from a point ξ̂i, the prediction step produces a guess

for the next point, say ξ̃i+1, along the curve ξ; popular choices include ordinary differential

equation solvers and extrapolation schemes. The correction step moves this guess “closer” to

the curve, producing ξ̂i+1; due to the contractive properties of ξ, a common choice are Newton-

like methods. By alternating both steps, we can produce a sequence of points {ξ̂i}Ni=1 which is

arbitrary close to ξ. Interpolating this sequence of points yields a continuous approximation of

ξ.

By construction, all points on ξ satisfy the first-order necessary conditions (8)—that is, all

points on ξ are stationary points which may indicate either minima, saddle points, or max-

ima. We are, however, only interested in maxima. One way to select the maximum points

is to check the second-order sufficient conditions of all points on ξ. However, if the Jacobian

Dθ,σ,µρ((θ, σ, µ), β) is regular for all points on ξ, it is sufficient to ensure that the initial solution

at β = a is a maximum point (see, e.g., Poore, 1990). Singularities along the curve ξ, such as

turning points and bifurcations, indicate a non-regular Jacobian; in this case, we must check the

second-order sufficient conditions on ξ.

For our application in Section 3, we employ the predictor-corrector algorithms implemented

in the Hompack 90 library (Watson et al., 1997) and use the automatic differentiation (AD)

tool CasADi (Andersson et al., 2019) for all derivatives. We interface to the Fortran 90 library

Hompack 90 through our interface M-Hompack to implement the underlying model entirely in

Matlab.

2.5 Extensions

2.5.1 Tracing Functions of Parameters

In the previous subsections, we focus on a structural parameter which is part of the model. Yet,

our approach also extends to other quantities of interest, say δ, which are implied by a function

of the structural parameters and endogenous variables, which we denote by g(θ, β, σ, δ). The

function g can be as simple as the difference of two structural parameters, but also more complex,

such as the implied demand.

To obtain a parametric solution to the estimation problem in the quantity of interest δ, we

extend the augmented profile likelihood (5) to

Lp(δ) ≡ max
θ∈Θ, σ∈Σ,β∈[a,b]

L(θ, β, σ)

s.t. h(σ; θ, β) = 0

g(θ, β, σ, δ) = 0.

(10)

Note that the structural parameter β now becomes part of the maximization problem, and the

augmented profile likelihood function is a function of δ. This extends Lagrangian function L to

L(θ, σ, µh, µg; δ) = L(θ, β, σ)− µThh(σ; θ, β)− µgg(θ, β, σ, δ), (11)
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with an additional Lagrange multiplier µg ∈ R. The homotopy map (9) changes to

ρ((θ, σ, µh, µg), δ) ≡ ∇µh,µg ,θ,σ,βL(θ, σ, µh, µg; δ). (12)

We can directly apply the homotopy continuation method discussed in Section 2.4 to the homo-

topy map (12).

2.5.2 Confidence Interval Functions

Estimating dimension-wise likelihood ratio confidence intervals (LRCI) typically involves finding

their boundaries by solving for the roots of two level set problems on the profile likelihood

function. This naturally integrates into our tracing approach such that we can efficiently trace

dimension-wise LRCI of θ̂ as a function of β.

The γ · 100% LRCI of the parameter θj in dependence of β reads

CIγ(θ̂j ;β) ≡
{
θj : max

θ−j
L(θ;β)− (L(θ̂(β);β)− 0.5χ2

1(γ)) ≥ 0

}
, (13)

where θ ≡ (θj , θ−j); χ
2
1(γ) is the γ quantile of the χ2 distribution with one degree of freedom;

θ̂(β) denotes the maximum likelihood estimate in dependence of β.

To estimate the boundary of CIγ(θ̂j ;β), we consider the following system of equations:(
L(θ;β)− (L(θ̂(β);β)− 0.5χ2

1(γ))

∇µ,θ−j ,σL(µ, θ, σ;β)

)
= 0. (14)

The first equation of (14) ensures that the level of the likelihood at (θj , θ−j) is equal to the

critical value of the likelihood ratio test statistic.7 While we vary θj to obtain the critical

value of the likelihood, we optimize the likelihood w.r.t. θ−j ; this is ensured by the first-order

conditions of the Lagrangian w.r.t. to θ−j (and σ).

3 Application: Identifying the Discount Factor in the Bus En-

gine Replacement Model

This section applies the structural estimation by homotopy continuation approach to the bus

engine replacement model by Rust (1987). We present the model in Section 3.1, the concept

of relative value functions in Section 3.2, and estimate the discount factor β and the other

parameters of the original model in Section 3.3. In Section 3.4, we examine our discount factor

estimate which is larger than 1. We find empirical evidence that the context in which the

decision-maker acts matters: first, the historical macroeconomic context—the great inflation—

in Section 3.4.2 and second, the embedding of bus groups in the expanding bus fleet in Section

3.4.3.

7In order to efficiently evaluate L(θ̂(β);β), we found it useful to interpolate the discrete set ξ̂ of previously
obtained tracing results, e.g., by cubic spline interpolation.
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3.1 The Bus Engine Replacement Model of Rust (1987)

In the bus engine replacement model of Rust (1987), a manager of a fleet of public transportation

buses regularly (monthly) inspects his buses. During this inspection, he assesses their roadwor-

thiness and quantifies the need for regular maintenance work and its costs. For each bus in

each period, he decides whether to carry out the work or completely overhaul (or replace) the

most critical part of the bus, its engine, which would reset its odometer to 0. It is assumed that

the cost of regular maintenance work increases with the bus’s age (measured by its odometer),

whereas engine replacement comes at a cost that is independent of a bus’s age. This exposes

the manager to a dynamic trade-off—namely whether to spend a (usually) larger amount of

money for full replacement but reducing expected future maintenance costs or to spend less in

the current period but incurring higher regular costs with an aging bus.

To account for cost parameter and transition probability heterogeneity, we partition the bus

groups into partitions, p, and denote the set of partitions as P. Typically, a partition comprises

bus groups of the same or similar bus model and engine type. The per-period cost function for

one individual bus of partition, p, reads

u(x, i; θp11, RC
p) + ε(i) ≡

−RCp + ε(1) i = 1

−θp11 · x+ ε(0) i = 0
(15)

where i denotes the decision (1: replacement, 0: no replacement), RCp and θp11 are scalar,

positive parameters to be estimated, and ε ≡ (ε(0), ε(1)) are choice specific, random utility

shocks, which are—as it is common to assume in the discrete choice literature—modeled as two

i.i.d. extreme value type I (Gumbel) random variables; note that both components of ε are

observed by the manager prior to making his decision. The mileage of a bus is discretized to

bins of 5, 000 miles with a maximum of 450,000 miles—with the state variable x ∈ {1, . . . , 90}
denoting the index of the bin— and assumed to follow a Markov process with conditional

transition probabilities θp3 ≡ (θp30, θ
p
31, θ

p
32):

θp3∆ ≡ Pr(xt+1 = (1− it)xt + ∆ | xt, it; θp3), ∆ ∈ {0, 1, 2}, (16)

for xt+1 ∈ {1, . . . , 90}, and zero otherwise. The structural vector θp = (RCp, θp11, θ
p
3) is to be

estimated.

The manager is assumed to act dynamically optimally, i.e., maximizing the sum of his ex-

pected discounted future costs over an infinite time horizon,

Vθp(xt, εt) = sup
fθp (·,·)

E

 ∞∑
j=t

βj−t (u(xj , fθp(xj , εj); θ
p
11, RC

p) + ε(fθp(xj , εj)))

∣∣∣∣∣xt, εt; θp3
 , (17)

where β denotes the discount factor, and where the decision rule fθp : x, ε 7→ i maps states to

decisions. If β ∈ [0, 1), the Bellman equation forms a sufficient optimality condition for (17):

Vθp(x, ε) = max
i∈{0,1}

{
u(x, i; θp11, RC

p) + ε(i) + βE
[
Vθp(x

′, ε′)|x, i; θp3
]}

(18)
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where x′ and ε′ denote next period’s values of the states. When estimating the discount factor

β—which is fixed in the original specification in Rust (1987)—we have to be aware of the

following: the discount factor is a property of the manager; thus, when estimating β, we can not

treat the bus groups separately, but use all bus groups to estimate the discount factor, while

allowing for cost parameter and transition probability heterogeneity for arbitrary partitions

p ∈ P.

In Rust (1987), the author derives a (partial) closed-form solution for the expectation over

the next period’s value from the distributional assumptions on ε as

EVθp(x, i) ≡ E
[
Vθp(x

′, ε′)|x, i; θp3
]

(19)

=
∑

∆∈{0,1,2}

log

( ∑
j∈{0,1}

exp(u((1− i)x+ ∆, j; θp11, RC
p) (20)

+ βEVθp((1− i)x+ ∆, j))

)
θp3∆

≡ T (EVθp)(x, i). (21)

Note that equation (19) defines an operator equation on the function EVθ(·, ·), and has—for

β ∈ [0, 1)—a unique solution (Rust, 1988).

Since the mileage state x is discretized, the function EVθp is discrete, too. By construction

EVθp(x, 1) = EV p
θ (1, 0) for all x, we can denote the finite vector of values characterizing the

function EVθp by EV
p ∈ R90.The value of EV

p
at state x is denoted by EV

p
x. The functional

equation reduces to the system of equations

EV
p
x = Tθp(EV

p
)x ∀x ∈ {1, . . . , 90}. (22)

Note that due to the sparsity of the transition matrix implied by the mileage transition proba-

bilities (16), the Jacobian matrix of (22) is sparse.

Using data on (partial) states and decisions, the structural parameters of the model, θp ≡
(RCp, θp11, θ

p
3) can be estimated using maximum likelihood. Rust (1987) shows that the decision

probabilities equal the multinomial logit formula

Pr(it = 1|xt; θp, EVθp) =

(
1 + exp

(
u(xt, 0; θp11, RC

p) + βEVθp(xt, 0) (23)

− u(xt, 1; θp11, RC
p)− βEVθp(xt, 1)

))−1

due to the fact that the difference of two extreme value type 1 random variables is logistically

distributed. As the likelihood for partitions p is mutually independent, the likelihood for T
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periods and partition set P can be written as

L(θ; {xt, it}Tt=1, EVθ) =
∏
p∈P

L(θp; {xt, it}Tt=1, EVθp)

=
∏
p∈P

T∏
t=1

Pr(it|xt; θp)Pr(xt|xt−1, it−1; θp3, EVθp).

(24)

After taking the logarithm of the likelihood function (24), we can maximize it over θ using the

mathematical programming with equilibrium constraints approach (MPEC) by Su and Judd

(2012) or the nested fixed-point algorithm by Rust (1987). The MPEC optimization problem

over the partition set P and fixed β reads

max
(θp,EV

p
)p∈P

∑
p∈P

logL(θp, EV
p
; {xt, it}Tt=1)

s.t. EV
p
x = Tθp(EV

p
)x ∀x ∈ {1, . . . , 90}, ∀p ∈ P.

(25)

3.2 Dynamic Programming with a Discount Factor β ≥ 1

The value function reflects the best attainable expected present value of a utility stream. In

infinite horizon problems, this present value diverges for a discount factor β ≥ 1 unless there

exists an absorbing state with a utility of 0. However, even if the value function diverges, the

difference between the value function and its value at some reference state k can still be bounded

(Bertsekas, 2012). The literature refers to this difference as the relative value function, ev(x).

Intuitively, ev(x) corresponds to the difference in the present value of the utility stream between

starting from state x as opposed to from the reference state, k. For the long-run average cost

problem in which β = 1, White (1963) proposes the optimality equation

ev(x) = T (ev)(x)− T (ev)(k). (26)

This optimality equation extends to the standard case, β < 1, (Puterman, 2014). Morton

and Wecker (1977) shows its extension to β > 1 by viewing infinite horizon problems as a

approximation of finite horizon problems. Thus, they show the existence and uniqueness for

the limiting value and policy functions in finite horizon problems. If the model satisfies their

assumptions—which is indeed the case for model studied in this paper—and if the relative value

function converges, then the policy is also an optimal policy for the infinite horizon problem.8

It remains to show that we can estimate the bus engine replacement model using the relative

value function instead of the value function. In its standard formulation, the discretized value

function for partition p, EV
p ∈ R90, is used to evaluate the choice probabilities. A reformulation

of the choice probabilities reveals that the discretized relative values for partition p, evp ∈ R90,

8Blom Västberg and Karlström (2017) (only available on request) provides an alternative proof for dynamic
discrete choice models without cost-free terminal state.
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are sufficient to evaluate the choice probabilities:

Pr(it = 1|xt; θp) =

1 + exp

u(xt, 0; θp11, RC
p)− u(xt, 1; θp11, RC

p) + β(EV
p
xt − EV

p
1︸ ︷︷ ︸

≡evpxt

)



−1

.

(27)

As the likelihood only depends on the choice and the transition probabilities, we can estimate

the model using the (expected) relative values, evp.

3.3 Estimation Results

Tracing the estimates as a function of the discount factor in the bus engine replacement model

of Rust (1987) is motivated by the common belief that discount factors of dynamic models are

often poorly identified (Aguirregabiria and Mira, 2010). For the model at hand, the author

states (Rust, 1987, p. 1023):

I was not able to precisely estimate the discount factor β. Changing β to .98 or

.999999 produced negligible changes in the likelihood function and parameter esti-

mates of (RC, θ11). The reason for this insensitivity is that β is highly collinear with

the replacement cost parameter RC . . . Thus, if I treated β as a free parameter,

the estimated information matrix was nearly singular, causing difficulties for the

maximization algorithm.

At the same time, he notes that (ibid.):

I did note a systematic tendency for the estimated value of β to be driven to 1. This

curious behavior may be an artifact of computer round-off errors, or it could indicate

a deeper result.

In fact, we will confirm both statements by showing that indeed (i) the conditioning of the

Hessian matrix of the estimation problem explodes as β → 1 for absolute expected values,

making a direct estimation of any β close to 1 using the absolute expected value formulation

hard; and (ii) the observed “tendency for the estimated value of β to be driven to 1” is very

real, as the estimate is even larger than 1.

To assess Rust’s hypothesis, we trace the profile likelihood for the original data set as a

function of the discount factor β. We consider the bus groups 1–4 in two distinct settings:

(i) the “restricted” model in which the partition set equals the singleton P = {{1, 2, 3, 4}},
i.e., bus groups 1–4 share the same cost parameters and transition probabilities, and (ii) the

“unrestricted” model in which the partition set equals P = {{1, 2, 3}, {4}} which allows for cost

parameter and transition probability heterogeneity across the partitions {1, 2, 3} and {4}.
Figure 1 depicts the main estimation results for the restricted model (top) and the unre-

stricted model (bottom). On the left, the value of the profile likelihood is plotted as a function

of β as well as the original point estimate of Rust (1987) at β = .9999 and our point maximum

at the peak of the profile likelihood. The other plots depict the estimates (θ̂p11, R̂C
p
) as functions

of β including their 75% and 95% confidence interval boundary functions.
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Restricted model Unrestricted model
p {1, 2, 3, 4} {1, 2, 3} {4}

β 1.0768 1.0467
[1.0245,∞) [0.9897, 1.1042]

RC 37.7109 18.9955 19.8543
[12.999, 354.896] [10.2491, 397.8716] [9.0370, 426.3007]

θ11 0.0905 1.4711 0.3903
[0.001, 1.029] [0.0366, 6.1420] [0.0068, 2.6053]

LL -6,051.79 -6,011.51

p-value 0.0086 0.1552
(H0 : β = 1)

p-value 0.0000
(H0 : θ{1,2,3} = θ{4})

Table 1: Joint estimation of the main structural parameters, (θ11, RC, β), for the restricted
model (P = {{1, 2, 3, 4}}) and the unrestricted model (P = {{1, 2, 3}, {4}}); 90% likelihood
ratio confidence intervals are reported in brackets (if available; half-closed interval containing
the confidence interval otherwise); p-value is reported for the likelihood ratio test of H0 : β = 1.

We interpret the estimation results as follows: First, from the shape of the profile likelihood,

we conclude that β is well identified. Its maximizer—and thus the maximizer of the full likeli-

hood function—is well above 1; indeed, the likelihood ratio confidence interval reveals that β is

significantly larger than 1 in the full sample. Assessing the original estimates of Rust (1987),

we find that both the value of the likelihood function as well as the estimates for β = 0.9999

match. At the same time, the cost parameters estimates (θ̂p11(β), R̂C
p
(β)) vanish and diverge,

respectively, as β becomes larger than 1. In particular, given the degree of replacement in the

data, limiting β < 1 is compensated in the estimation by making replacement too cheap relative

to regular maintenance.

Table 1 reports the quantitative estimation results, including their parameter-wise 90% like-

lihood ratio confidence intervals for the restricted and unrestricted model. For both models,

we estimate β to be greater than 1. For the restricted model, the likelihood ratio test rejects

H0 : β = 1 with a p-value of less than 1%, while for the unrestricted model, the likelihood ratio

test with a p-value of about 15% cannot reject H0 at conventional significance levels. While

β > 1 is not statistically significant for the unrestricted model, it is economically significant.

To verify the results’ numerical accuracy, we report the violation of the first-order conditions

in terms of the L∞ norm as a function of β in Figure 2 (left); we conclude that the approximation

error is well within accepted numerical tolerances. We further assess the numerical error pattern

by investigating the conditioning of the problem. The right side of Figure 2 depicts the condition

number of the augmented Jacobian once for absolute expected values (red) and once for relative

expected values (blue).9 The condition of the augmented Jacobian deteriorates in both cases.

Although the condition number also diverges for relative expected values ev, it only does so for

9The augmented Jacobian equals the Jacobian of the first-order conditions, with the derivative w.r.t. the
tracing parameter added as an additional column.
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Figure 2: Left: Violation of the first-order conditions as a function of β for three error tolerance
configurations of Hompack90 (1e-08, 1e-10, 1e-12). Right: Condition number of the augmented
Jacobian, i.e., the Jacobian of the first-order conditions with an additional column containing
the partial derivative w.r.t. the tracing parameter, as a function of β, using absolute expected
values (red) and relative expected values (blue).

some β > 1.This is very much in line with the near-singular information matrix reported by

Rust (1987) for β approaching 1 when using absolute expected values.

3.4 The Context of Rust (1987) and its Effect on Discounting

During the sample period of the data from 1974 to 1984 the US experienced a major shock to real

interest rates, a fact widely ignored by the empirical IO literature. By adding a structural break

to the discount factor, we find statistical evidence that this shock affected the decision-maker’s

replacement behavior. We establish a qualitative link between the change in the discount factor

estimates around the structural break and the change in the real interest rate. Further, the

monthly mileage transitions of the buses changed after four additional bus groups were pur-

chased by the bus company during the sample period. In an extended model with a structural

break in the transition probabilities, we find that the discount factor estimate is sensitive to

misspecifications in the transition probabilities. Due to the partly prevailing negative real inter-

est rates during this period, the estimate of β > 1 can not be rejected by a time value of money

argument.

3.4.1 Rust (1987) with Bus Groups 1–8

This section presents the estimation results for the entire data set. Although Rust (1987) uses

only bus groups 1–4 for the estimation, we use bus groups 1–8 to have data for the whole sample

period. Analogously to Section 3, we account for the buses’ heterogeneity by allowing for cost

heterogeneity. The buses group naturally into three partitions matching the bus and engine

types: (i) Bus groups 4, 5, and 7 of bus model 5308A and engine type 8V71, (ii) bus groups 6

and 8 of bus model 4523A and engine type 6V71, and (iii) bus groups 1, 2, and 3, which are
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of heterogeneous type, but not divided further.10 Thus, the partition set comprising the three

partitions equals P = {{1, 2, 3}, {4, 5, 7}, {6, 8}}. Moreover, we allow for individual transition

probabilities for each bus group. This extends the system of constraints of the standard MPEC

formulation to one Bellman equation for each bus group which we solve simultaneously.

Figure 3 shows the estimation results: on the left, it depicts the profile likelihood as a

function of β and, on the right, the cost parameter estimates for each partition in P.11 The
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Figure 3: Results for the unrestricted model (P = {{1, 2, 3}, {4, 5, 7}, {6, 8}}). Left: Profile
likelihood Lp(β) including 95% likelihood ratio confidence interval for β (light green). Right:
Parameter estimates for (θp11, RC

p) as functions of β (red and blue, respectively) for partitions
{1, 2, 3}, {4, 5, 7}, and {6, 8} (solid, dashed, and dotted).

findings are qualitatively consistent with the findings in Section 3.3 for P = {{1, 2, 3}, {4}}:
The profile likelihood indicates that the maximum likelihood estimate of β is larger than 1, and

not even the 95% confidence interval includes 1. The shape of the profile likelihood implies

that the maximum likelihood estimates are well-identified. The replacement cost parameters

diverge with increasing β whereas the maintenance cost parameters vanish. Table 2 reports the

estimates of the main structural parameters and their 95% confidence intervals; Table 5 reports

the estimates of the transition probabilities.

3.4.2 Structural Break in the Discount Factor β

A period of considerable economic turmoil lasted from 1965 to the mid-1980s and is often referred

to as great inflation. In the US, inflation rates rose from below 2% to above 15% in 1979, leading

to an economic environment with striking price uncertainty. Even though the US faced periods

of high inflation before, the great inflation was the only instance of a long period of high inflation

during peace times. During its peak, it made “every business decision a speculation on monetary

policy” (Long, 1996). Due to the low nominal interest rates compared to the inflation, the real

interest rates were widely negative starting from 1974, as depicted in Figure 4.

This lasted until President Jimmy Carter nominated Paul Volcker as chairman of the FED in

10In grouping bus groups 1, 2, and 3 we follow Rust (1987). A further subdivision of these actually heterogeneous
bus types is not identified as there exist no observations of engine replacements in bus groups 1 and 2.

11For expositional purposes, we drop the confidence interval functions that were included in Section 3.3.
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p {1, 2, 3} {4, 5, 7} {6, 8}

β 1.0283
[1.0073, 1.0476]

RC 14.8725 15.9887 14.2516
[9.8236, 24.7372] [10.6700,∞) [8.5583,∞)

θ11 2.5809 1.2083 0.4154
[0.7881, 5.6452] [0.3931, 2.6385] [0.0114, 1.9924]

LL -11,097.8159

p-value 0.0092
(H0 : β = 1)

Table 2: Estimates of the main structural parameters, (θ11, RC, β) for the partition set (P =
{{1, 2, 3}, {4, 5, 7}, {6, 8}}); 95% likelihood ratio confidence intervals are reported in brackets (if
available; half-closed interval containing the confidence interval otherwise).

1979. Already in his confirmation hearing in July 1979, he pledged to make fighting inflation his

top priority. While not specific about any planned policies, he made clear that money supply had

been “rising at a pretty good clip” even though there was no evidence the nation was “suffering

grievously from a shortage of money” (U.S. House. Committee On Banking, Housing, And

Urban Affairs United States Senate, 1979, p. 4). After an unscheduled Federal Open Market

Committee Meeting on October 6, 1979, Paul Volcker announced new monetary policies which

targeted the growth rate of money stock in the economy instead of stabilizing the federal funds

rate as has been the practice before. This led to a rise in the federal funds rate to 19%, and

falling inflation rates. Hence, the real interest rates turned positive shortly after the beginning

of the monetary policies. For more details, see Medley (2013).

Rust (1987) does not specify whether the model is stated in nominal or real terms. The

nominal value of goods and services increased in the sample period due to the prevailing high

inflation. In the model, however, all quantities are constant over time. In order for the model to

fit in its historical context, we argue that all quantities are stated in real terms. Consequently,

the decision-maker’s discount factor relates to the real interest rate.

Furthermore, we argue that this historical context allows for a natural experiment: the

decision-maker acts in a period of a largely unanticipated macroeconomic regime change in the

nominal and real interest rates. We test if this regime change affected the decision-maker’s

discounting by extending the model with an unanticipated structural break in the discount

factor: Before the structural break at time tβ, Zurcher discounts by a constant discount factor

β1, whereas he discounts by β2 after the shock. As the shock is unanticipated for Zurcher, he

considers β1 to be constant from today to infinity in any month before the structural break

at time tθβ . Analogously, he assumes β2 to be constant from today to infinity after tθβ . This

extends the system of constraints to two Bellman equations per bus group, which we solve

simultaneously, once with β1 and once with β2.

We employ our proposed homotopy continuation estimation approach by tracing the param-

eter estimates as a function of the difference of the discount factor before and after the break,
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Figure 4: Ex-post real interest rate calculated as the difference of consumer price index and the
federal fund rate for July 1970 to August 1985. Grey bar denotes the period of Paul Volcker as
chairman of the Fed and the green bar the sample period of Rust (1987).

∆β = β1 − β2, as the controlled parameter. For each tβ ∈ {Jan 1976, . . . ,Dec 1983}, we trace

the parameter estimates starting from the restricted model in which ∆β = 0. This yields the

two-dimensional profile likelihood L(∆β, tβ)—continuous in ∆β and discrete in tβ.

Figure 5 depicts this profile likelihood, which increases monotonically in ∆β up to its peak

for all tβ ∈ {Jan 1976, . . . ,Dec 1983}. The shape and location of the peaks indicate that ∆β is

well-identified and its estimate larger than zero, i.e., β̂1 > β̂2.

We further profile L(∆β, tβ) w.r.t. ∆β by taking the respective maximum L(tβ) = max∆β L(∆β, tβ).

This reduces the two-dimensional profile likelihood to the one-dimensional profile likelihood de-

picted in Figure 6. The figure shows L(tβ), β1(tβ), and β2(tβ) as functions of tβ. Table 3 reports

the maximum likelihood estimates of the main structural parameters and their 95% confidence

interval; Table 5 reports the estimates of the transition probabilities. The likelihood takes its

maximum for tβ equal to September 1979. The 95% confidence interval around t̂β includes

October 1978 to December 1979. The estimates for the discount factors equal β̂1 = 1.04 and

β̂2 = 1.02. We can reject the restricted model in which β1 = β2—denoted by the orange dashed

line—with a p-value of 1.09 · 10−4.

We argue that these empirical findings make economic sense: The maximum likelihood

estimate of the time of the structural break, t̂β, equals September 1979, just one month after

Paul Volcker took office as chairman of the Fed. He introduced monetary policies which led to

economically significantly higher real interest rates. The drop in the discount factor estimates

from β̂1 = 1.04 to β̂2 = 1.02 follows the expected economically reasonable, qualitative link to

the real interest rates: the rise in the real interest rates leads to a fall in the discount factor.

The discount factor estimate before September 1979, β̂1 = 1.04, falls into a period of largely

negative real interest rates. In this period, time value of money is inversed, and thus, the β1 > 1
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cannot be rejected.

Figure 5: Profile likelihood L(∆β, tβ) as function of ∆β and the time of the structural break tβ.
Restricted model with ∆β = 0 denoted by black dots.

3.4.3 Structural Break in the Transitions Probabilities

Rust (1987) uses Harold Zurcher’s maintenance records from December 1974 to May 1984,

comprising monthly observations on mileage and maintenance decisions. Figure 7 depicts the

number of buses per bus group for each month. Evidently, bus groups 5–8 were purchased before

the dataset begins, while bus groups 1–4 were purchased afterward, which almost tripled the

bus fleet from 58 to 162 buses. We have no information on whether these buses were purchased

to extend the bus service with new routes, increase the frequency on existing routes, or relieve

existing buses. However, the purchase of the buses evidently impacts the already existing buses

as depicted in Figure 8. After the addition of bus group 3, the aggregated mileage transitions

for bus groups 1, 2, and 4 drop; bus group 4 is particularly affected and its aggregated mileage

transitions drop by almost 40%. A reasonable explanation for this could be, e.g., a less frequent

scheduling of the “old” bus groups or a change in the company’s route schedule.

The model assumes the transition probabilities of the bus groups, θ3,g, to be stationary. We

extend the model from Section 3.4.2 by relaxing this stationarity assumption with an unan-

ticipated structural break in the transition probabilities for bus groups 4–8.12 We denote the

transition probabilities before the structural break for bus group g by θ1
3,g and after by θ2

3,g. As

the shock is unanticipated for Zurcher, he considers θ1
3,g to be constant from today to infinity in

any month before the structural break at time tθ3,g . Analogously, he assumes θ2
3,g to be constant

from today to infinity after tθ3,g . This extends the system of constraints to a Bellman equation

for each parameter combination which we solve simultaneously.

12We assume that bus groups 1–3 have no structural break as the company purchased these late, and thus, we
only have few observations.
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Figure 6: Profile likelihood L(tβ) (orange), and β1(tβ) (blue solid) and β2(tβ) (blue dashed)
maximum likelihood estimates for P = {{1, 2, 3}, {4, 5, 7}, {6, 8}} as a function of the structural
break at time tβ. The tβ for which the log-likelihood is not worse than the typical 95% confidence
interval w.r.t. tβ (green shaded). Log-likelihood for the restricted model with β1 = β2 (orange
dashed). Paul Volcker takes office as chairman of the Federal Reserve (black solid vertical line).

Figure 5 depicts the profile likelihood L(∆β, tβ) for tracing the parameter estimates as a

function of ∆β for each tβ ∈ {Jan 1976, . . . ,Dec 1983}. The black points denote the restricted

model with ∆β = 0, i.e., it only has a structural break in the transition probabilities. Note that

we can reject this restricted model with a p-value of 2.17 · 10−9. The shape and location of the

peaks indicate that ∆β is well identified and its estimate larger than zero, i.e., again β1 > β2.

Further profiling the profile likelihood L(∆β, tβ) in ∆β yields the profile likelihood L(tβ).

Figure 6 depicts L(tβ) as well as the discount factor estimate before the structural break, β̂1(tβ),

and after the structural break, β̂2(tβ). Table 4 reports the maximum likelihood estimates of

the main structural parameters and the p-values for two hypothesis test: the restricted model

from Section 3.4.1, (H0 : β1 = β2, θ
1
3 = θ2

3), and the restricted model from Section 3.4.2,

(H0 : θ1
3 = θ2

3). We can reject both with a p-value of below 10−16. Table 6 reports the estimates

of the transition probabilities and of the time of their structural break. The maximum likelihood

estimate of tβ equals September 1979. The 95% confidence interval around t̂β includes October

1978 to December 1978 and February 1979 to November 1979.

As in the previous model, t̂β equals September 1979, one month after Paul Volcker took

office. Compared to the previous model, the discount factor estimates drop from β̂1 = 1.04

and β̂2 = 1.02 to β̂1 = 1.03 and β̂2 = 1.00, respectively. This suggests that β is sensitive to

misspecifications in the law of motion, which is reasonable as both “discount” future costs: The

decision-maker forms his expectation about future costs using the law of motion. A misspecifi-

cation which causes too high probabilities for low transitions yields too low expected costs. The

discount factor discounts these expected costs and thus, a high (biased) discount factor estimate
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p {1, 2, 3} {4, 5, 7} {6, 8}

tβ Sept 1979
[Oct 1978, Dec 1979]

β1 1.0355
[1.0121, 1.0592]

β2 1.0235
[1.0008, 1.0448]

RC 14.1252 16.8884 17.88962
[9.5101, 23.2771] [10.8426,∞) [9.8090,∞)

θ11 2.9240 1.4358 0.6183
[0.9328, 6.1994] [0.5077, 2.9938] [0.0162, 2.5486]

LL -11,090.3327

p-value 1.09 · 10−4

(H0 : β1 = β2)

p-value 3.13 · 10−6

(H0 : β1 = β2 = 1)

Table 3: Estimates of the main structural parameters, (θ11, RC, β), and the time of the structural
break in β, tβ, for the partition set P = {{1, 2, 3}, {4, 5, 7}, {6, 8}} in the extended model with
a structural break in β; 95% likelihood ratio confidence intervals are reported in brackets (if
available; half-closed interval containing the confidence interval otherwise).

can compensate the misspecification the law of motion.

The discount factor estimates’ drop from β̂1 = 1.03 to β̂2 = 1.00 follows the expected

qualitative link to the real interest rates: the rise in the real interest rates leads to a fall in

the discount factor. The estimate β̂1 again falls into the period of largely negative real interest

rates and thus, cannot be rejected by a time value of money argument. The estimate β̂2 = 1.00

corresponds to an agent who maximizes his long-run average utility.

3.4.4 Counterfactual Analyses for β > 1

In the bus engine replacement model and its extensions, we estimate the discount factor to be

larger than or equal to 1. In the prevailing periods of negative real interest rates, a time value of

money argument cannot reject these estimates.13 Regardless of the interest rate environment,

some authors have argued that the discount factor can be seen as behavioural parameter. For

example, Erdem and Keane (1996) argues that there exist no behavioral reason to preclude

β > 1. This is supported by empirical studies as, e.g., Frederick et al. (2002), showing that

the discount factor estimates highly depends on the choice contexts and populations. Thus,

we examine the policy implications of β > 1 by exemplary studying the impact of increasing

part costs for the replacement engine on the expected annual engine replacements—the implied

demand.

Figure 11 traces the implied demand as a function of the replacement costs and the discount

13Even for positive real interest rates, Kocherlakota (1990) shows that competitive equilibria may exist in
infinite horizon growth economies for β > 1.
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p {1, 2, 3} {4, 5, 7} {6, 8}

tβ Sept 1979
[Oct 1978, Dec 1978]

⋃
[Feb 1979, Nov 1979]

β1 1.0269
[1.0045, 1.0465]

β2 1.0047
[0.9852, 1.0197]

RC 12.0845 12.3563 11.2340
[8.7581, 17.5448] [9.3412, 17.8037] [8.0013, 18.0643]

θ11 4.3878 2.0506 1.1751
[2.0846, 7.9242] [0.9921, 3.6144] [0.2321, 3.3417]

LL -10,627.1853

p-value < 10−16

(H0 : θ13 = θ23)

p-value < 10−16

(H0 : β1 = β2, θ13 = θ23)

p-value 6.55 · 10−10

(H0 : β1 = β2 = 1)

Table 4: Estimates of the main structural parameters, (θ11, RC, β), and the time of the structural
break in β, tβ, for the partition set P = {{1, 2, 3}, {4, 5, 7}, {6, 8}} in the extended model with a
structural break in the discount factor and in the transition probabilities; 95% likelihood ratio
confidence intervals are reported in brackets.
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Figure 7: Number of buses per bus group in each month.
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Figure 8: Centered 12-month moving average aggregated mileage (solid) and monthly mileage
transitions (dashed) for bus groups 3–6 and the entire fleet.

factor for a single bus with the characteristics of bus group 4. We first focus on the left panel

of Figure 11a. For β = 0, the implied demand is highly sensitive to changes in the replacement

bus engine costs. The implied demand seen as a function of β appears to flatten continuously

in β without a (visible) singularity one might expect at β = 1. The solution manifold in the

right panel of Figure 11b supports this observation. The predictions for β > 1 are a reasonable

extension of the model predictions for β < 1: the price elasticity of demand decreases with

increasing β. This exemplary counterfactual analysis shows that policy implications derived

from a model with β > 1 can be reasonable.

4 Conclusion

In this paper, we present the necessary mathematical, statistical, and numerical tools to trace the

estimates of the structural parameters of a model and their confidence intervals, in dependence

on a controlled parameter, based on the augmented profile likelihood using homotopy parameter
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Figure 9: Profile likelihood L(∆β, tβ) as function of ∆β and the time of the structural break tβ.
Restricted model with ∆β = 0 denoted by black dots.

continuation.

Applying the method to the bus engine replacement model of Rust (1987), we find that—

contrary to common belief—the discount factor is well identified. Its estimate is significantly

larger than 1 for the sample considered in the original paper. In two extensions of the original

model with an unanticipated structural break in β, we find empirical evidence that the historical

monetary policy shock after Paul Volcker took office affected the decision-maker’s discounting.

In particular, we empirically establish a economically reasonable, qualitative link: The discount

factor estimates drop considerably from before to after the breaks, whose optimal times we

estimate to be just one month after Paul Volcker took office. This drop in the discount factor

estimates matches the economic intuition. The discount factor estimates before the structural

break, β > 1, fall into a period of negative interest rates; thus, they do not contradict the time

value of money.
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Figure 10: Profile likelihood L(tβ) (orange), and β1(tβ) (blue solid) and β2(tβ) (blue dashed)
maximum likelihood estimates for P = {{1, 2, 3}, {4, 5, 7}, {6, 8}} as a function of the structural
break at time tβ. The tβ for which the log-likelihood is not worse than the typical 95% confidence
interval w.r.t. tβ (green shaded). Log-likelihood for the restricted model with β1 = β2 (orange
dashed). Paul Volcker takes office as chairman of the Federal Reserve (black solid vertical line).

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(a) Implied demand as a function of RC for β ∈
[0, 0.9999, 1, 1.0467]

(b) Implied demand as a function of RC and of β
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A Appendix

A.1 Multiplicity and Identification

We introduced the profile likelihood function, and with it, due to its special nature, the conditions

under which it exists in the strict sense of a function. In this subsection, we briefly examine how

these conditions are related to two important aspects of the application domain—that is to say

structural estimation: identification and multiplicity in the model solution.

As commonly done in the literature, we restrict our attention to models where the parameter

vector θ is identified—or, more precisely, the distribution of an observation implied by the model

is different for different values of θ. However, this is no guarantee that, for finite samples, the

likelihood function has a (locally) unique maximum; in fact, since the likelihood function (i)

aggregates information by multiplying over the probability or density of all data points from a

random sample, and (ii), for continuous data, in fact, compares distributions on sets of measure

zero, a locally unique maximum is sufficient, but not necessary for identification.14 We explicitly

add that no identification requirements are made with respect to the controlled parameter β.

Suppose we have a local maximum (θ̂, σ̂, β0). As we have argued above, a maximum—

even if locally unique—does not imply the second-order sufficient conditions for optimality.

In particular, even if the gradients of the constraints are linearly independent, the Hessian is

only guaranteed to be negative semi-definite, with some eigenvalues potentially equal to zero

and thus singular. If, however, we find the Hessian to be regular, we can conclude that the

profile likelihood function exists and is smooth within some neighborhood of β0. Obviously this

argument can be applied recursively to some β1 ≷ β0 in that neighborhood, effectively creating

some kind of “tube” around the profile likelihood function within which it is unique. However,

this neighborhood will shrink and tend to zero if it approaches a singularity; we give an example

of how this can easily arise from multiplicity below.

As we have noted, no identification requirements are stated for β. In fact, a key motivation

of this paper is to show how poorly or non-identified parameters can be traced out using the

profile likelihood function. Consider the examples in Figure 12: The top left panel shows a

function for which the maximum is unique; consequently, a projection as implemented through

the profile likelihood (5) has a unique maximum; see the bottom left panel. At the same time,

the top right panel shows a function where, for each value of β, the maximum w.r.t. θ is the

same; consequently, if it were a likelihood function, β could not be identified jointly with θ, and

the corresponding profile likelihood would be flat; see the bottom right panel; note in particular

the non-uniqueness of the optimal θs. The mathematical explanation of the independence of

our approach from any identification assumptions about β is that—at this stage—the numerical

properties of the problem are mostly delimited by the regularity and definiteness of the Hessian

(29), which, however, does not contain any derivatives w.r.t. β.

Closely related to identification is multiplicity in the solution of the model. In the description

of an abstract model above, we made no restrictions on the set of solutions to the model for

given structural parameters, Σ(θ, β). In fact, multiplicity does not contradict identification per

se, as long as the likelihood itself discriminates the model solutions properly—that is, as long

14This argument can be taken even further by arguing that for continuous likelihood function, even in the very
vicinity of a maximum there exist infinitely many parameter values with equal likelihood.
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Figure 12: Two numerical examples of 2-dimensional functions (top panels), and their optimal
value (blue, left axis) and maximizer functions (red, right axis) (bottom panels).
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as the maximum of the profile likelihood w.r.t.ãll structural parameters,

Lp(θ̂, β) ≡ max
σ∈Σ(θ̂,β)

L(θ̂, β, σ), (28)

at all local solutions of θ̂ is locally unique. (Note that local uniqueness of (28) is necessary but

not sufficient for local uniqueness of Lp(β).)

However, we have argued several times that it is essential for the profile likelihood to be a

unique function, a necessary condition for the Hessian of the Lagrangian (29) is to be nonsingular;

however, this cannot be true if the gradients of the constraints are linearly dependent—that is,

if the Jacobian Dθ,σh drops in rank. This can, e.g., happen at points where the solution is

indeed unique but “splits up” into several solutions, e.g., at turning points or bifurcations. The

following simple algebraic example might give an intuition for this: Consider the function x2,

which has a double zero at 0. While the solution to x2 = 0 is unique, the Jacobian is zero

and thus singular. If one further generalizes this example to the solution set of x2 − y = 0, we

observe that as we increase y from 0 to a positive value, the corresponding solutions x solving

the equation are unique only for y = 0, but ambiguous for y > 0; the Jacobian at strictly positive

y is, however, nonsingular. We provide more extensive examples in the following sections.

A.2 Second-Order Sufficient Conditions

The first-order necessary conditions only give us stationary points. A sufficient condition can

be formulated based on a second-order argument. Consider the Hessian of the Lagrangian (6):

∇2
µ,θ,σL(θ, σ, µ;β) ≡

 0 −Dθh(σ; θ, β) −Dσh(σ; θ, β)

−Dθh(σ; θ, β)T
∇2
θ,σL(θ, σ, µ;β)

−Dσh(σ; θ, β)T

 , (29)

where ∇2
θ,σL(θ, σ, µ;β) ≡ ∇2

θ,σL(θ, β, σ) −∇2
θ,σµ

Th(σ; θ, β). Obviously, the well-known second-

order sufficient condition from unconstrained optimization requiring the full Hessian ∇2
θ,σ,µL to

be negative-definite cannot hold for any point because of the block of zeros in the northwest

corner of the Hessian. Rather, it is sufficient to require that the Hessian of the Lagrangian w.r.t.

σ and θ is negative-definite on a linearization of the constraint set (1):

vT∇2
θ,σL(θ̂, σ̂, µ̂;β)v < 0 ∀v 6= 0 : Dθ,σh(σ̂; θ̂, β)v = 0. (30)

In summary, if the point (θ̂, σ̂, β) together with µ̂ satisfies (8) and (30), it is a strict (i.e.,

locally unique) local maximum of the parametric optimization problem (5). On the other hand,

the converse is not necessarily true; in fact, second-order necessary optimality conditions only

imply semi-definiteness of the Hessian at the optimum, and, additionally, explicitly require that

the gradients of the constraints are linearly independent. If, however, (θ̂, σ̂, β) together with µ̂

is a solution to (5), and if, moreover, the Hessian ∇2
µ,θ,σL is nonsingular at (θ̂, σ̂, µ̂, β), then the

second-order sufficient conditions are satisfied (Fiacco and McCormick, 1990, Cor. 7).

35



g 1 2 3 4 5 6 7 8

θ30,g 0.1972 0.3906 0.3071 0.3919 0.4887 0.6184 0.6000 0.7218
θ31,g 0.7889 0.5990 0.6827 0.5953 0.5067 0.3816 0.3973 0.2782
θ32,g 0.139 0.104 0.0103 0.0128 0.0047 0.0000 0.0027 0.0000

Table 5: Estimates of the transition probabilities θg3.

g 1 2 3 4 5 6 7 8

θ1
30,g 0.1972 0.3906 0.3071 2305 0.2778 0.5447 0.4818 0.6566

θ1
31,g 0.7889 0.5990 0.6827 0.7430 0.7108 0.4553 0.5121 0.3434

θ1
32,g 0.139 0.104 0.0103 0.0265 0.0114 0.0000 0.0061 0.0000

θ2
30,g 0.1972 0.3906 0.3071 0.5374 0.6340 0.7750 0.6929 0.8264

θ2
31,g 0.7889 0.5990 0.6827 0.4621 0.3660 0.2250 0.3071 0.1736

θ2
32,g 0.139 0.104 0.0103 0.0004 0.0000 0.0000 0.0000 0.0000

tθ3,g - - - May ’80 Apr ’79 Feb ’82 Aug ’79 Jun ’81

Table 6: Estimates of the transition probabilities, θ3,g, and of the time of their structural break,
tθ3,g .

A.3 Transition Probability Estimates
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