
Likelihood-ratio test
In statistics, the likelihood-ratio test assesses the goodness of fit of two competing statistical models based
on the ratio of their likelihoods, specifically one found by maximization over the entire parameter space and
another found after imposing some constraint. If the constraint (i.e., the null hypothesis) is supported by the
observed data, the two likelihoods should not differ by more than sampling error.[1] Thus the likelihood-
ratio test tests whether this ratio is significantly different from one, or equivalently whether its natural
logarithm is significantly different from zero.

The likelihood-ratio test, also known as Wilks test,[2] is the oldest of the three classical approaches to
hypothesis testing, together with the Lagrange multiplier test and the Wald test.[3] In fact, the latter two can
be conceptualized as approximations to the likelihood-ratio test, and are asymptotically equivalent.[4][5][6]

In the case of comparing two models each of which has no unknown parameters, use of the likelihood-ratio
test can be justified by the Neyman–Pearson lemma. The lemma demonstrates that the test has the highest
power among all competitors.[7]
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Suppose that we have a statistical model with parameter space . A null hypothesis is often stated by
saying that the parameter  is in a specified subset  of . The alternative hypothesis is thus that  is in
the complement of , i.e. in , which is denoted by . The likelihood ratio test statistic for the
null hypothesis  is given by:[8]
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where the quantity inside the brackets is called the likelihood ratio. Here, the  notation refers to the
supremum. As all likelihoods are positive, and as the constrained maximum cannot exceed the
unconstrained maximum, the likelihood ratio is bounded between zero and one.

Often the likelihood-ratio test statistic is expressed as a difference between the log-likelihoods

where

is the logarithm of the maximized likelihood function , and  is the maximal value in the special case
that the null hypothesis is true (but not necessarily a value that maximizes  for the sampled data) and

denote the respective arguments of the maxima and the allowed ranges they're embedded in. Multiplying by
−2 ensures mathematically that (by Wilks' theorem)  converges asymptotically to being χ²-distributed if
the null hypothesis happens to be true.[9] The finite sample distributions of likelihood-ratio tests are
generally unknown.[10]

The likelihood-ratio test requires that the models be nested – i.e. the more complex model can be
transformed into the simpler model by imposing constraints on the former's parameters. Many common test
statistics are tests for nested models and can be phrased as log-likelihood ratios or approximations thereof:
e.g. the Z-test, the F-test, the G-test, and Pearson's chi-squared test; for an illustration with the one-sample t-
test, see below.

If the models are not nested, then instead of the likelihood-ratio test, there is a generalization of the test that
can usually be used: for details, see relative likelihood.

A simple-vs.-simple hypothesis test has completely specified models under both the null hypothesis and the
alternative hypothesis, which for convenience are written in terms of fixed values of a notional parameter :

In this case, under either hypothesis, the distribution of the data is fully specified: there are no unknown
parameters to estimate. For this case, a variant of the likelihood-ratio test is available:[11][12]

Some older references may use the reciprocal of the function above as the definition.[13] Thus, the
likelihood ratio is small if the alternative model is better than the null model.

The likelihood-ratio test provides the decision rule as follows:
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If , do not reject ;

If , reject ;

Reject with probability  if 

The values  and  are usually chosen to obtain a specified significance level , via the relation

The Neyman–Pearson lemma states that this likelihood-ratio test is the most powerful among all level 
tests for this case.[7][12]

The likelihood ratio is a function of the data ; therefore, it is a statistic, although unusual in that the
statistic's value depends on a parameter, . The likelihood-ratio test rejects the null hypothesis if the value of
this statistic is too small. How small is too small depends on the significance level of the test, i.e. on what
probability of Type I error is considered tolerable (Type I errors consist of the rejection of a null hypothesis
that is true).

The numerator corresponds to the likelihood of an observed outcome under the null hypothesis. The
denominator corresponds to the maximum likelihood of an observed outcome, varying parameters over the
whole parameter space. The numerator of this ratio is less than the denominator; so, the likelihood ratio is
between 0 and 1. Low values of the likelihood ratio mean that the observed result was much less likely to
occur under the null hypothesis as compared to the alternative. High values of the statistic mean that the
observed outcome was nearly as likely to occur under the null hypothesis as the alternative, and so the null
hypothesis cannot be rejected.

The following example is adapted and abridged from Stuart, Ord & Arnold (1999, §22.2).

Suppose that we have a random sample, of size n, from a population that is normally-distributed. Both the
mean, μ, and the standard deviation, σ, of the population are unknown. We want to test whether the mean
is equal to a given value, μ0 .

Thus, our null hypothesis is H0:  μ = μ0  and our alternative hypothesis is H1:  μ ≠ μ0 . The likelihood
function is

With some calculation (omitted here), it can then be shown that

where t is the t-statistic with n − 1 degrees of freedom. Hence we may use the known exact distribution of
tn−1 to draw inferences.
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If the distribution of the likelihood ratio corresponding to a particular null and alternative hypothesis can be
explicitly determined then it can directly be used to form decision regions (to sustain or reject the null
hypothesis). In most cases, however, the exact distribution of the likelihood ratio corresponding to specific
hypotheses is very difficult to determine.

Assuming H0 is true, there is a fundamental result by Samuel S. Wilks: As the sample size  approaches 
, the test statistic  defined above will be asymptotically chi-squared distributed ( ) with degrees of

freedom equal to the difference in dimensionality of  and .[14] This implies that for a great variety of
hypotheses, we can calculate the likelihood ratio  for the data and then compare the observed  to the 

 value corresponding to a desired statistical significance as an approximate statistical test. Other
extensions exist.
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