Optimal Income Taxation with Multidimensional Types

Kenneth L. Judd Che-Lin Su

Hoover Institution Stanford University

PRELIMINARY AND INCOMPLETE
April, 2006

Introduction

- Optimal income taxation: Mirrlees
 - Heterogeneous productivity
 - Utilitarian (or redistributive) objective
 - Standard cases: clear pattern of binding IC constraints; tax rates in [0,1].
- Criticism of Mirrlees not enough heterogeneity
- Multidimensional heterogeneity
 - Little theory; special cases only
 - No clear pattern of binding IC constraints
 - Revelation principle still holds, producing a nonlinear optimization problem with IC constraints.
 - Clearly more realistic than 1-D models.

- This paper examines multidimensional heterogeneity
 - We take a numerical approach
 - * Novel numerical difficulties arise
 - * This is not as difficult as commonly perceived.
 - Results
 - * Optimal marginal tax rate at top can be negative
 - * Binding incentive constraints are **not** local.
 - * Increases in heterogeneity reduces optimal income redistribution
 - * Intuition: Income is a less informative signal in complex models, so use it less.
- Subversive, subliminal theme
 - Economic theory examines simple models and then constructs complex contracts and institutions to address economic issues
 - Real world is more complex than any reasonable contract or institution

Mirrlees Model

- \bullet N types of taxpayers.
- Two goods: consumption (c) and labour services (l).
- Taxpayer i's productivity is w_i ; $0 < w_1, < ... < w_N$, i's pretax income is

$$y_i := w_i l_i, \quad i = 1, ..., N$$
 (1)

• The social welfare function $W: \mathbb{R}^N \times \mathbb{R}^N_+, \to \mathbb{R}$ is

$$W(a) := \sum_{i} \lambda_i u^i(c_i, y_i/w_i), \tag{2}$$

where λ_i equals the population frequency of type i.

• Resource constraint: $\sum_i c_i \leq \sum_i y_i$

- Each taxpayer can choose any (y_i, c_i) bundle offered by the government.
- Revelation principle: government constructs schedule s.t. type i will choose the (y_i, c_i) bundle
- Government problem

$$\max_{y_i, c_i} \sum_{i} \lambda_i u_i(c_i, y_i/w_i)
u_i(c_i, y_i/w_i) \ge u_i(c_j, y_j/w_i), \forall i, j
\sum_{i} c_i \le \sum_{i} w_i l_i
\sum_{i} c_i \ge 0$$
(3)

ullet The zero tax commodity bundles, (c^*, l^*, y^*) , are the solutions to

$$\max_{l} u_i(w_i l, l)$$

• Examples:

$$u(c,l) = \log c - l^{\eta+1}/(\eta+1)$$

$$N = 5$$

$$w_i \in \{1, 2, 3, 4, 5\}$$

$$\lambda_i = 1/N$$

- The zero tax solution is $l_i = 1, c_i = w_i$
- We compute the solutions for various w and η , and report the following:

$$y_i, \quad i = 1, ..., N,$$
 $\frac{y_i - c_i}{y_i}, \quad i = 1, ..., N,$ (average tax rate) $1 - \frac{u_l}{wu_c}, \quad i = 1, ..., N,$ (marginal tax rate) $l_i/l_i^*, \quad i = 1, ..., N,$ $c_i/c_i^*, \quad i = 1, ..., N,$

Five Mirrlees Economies

	Table 1. $\eta = 1$										
i	y_i	$\frac{y_i - c_i}{y_i}$	MTR_i	l_i/l_i^*	c_i/c_i^*						
1	0.40	-2.87	0.63	0.40	1.56						
2	1.31	-0.45	0.53	0.65	0.95						
3	2.56	0.03	0.40	0.85	0.83						
4	4.01	0.16	0.25	1.00	0.84						
5	5.54	0.19	_	1.10	0.90						

Table 2. $\eta = 1/2$										
i	y_i	$\frac{y_i - c_i}{y_i}$	MTR_i	l_i/l_i^*	c_i/c_i^*					
			0.68	0.60	1.87					
2	1.54	-0.39	0.59	0.77	1.08					
3	2.69	0.02	0.47	0.89	0.87					
4	3.99	0.17	0.32	0.99	0.82					
5	5.41	0.21	_	1.08	0.85					

	Table 4. $\eta = 1/5$										
i	y_i	$\frac{y_i - c_i}{y_i}$	MTR_i	l_i/l_i^*	c_i/c_i^*						
			0.79								
2	1.78	-0.39	0.71	0.89	1.24						
3	2.85	0.02	0.61	0.95	0.93						
$ \! \! 4$	4.01	0.19	0.48	1.00	0.81						
5	5.25	0.26	_	1.05	0.77						

	Table 3. $\eta = 1/3$:										
i	y_i	$\frac{y_i - c_i}{y_i}$	MTR_i	l_i/l_i^*	c_i/c_i^*						
			0.73	0.70	2.06						
2	1.66	-0.38	0.64	0.83	1.15						
3	2.77	0.02	0.53	0.92	0.90						
4	3.99	0.17	0.38	0.99	0.82						
5	5.33	0.23	_	1.06	0.82						

Table 5. $\eta = 1/8$										
i	y_i	$\frac{y_i - c_i}{y_i}$	MTR_i	l_i/l_i^*	c_i/c_i^*					
1	0.87	-1.84	0.84	0.87	2.48					
2	1.86	-0.41	0.77	0.93	1.31					
3	2.91	0.02	0.69	0.97	0.95					
4	4.02	0.20	0.58	1.00	0.80					
5	5.19	0.28	_	1.03	0.73					

Two-D Types - Productivity and Elasticity of Labor Supply

- $u^{j}(c, l) = \log c l^{1/\eta_{j}+1}/(1/\eta_{j}+1)$
- w_i is productivity type i.
- (c_{ij}, y_{ij}) is allocation for (i, j)-type taxpayer.
- Zero tax solution for type (i,j) is $(l_{ij}^*, c_{ij}^*, y_{ij}^*) = (1, w_i, w_i)$.
- Problem:

$$\max_{(y,c)} \sum_{i=1}^{N} \sum_{j=1}^{N} \lambda_{ij} u^{j}(c_{ij}, y_{ij}/w_{i})$$

$$u^{j}(c_{ij}, y_{ij}/w_{i}) - u^{j}(c_{i'j'}, y_{i'j'}/w_{i}) \ge 0 \quad \forall (i, j), (i', j')$$

$$\sum_{i=1}^{N} \sum_{j=1}^{N} c_{ij} \le \sum_{i=1}^{N} y_{ij}$$

$$\sum_{i=1}^{N} \sum_{j=1}^{N} c_{ij} \ge 0,$$

• We choose the following parameters:

$$-N = 5, w_i = i$$

$$-\lambda_i = 1$$

$$-\eta = (1, 1/2, 1/3, 1/5, 1/8).$$

– We use the zero tax solution (c^*, y^*) as a starting point for the NLP solver.

Table 6. $\eta = (1, 1/2, 1/3, 1/5, 1/8), w = (1, 2, 3, 4, 5)$

(i,j)	c_{ij}	y_{ij}	$\overline{MTR_{i,j}}$	$ATR_{i,j}$	l_{ij}/l_{ij}^*	c_{ij}/c_{ij}^*	Uti	lity
					V	· ·	Judd-Su	Mirrlees
(1,1)	1.68	0.42	0.28	-2.92	0.42	1.68	0.4294	.3641
(1,2)	1.77	0.62	0.32	-1.86	0.62	1.77	0.4952	.3138
(1,3)	1.79	0.65	0.51	-1.75	0.65	1.79	0.5378	.6601
(1,4)	1.83	0.77	0.50	-1.37	0.77	1.83	0.5700	.7830
(1,5)	1.86	0.86	0.43	-1.16	0.86	1.86	0.5940	.8760
(2,1)	1.86	0.86	0.60	-1.16	0.43	0.93	0.5308	.3751
(2,2)	2.03	1.39	0.50	-0.45	0.69	1.01	0.5973	.6180
(2,3)	2.07	1.50	0.56	-0.38	0.75	1.03	0.6512	.7189
(2,4)	2.16	1.74	0.46	-0.24	0.87	1.08	0.7006	.8181
(2,5)	2.20	1.83	0.46	-0.20	0.91	1.10	0.7413	.9085
(3,1)	2.20	1.83	0.55	-0.20	0.61	0.73	0.6053	.5496
(3,2)	2.47	2.49	0.43	0.00	0.83	0.82	0.7157	.7269
(3,3)	2.47	2.49	0.53	0.00	0.83	0.82	0.7878	.8158
(3,4)	2.55	2.68	0.52	0.04	0.89	0.85	0.8520	.9057
(3,5)	2.62	2.85	0.42	0.07	0.95	0.87	0.8965	.9672
(4,1)	3.36	4.00	0.16	0.15	1.00	0.84	0.7127	.7090
(4,2)	3.36	4.00	0.16	0.15	1.00	0.84	0.8794	.8664
(4,3)	3.36	4.00	0.15	0.15	1.00	0.84	0.9627	.9402
(4,4)	3.36	4.00	0.15	0.15	1.00	0.84	1.0461	1.0080
(4,5)	3.36	4.00	0.15	0.15	1.00	0.84	1.1017	1.0476
(5,5)	4.00	5.14	0	0.22	1.02	0.80	1.2439	1.1487
(5,4)	4.11	5.24	-0.05	0.21	1.04	0.82	1.1928	1.1331
(5,3)	4.34	5.43	-0.12	0.20	1.08	0.86	1.1188	1.0877
(5,2)	4.49	5.56	-0.11	0.19	1.11	0.89	1.0428	1.0286
(5,1)	4.87	5.87	-0.15	0.17	1.17	0.97	0.8933	.8901

Table 7. Binding IC[(i, j), (i', j')]

(i,j)	(i'j')	(i,j)	(i'j')
		(4,1)	(3,2), (3,3), (3,5), (4,2), (4,3), (4,4), (4,5)
(1,2)	(1,1)	(4,2)	(4,1), (4,3), (4,4), (4,5)
(1,3)	(1,2)	(4,3)	(4,1), (4,2), (4,4), (4,5)
(1,4)	(1,3)	(4,4)	(4,1), (4,2), (4,3), (4,5)
(1,5)	(1,4), (2,1)	(4,5)	(4,1), (4,2), (4,3), (4,4)
(2,1)	(1,4), (1,5)	(5,1)	(4,1), (4,2), (4,3), (4,4), (4,5)
(2,2)	(1,5), (2,1)	(5,2)	(4,1), (4,2), (4,3), (4,4), (4,5), (5,1)
(2,3)	(2,2)	(5,3)	(5,2)
(2,4)	(2,3)	(5,4)	(5,3)
(2,5)	(2,4), (3,1)	(5,5)	(5,4)
(3,1)	(2,3), (2,5)		
(3,2)	(2,5), (3,1), (3,3)		
(3,3)	(3,2)		
$\boxed{(3,4)}$	(3,2), (3,3)		
(3,5)	(3,4)		

Comparisons

- Negative marginal rates at top in heterogeneous η case!
- Binding IC constraints
 - Some are not local in income space; appears to violate Assumption B in Guesnerie-Seade
 - More binding constraints than variables LICQ problem?
- Less redistribution in heterogeneous η case
 - Average tax rates are lower for top two productivity types
 - Marginal tax rates are lower for top two productivity types
- More output both consumption and labor supply tends to be higher in heterogeneous economy

Numerical Issues

- LICQ (linear independence constraint qualification)
 - "The gradients of the binding constraints are linearly independent."
 - A sufficient condition in convergence theorems for most algorithms
 - Essentially a necessary condition for good convergence rate
 - Will fail when there are more binding constraints than variables
 - Mangasarian-Fromowitz and Robinson are not sufficient for convergence of current algorithms
- Software and Hardware
 - AMPL modelling language commonly used in OR
 - Desktop computers, primarily through NEOS

• Algorithms

- FilterSQP was most reliable robust to LICQ failure
- SNOPT was pretty reliable robust to LICQ failure
- IPOPT stopped early interior point method is too loose
- MINOS often failed relies on LICQ
- Others at NEOS failed
- fmincon no point in trying it
- Lesson: try many different algorithms!
- Global optimization issues
 - Successful algorithms agreed
 - Small deviation examples found qualitatively similar results

MPCC

• "Mathematical programming with complementarity constraints"

```
\max_{x} f(x)
g(x) = 0
h(x) \ge 0, \ s(x) \ge 0
s(x)h(x) = 0, \text{ componentwise}
```

- If complementarity slackness conditions bind, then LICQ will generically fail in many problems
- "Stackelberg games" are MPCCs: choose all players' moves so as to maximize leader's objective subject to the followers' responses being consistent with equilibrium.

- Economics is full of MPCCs
 - All nonlinear pricing, optimal taxation, and mechanism design problems
 - Many empirical methods. Judd and Su (2006) shows
 - * MPCC outperforms NFXP on Harold Zurcher problem
 - * MPCC can estimate games; NFXP can't

• Algorithms

- Several under development: Leyffer, Munson, Anitescu, Peng, Ralph
- Su and Judd (2005) proposes hybrid approach combining lottery approach and MPCC methods to deal with global optimization problems

Three-Dimensional Types - Productivity and Labor Disutility

• Consider the utility function

$$u(c,l) = u(c,y/w) := \frac{(c-\alpha)^{1-1/\gamma}}{1-1/\gamma} - \psi \frac{(y/w)^{1/\eta+1}}{1/\eta+1}$$

- Possible heterogeneities: w, η, α, γ , and ψ
 - $\circ w$ wage
 - $\circ \eta$ elasticity of labor supply
 - $\circ \alpha$ "needs"
 - $\circ \gamma$ elasticity of demand for consumption
 - $\circ \psi$ level of distaste for work
- Example: N = 3, $w_i \in \{2, 3, 4\}$, $\eta_j \in \{1/2, 1, 2\}$, $a_k \in \{0, 1, 2\}$, $\gamma = \psi = 1$

Two-Dimensional Types - Productivity and Age

- Dynamic OLG optimal tax
 - Individuals know life-cyle productivity
 - Mirrlees approach would have agent reveal type
 - Tax policy would be age-dependent
- Suppose age is not used
 - Better description of actual tax policies
 - Still a mechanism design problem just (a lot) more incentive constraints

- Example:
 - Wage patterns

Wage History

	Р	Period				
Type	t_1	t_2	t_3			
1	1	3	2			
2	2	4	4			
3	2	5	4			
4	3	5	6			

- Consider three policies: Mirrlees, age-free Mirrlees, linear (-a + by)
- Total income patterns under three policies

Table 8: Aggregate Outputs for Each Type

	Tot	al Inco	ome	Total Tax Paid			Total Utility		
Type	Mirr.	Nlin.	Lin.	Mirr.	Nlin.	Lin.	Mirr.	Nlin.	Lin.
1	4.72	5.43	5.65	-2.40	-1.36	-0.96	1.79	1.40	1.23
2	9.60	10.02	9.70	-0.03	0.07	-0.07	2.22	2.20	2.23
3	11.88	11.19	10.83	0.51	0.36	0.18	2.43	2.46	2.49
4	15.48	14.35	13.90	1.91	0.93	0.85	2.82	3.01	3.03

Table 9: Life-cycle patterns of income, taxes, and MTR

OLG Model - Mirrlees				Nonlinear tax			Linear tax			
Type	age	y	Tax	MTR	y	Tax	MTR	y	Tax	MTR
1	1	0.31	-0.79	0.25	0.32	-1.01	0.25	0.42	-0.64	0.22
1	2	3.15	-0.79	0.16	3.55	0.24	0.10	3.46	0.02	0.22
1	3	1.25	-0.79	0.25	1.54	-0.59	0.12	1.75	-0.34	0.22
2	1	1.05	-0.01	0.15	1.05	-0.73	0.12	1.12	-0.48	0.22
2	2	4.32	-0.01	0.13	4.48	0.39	0.07	4.28	0.20	0.22
2	3	4.22	-0.01	0.15	4.48	0.39	0.07	4.28	0.20	0.22
3	1	1.05	0.17	0.00	1.02	-0.73	0.07	1.12	-0.48	0.22
3	2	6.59	0.17	0.00	6.29	0.79	0.09	6.10	0.60	0.22
3	3	4.22	0.17	0.00	3.85	0.29	0.12	3.59	0.05	0.22
4	1	1.99	0.63	0.00	1.54	-0.59	0.23	1.75	-0.34	0.22
4	2	5.52	0.63	0.00	4.90	0.47	0.12	4.83	0.32	0.22
4	3	7.96	0.63	0.00	7.90	1.05	0.01	7.30	0.87	0.22

Future Work and Conclusions

- Robustness
 - Other objectives Rawlsian
 - Government expenditures
 - Examine more of the parameter space
 - Consider empirically reasonable distributions of wages
- Develop asymptotic approximation methods
- Related policy issues
 - Deductibility of children, medical expenses, mortgage interest (hope not)
 - Include capital income in tax base? Assets?
 - Use wage rate if observable?

- Numerical problems
 - Develop algorithms that take advantage structure of optimal tax problems
 - Exploit available computer power TeraGrid, Condor, Mirrlees@home
 - Find ways to deal with enormous size of direct revelation method we are working on piecewise linearity
- Multidimensionality significantly affects results
- Multidimensional problems require use of state-of-the-art computational methods but are feasible