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How can we determine the statistical properties of our estimators?

Repeat the experiment many times

Pick true parameters
Generate synthetic data sets of various sizes
Apply procedures
Record results and fit to some class of distributions
Who needs theoretical econometricians?

Problem: we aren’t allowed to get the required computer power

We didn’t build the bomb
Current users do not want new users

Econometricians to the rescue

They develop theories
They use asymptotic properties to derive useful statistical tests
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Problem 1

Asymptotically, we are all dead
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Problem 2

We have finite sample problems during our finite life
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Today

Review basic statistics to remind ourselves of the subtle differences in
concepts

Describe Reich-Judd approach which avoids some of the approximations
typically used

Describe application to ... what else .... Zurcher bus model
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Statistics and estimates

Let f (x ; θ) denote a family of probability masses or density functions over S
– potentially multivariate – parameterized by θ. Suppose the random
variables X 1, . . . ,X n are independently and identically distributed according
to some f (x ; θ0) for some θ0. Let X 1:n = (X 1, . . . ,X n) denote a collection of
random variables for some n. The data matrix x1:n = (x1, . . . , xn) is called a
realization of the random sample of size n

Consider a real function h(·); the random variable Tn = h(X 1:n) with
realization tn = h(x1:n) is called a statistic. If a sequence of statistics, Tn, is
used to infer an unknown parameter θ, it is called an estimator ; when
appropriate, it can be denoted by θ̂ = θ̂(X 1:n). A concrete value for such an
estimator based on x1:n is called an estimate, either denoted by t or θ.
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Standard error and confidence interval

Let Tn be an estimator of θ, and V be a consistent estimator of its variance
var(Tn). Then, the standard error, (T ) ≡

√
V , is a consistent estimator of its

standard deviation
√

var(T ).

Given a fixed γ ∈ (0, 1), the two statistics Tn,l and Tn,b form the boundaries
of a γ · 100% confidence interval if P(Tn,l ≤ θ ≤ Tn,l) = γ ∀θ ∈ Θ; γ is
called the confidence level, or alternatively the coverage probability.

Comments

The main difficulty with standard errors is obtaining a consistent estimator V
of the variance of the estimator Tn

Finding a statistic that fulfills the coverage condition is generally nontrivial.
Most of the time, general statistics that rely on asymptotics will be used.
The correct interpretation of a confidence interval is that if the random
sampling in the population were to be repeated, γ · 100% of the confidence
intervals obtained would cover the true parameter θ.
It is not correct to say that given a sample, the confidence interval contains
the true parameter with γ · 100% probability, as there is no randomness
involved anymore once the sample is taken.
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z-Statistic, Asymptotic Normality, Wald Confidence Interval

If Tn is a consistent estimator for θ, the z-statistic will—under appropriate
regularity conditions—by asymptotically (standard) normal distributed:

Z (θ) ≡ Tn − θ
(Tn)

(0, 1).

The two statistics Tn ± z 1+γ
2

form the boundary of an approximate γ · 100%

confidence interval, also referred to as the Wald confidence interval, where z
is the corresponding quantile of the standard normal distribution.
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Likelihood function

The likelihood (function) is the joint probability or the joint density of the
data, given a particular value of the parameter, written as a function of the
parameter (fixing the data): L(θ; x) ≡ f (x ; θ)

The maximum likelihood estimate is defined as θML = arg maxθ∈Θ L(θ; x),
and the maximum likelihood estimator as θ̂ML = arg maxθ∈Θ L(θ;X ); both
objects might be abbreviated by MLE.

Due to the independence of the draws, the likelihood function for the sample
is the product of the individual likelihoods: L(θ; x1:n) =

∏n
1 f (x i ; θ).

Every monotone transformation of L has the same extremal values

We often use the natural logarithm of the likelihood, called the log-likelihood :
l(θ; x) ≡ log(L(θ; x)).
Since the log of a product is a sum, maximizing the log-likelihood avoids
problems of underflow.
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Relative likelihood

The relative likelihood is defined by L̃(θ; x) = L(θ;x)

L(θ̂ML;x)
. In particular,

0 ≤ L̃(θ; x) ≤ 1.

The following definitions give names to the first and second derivatives of the
log-likelihood function:

Score function: S(θ;X ) ≡ dl(θ;x)
dθ

(Ordinary) Fisher information: I (θ;X ) ≡ − d2 l(θ;x)

dθ2 = − dS(θ;X )
dθ

Expected Fisher information: E(I (θ0;X )), where the expectation is taken with
respect to X (this implies that the expectation is integrated with against
f (X , θ0) at the true parameter value).
Observed Fisher information: I (θ̂ML;X 1:n) (at the ML estimator)

Asymptotic Normality of ML Estimator Suppose θ̂ML is a consistent estimator
for the true parameter θ0, and the Fisher regularity conditions hold. Then,√

n · J(θ0)(θ̂ML − θ0)(0, 1)
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Wald statistics and confidence interval

To test H0 : θ0 = θ̃0, the Wald statistic is defined by√
I (θ̂ML;X 1:n)(θ̂ML − θ̃0), which is asymptotically (standard) normal

distributed.

The bounds of the γ · 100% Wald confidence interval are obtained as
θ̂ML ± z 1+γ

2
(θ̂ML)

The Wald confidence interval is generally considered to be “too large” for a
given γ.

It is not invariant to non-linear transformations because the Wald statistic is
based on a second order approximation of likelihood, and does not involve the
likelihood function itself
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Likelihood ratio statistics

The likelihood ratio statistic asymptotically follows a Chi-squared distribution
with one degree of freedom:

−2(l(θ̂ML;X )− l(θ0;X )) ≡ −2̃l(θ0;X )χ2(1).

The set
{
θ : l̃(θ;X ) ≥ −0.5χ2

γ(1)
}

forms the γ · 100% likelihood ratio (LR)

confidence interval for θ, where χ2
γ(1) is the corresponding quantile of the

Chi-squared distribution with one degree of freedom.

The likelihood ratio confidence interval defines a manifold.

Numerical methods are required to approximate its boundary
In one dimension, finding the boundary boils down to finding an even number
(usually 2) of solutions to a one dimensional equation.
Computing these confidence intervals as the solution to the likelihood ratio
statistic equaling a quantile of the Chi-squared distribution is also referred to
as test inversion, because one seeks the one value of the likelihood ratio such
that the inequality holds strictly.

Wilk’s theorem generalizes this to multiple dimensions
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Reich and Judd idea

Let’s compute the likelihood level set of the Chi-squared quantile

Yes, let’s compute manifolds

Today we stay with one dimensional manifolds

Perhaps you will see the multidimensional version next year
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The Likelihood Ratio Test

Setup
Model M: Structural parameters θ ∈ Θ, states x ∈ S, “outcomes” y ∈ Y,
policy/endogenous variables σ ∈ Σ
Model solution conditions h(x ;σ, θ) = 0, ∀x ∈ S
Data set {x̂t , ŷt}Tt=1

Log-likelihood function L(θ;σ) ≡ log(PM({x̂t , ŷt}Tt=1;σ, θ))

Estimation of θ (here: MPEC, but “nesting” NFXP):

θ̂, σ̂ = arg max
θ∈Θ,σ∈Σ

L(θ;σ)

s.t. h(x ;σ, θ) = 0, ∀x ∈ S
Likelihood ratio test

Hypothesis function: τ : Θ→ R, τ ∈ C1

Hypotheses: H0 : τ(θ) = 0 against H1 : τ(θ) 6= 0 (two-sided)

Test statistic: If H0 is true, 2(L(θ̂; σ̂)− L(θ0;σ0))
a∼ χ2

1, where

θ0, σ0 = arg max
θ∈Θ,σ∈Σ

L(θ;σ)

s.t. h(x ;σ, θ) = 0, ∀x ∈ S
τ(θ) = 0
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Test Inversion and Confidence Intervals

Set of hypothesis values a which would not be rejected, given L(θ̂; σ̂)

Aα ≡ {a ∈ R : ∃θ, σ : h(x ;σ, θ) = 0 and H0 : τ(θ) = a not rejected at level α}

Convex hull: Aα ⊆ [min(Aα),max(Aα)] ≡ [
¯
a, ā]

A 6= ∅ because τ(θ̂) ∈ Aα; not a singleton if L ∈ C0 and α > 0

Computation of
¯
a (ā analogously as max problem, or min−τ(θ)):

ˆ
¯
a = min

θ∈Θ,σ∈Σ
τ(θ)

s.t. h(x ;σ, θ) = 0, ∀x ∈ S
L(θ;σ) ≥ L(θ̂; σ̂)− 0.5χ2

1(1− α)

Aα forms a (1− α) · 100% confidence interval for τ(θ)

In repeated sampling experiments and estimations of θ, Aα would contain the
“true” value of θ in (1− α) · 100% of the times
“Duality of hypothesis testing and confidence intervals”
Dimension-wise confidence intervals of θ using τ : θ 7→ θk
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The Bus Engine Replacement Model (Rust, 1987)

Dynamic machine renewal problem
Payoff function

u(x , i ; θ) + ε(i) =

{
θRC + ε(1) i = 1

θ1 · x + ε(0) i = 0

Law of motion of the states:
Pr(x ′|x , i ; θ), with Pr(x ′ < x |i = 0; θ) = 0 and Pr(x ′ = 0|x , i = 1; θ) > 0
ε ∼ EV 1 i.i.d.

(Integrated) Bellman equation

EV (x , i) ≡ E[V (x ′, ε′)|x , i ]

=

∫∫
max{u(x ′, i ′; θ) + ε′(i ′) + βEV (x ′, i ′)}Pr(x ′|x , i ; θ)q(ε′)dε′dx ′

≡ T [EV ; θ](x , i)

Estimate θ from data {xt , it}t,i (here: MPEC, but “nesting” NFXP)

θ̂, ÊV = arg max
θ∈Θ,EV

L(θ;EV )

s.t. EV (x , i) = T [EV ; θ](x , i), ∀x ∈ S, i ∈ {0, 1}
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Confidence Intervals

(1− α) · 100% Confidence intervals for τ = (θRC , θ1, θRC/θ1) (and −τ)

min
θ∈Θ,EV

τk

s.t. EV (x , i) = T [EVθ; θ](x , i), ∀x ∈ S, i ∈ {0, 1}

L(θ;EV ) ≥ L(θ̂; ÊV )− 0.5χ2
1(1− α)

Coverage analysis:

Simulate data sets under θ̃
Estimate ˆ̃θ and its confidence intervals
Check for inclusion of θ̃

Comparison:

Two different data set sizes (8,112 and 780)
Various types of confidence intervals

Likelihood ratio confidence intervals (LRCI)
Wald/SE (with delta method for mapped parameters)
Bootstrapping (sample quantiles)
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Confidence Intervals: Coverage Analysis (1)

LRCI

Sample size: 8,112 Sample size: 780
coverage min max coverage min max

θRC 0.961 6.465 21.77 0.958 4.333 153.7
θ1 0.953 0.558 7.888 0.938 7e-16 73.33
θRC/θ1 0.942 2.348 12.07 0.911 1.305 4e07

Wald/SE (with delta method)

θRC 0.952 6.367 20.85 0.955 -42.53 132.8
θ1 0.928 0.450 7.404 0.935 -22.60 61.00
θRC/θ1 0.962 2.212 10.30 0.791 -8e04 8e04

Bootstrap (sample quantiles)

θRC 0.928 5.736 20.56 0.675 4.709 350.0
θ1 0.939 0.273 7.723 0.813 1e-12 167.4
θRC/θ1 0.939 2.231 11.11 0.880 1.181 5e12

LRCI Wald Bootstrap

time (sec) 288 12 6,305
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Confidence Intervals: Coverage Analysis (2)

Reich and Judd Likelihood Ratio Confidence Intervals ESWC 2020 6 / 11



Counter-Factuals: Demand Estimation in Rust (1987)

Counter-factual: Use estimated model to carry out “policy experiments”, e.g.
by simulating/integrating the model variants to obtain and compare some
derived quantity.

Assumption: Structural parameters are policy-invariant.
Goal: Analyze how estimation error propagates to derived quantities.

Counter-factual is a map of the parameters, but its derivative is not
always straightforward to compute (needed for delta method)

Demand function estimation in Rust (1987)

d(θRC ) ≡
∫
πθ(x , i = 1)dx

where the stationary distribution is defined as

π(x , i) =

∫∫
Pr(i |x ;EVθ)Pr(x |x ′, i ′; θ)π(x ′, i ′)dx ′di ′,
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Demand Curve in Rust (1987)

AN EMPIRICAL MODEL OF HAROLD ZURCHER 1031 

value of mean mileage given that replacement hasn't yet occurred is 159,305 
which is also within half a standard deviation of the actual value of 134,862. 
Thus, use of a stationary distribution to compute replacement demand does not 
appear to be greatly at odds with the data. 

By parametrically varying replacement costs, I can trace out the equilibrium 
distribution ir, as a function of RC. In particular, using formula (6.3) I can 
compute the expected demand curve for replacement investment. Figure 7 presents 
the expected demand function d (RC) for model 11 for a fleet containing a single 
bus, M = 1. For comparison, I also present the implied demand curve for the 
static model with ,3 = 0. We can see significant differences in the predictions of 
the two models. As one might expect, the demand curve for the myopic model 
is much more sensitive to the cost of replacement bus engines, overpredicting 
demand at low prices, underpredicting demand at high prices. Notice, however, 
that the maximum likelihood procedure insures that both models generate the 
same predictions at the actual replacement cost of $4343. 

Figure 7 summarizes the value of the "bottom-up" approach to replacement 
investment. Since engine replacement costs have not varied much in the past, 
estimating replacement demand by a "reduced-form" approach which, for 
example, regresses engine replacements on replacement costs, is incapable of 
producing reliable estimates of the replacement demand function. In terms of 
Figure 7, all the data would be clustered in a small ball about the intersection 
of the two demand curves: obviously many different demand functions would 

Expected Replacement Demand Function 
Annual Replacement Demand for Model 11 
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Confidence Intervals for Demand Curve (1)

Confidence interval for d(θRC ) (θRC fix)

ˆ
¯
d(θRC ) = arg min

θ1,θ̃RC ,π,EV ,ẼV

∫
π(x , i = 1)dx

s.t. π(x , i) =

∫∫
Pr(i |x ;EV )Pr(x |x ′, i ′; θRC , θ1)π(dx ′, di ′),∀x , i

EV (x , i) = T [EV ; θRC , θ1](x , i), ∀x , i

ẼV (x , i) = T [ẼV ; θ̃RC , θ1](x , i), ∀x , i

L(θ̃RC , θ1; ẼV ) ≥ L(θ̂; ÊV )− 0.5χ2
1(1− α)

Reich and Judd Likelihood Ratio Confidence Intervals ESWC 2020 9 / 11



Confidence Intervals for Demand Curve (2)
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Conclusions

We propose an efficient and easy-to-implement way to compute likelihood
ratio confidence intervals (LRCI) for structural parameters—and mappings
thereof—using constrained optimization

We demonstrate that LRCI have very competitive coverage properties, in
particular for mappings and smaller data sets; runtime performance is
somewhere in between standard error based CIs and bootstrapping approaches

We demonstrate the applicability to counter-factuals—a specific kind of
mapping—which would otherwise be hard to assess for estimation error
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