Not your grandparents' confidence intervals

Gregor Reich (NHH) and Ken Judd (Hoover)

March 23, 2021

How can we determine the statistical properties of our estimators?

- Repeat the experiment many times
 - Pick true parameters
 - Generate synthetic data sets of various sizes
 - Apply procedures
 - Record results and fit to some class of distributions
 - Who needs theoretical econometricians?
- Problem: we aren't allowed to get the required computer power
 - We didn't build the bomb
 - Current users do not want new users
- Econometricians to the rescue
 - They develop theories
 - They use asymptotic properties to derive useful statistical tests

Problem 1

• Asymptotically, we are all dead

Problem 2

• We have finite sample problems during our finite life

Today

- Review basic statistics to remind ourselves of the subtle differences in concepts
- Describe Reich-Judd approach which avoids some of the approximations typically used
- Describe application to ... what else Zurcher bus model

Statistics and estimates

- Let $f(x;\theta)$ denote a family of probability masses or density functions over S potentially multivariate parameterized by θ . Suppose the random variables X^1,\ldots,X^n are independently and identically distributed according to some $f(x;\theta_0)$ for some θ_0 . Let $X^{1:n}=(X^1,\ldots,X^n)$ denote a collection of random variables for some n. The data matrix $x^{1:n}=(x^1,\ldots,x^n)$ is called a realization of the random sample of size n
- Consider a real function $h(\cdot)$; the random variable $T_n = h(X^{1:n})$ with realization $t_n = h(x^{1:n})$ is called a *statistic*. If a sequence of statistics, T_n , is used to infer an unknown parameter θ , it is called an *estimator*; when appropriate, it can be denoted by $\hat{\theta} = \hat{\theta}(X^{1:n})$. A concrete value for such an estimator based on $x^{1:n}$ is called an *estimate*, either denoted by t or t.

Standard error and confidence interval

- Let T_n be an estimator of θ , and V be a consistent estimator of its variance $\text{var}(T_n)$. Then, the *standard error*, $(T) \equiv \sqrt{V}$, is a consistent estimator of its standard deviation $\sqrt{\text{var}(T)}$.
- Given a fixed $\gamma \in (0,1)$, the two statistics $T_{n,l}$ and $T_{n,b}$ form the boundaries of a $\gamma \cdot 100\%$ confidence interval if $P(T_{n,l} \leq \theta \leq T_{n,l}) = \gamma \ \forall \theta \in \Theta$; γ is called the *confidence level*, or alternatively the *coverage probability*.
- Comments
 - The main difficulty with standard errors is obtaining a consistent estimator V of the variance of the estimator T_n
 - Finding a statistic that fulfills the coverage condition is generally nontrivial.
 Most of the time, general statistics that rely on asymptotics will be used.
 - The correct interpretation of a confidence interval is that if the random sampling in the population were to be repeated, $\gamma \cdot 100\%$ of the confidence intervals obtained would cover the true parameter θ .
 - It is *not* correct to say that given a sample, the confidence interval contains the true parameter with $\gamma \cdot 100\%$ probability, as there is no randomness involved anymore once the sample is taken.

z-Statistic, Asymptotic Normality, Wald Confidence Interval

• If T_n is a consistent estimator for θ , the z-statistic will—under appropriate regularity conditions—by asymptotically (standard) normal distributed:

$$Z(\theta) \equiv \frac{T_n - \theta}{(T_n)}(0,1).$$

• The two statistics $T_n \pm z_{\frac{1+\gamma}{2}}$ form the boundary of an approximate $\gamma \cdot 100\%$ confidence interval, also referred to as the Wald confidence interval, where z is the corresponding quantile of the standard normal distribution.

Likelihood function

- The *likelihood* (function) is the joint probability or the joint density of the data, given a particular value of the parameter, written as a function of the parameter (fixing the data): $L(\theta; x) \equiv f(x; \theta)$
- The maximum likelihood estimate is defined as $\theta^{ML} = \arg\max_{\theta \in \Theta} L(\theta; x)$, and the maximum likelihood estimator as $\hat{\theta}^{ML} = \arg\max_{\theta \in \Theta} L(\theta; X)$; both objects might be abbreviated by MLE.
- Due to the independence of the draws, the likelihood function for the sample is the product of the individual likelihoods: $L(\theta; x^{1:n}) = \prod_{i=1}^{n} f(x^{i}; \theta)$.
- Every monotone transformation of L has the same extremal values
 - We often use the natural logarithm of the likelihood, called the *log-likelihood*: $I(\theta; x) \equiv \log(L(\theta; x))$.
 - Since the log of a product is a sum, maximizing the log-likelihood avoids problems of underflow.

Relative likelihood

- The relative likelihood is defined by $\tilde{L}(\theta;x) = \frac{L(\theta;x)}{L(\hat{\theta}_{ML};x)}$. In particular, $0 < \tilde{L}(\theta;x) < 1$.
- The following definitions give names to the first and second derivatives of the log-likelihood function:
 - Score function: $S(\theta; X) \equiv \frac{dI(\theta; x)}{d\theta}$
 - (Ordinary) Fisher information: $I(\theta; X) \equiv -\frac{d^2I(\theta; X)}{d\theta^2} = -\frac{dS(\theta; X)}{d\theta}$
 - Expected Fisher information: $\mathbb{E}(I(\theta_0; X))$, where the expectation is taken with respect to X (this implies that the expectation is integrated with against $f(X, \theta_0)$ at the true parameter value).
 - Observed Fisher information: $I(\hat{\theta}^{ML}; X^{1:n})$ (at the ML estimator)
- Asymptotic Normality of ML Estimator Suppose $\hat{\theta}^{ML}$ is a consistent estimator for the true parameter θ_0 , and the Fisher regularity conditions hold. Then,

$$\sqrt{n\cdot J(\theta_0)}(\hat{\theta}^{ML}-\theta_0)(0,1)$$

Wald statistics and confidence interval

- To test $H_0: \theta_0 = \tilde{\theta}_0$, the *Wald statistic* is defined by $\sqrt{I(\hat{\theta}^{ML}; X^{1:n})}(\hat{\theta}^{ML} \tilde{\theta}_0)$, which is asymptotically (standard) normal distributed.
- The bounds of the $\gamma \cdot 100\%$ Wald confidence interval are obtained as $\hat{\theta}^{ML} \pm z_{\frac{1+\gamma}{2}}(\hat{\theta}^{ML})$
- The Wald confidence interval is generally considered to be "too large" for a given γ .
- It is not invariant to non-linear transformations because the Wald statistic is based on a second order approximation of likelihood, and does not involve the likelihood function itself

Likelihood ratio statistics

 The likelihood ratio statistic asymptotically follows a Chi-squared distribution with one degree of freedom:

$$-2(I(\hat{\theta}^{ML};X)-I(\theta_0;X))\equiv -2\tilde{I}(\theta_0;X)\chi^2(1).$$

- The set $\left\{\theta: \tilde{I}(\theta;X) \geq -0.5\chi_{\gamma}^2(1)\right\}$ forms the $\gamma \cdot 100\%$ likelihood ratio (LR) confidence interval for θ , where $\chi_{\gamma}^2(1)$ is the corresponding quantile of the Chi-squared distribution with one degree of freedom.
- The likelihood ratio confidence interval defines a manifold.
 - Numerical methods are required to approximate its boundary
 - In one dimension, finding the boundary boils down to finding an even number (usually 2) of solutions to a one dimensional equation.
 - Computing these confidence intervals as the solution to the likelihood ratio statistic equaling a quantile of the Chi-squared distribution is also referred to as test inversion, because one seeks the one value of the likelihood ratio such that the inequality holds strictly.
- Wilk's theorem generalizes this to multiple dimensions

MEE Lixe Kihood uller fillinge YIMA.

Reich and Judd idea

- Let's compute the likelihood level set of the Chi-squared quantile
- Yes, let's compute manifolds
- Today we stay with one dimensional manifolds
- Perhaps you will see the multidimensional version next year

The Likelihood Ratio Test

- Setup
 - Model \mathcal{M} : Structural parameters $\theta \in \Theta$, states $x \in \mathcal{S}$, "outcomes" $y \in \mathcal{Y}$, policy/endogenous variables $\sigma \in \Sigma$
 - Model solution conditions $h(x; \sigma, \theta) = 0, \ \forall x \in S$
 - Data set $\{\hat{x}_t, \hat{y}_t\}_{t=1}^T$
 - Log-likelihood function $L(\theta; \sigma) \equiv \log(P_{\mathcal{M}}(\{\hat{x}_t, \hat{y}_t\}_{t=1}^T; \sigma, \theta))$
- Estimation of θ (here: MPEC, but "nesting" NFXP):

$$\begin{split} \hat{\theta}, \hat{\sigma} &= \arg\max_{\theta \in \Theta, \sigma \in \Sigma} L(\theta; \sigma) \\ \text{s.t. } h(x; \sigma, \theta) &= 0, \ \forall x \in \mathcal{S} \end{split}$$

- Likelihood ratio test
 - Hypothesis function: $\tau: \Theta \to \mathbb{R}, \ \tau \in \mathcal{C}^1$
 - Hypotheses: $H_0: \tau(\theta) = 0$ against $H_1: \tau(\theta) \neq 0$ (two-sided)
 - Test statistic: If H_0 is true, $2(L(\hat{\theta}; \hat{\sigma}) L(\theta_0; \sigma_0)) \stackrel{a}{\sim} \chi_1^2$, where

$$\theta_0, \sigma_0 = \arg\max_{\theta \in \Theta, \sigma \in \Sigma} L(\theta; \sigma)$$

s.t. $h(x; \sigma, \theta) = 0, \ \forall x \in \mathcal{S}$
 $\tau(\theta) = 0$

Test Inversion and Confidence Intervals

• Set of hypothesis values a which would not be rejected, given $L(\hat{\theta}; \hat{\sigma})$

$$\mathcal{A}^{\alpha} \equiv \{ \textbf{\textit{a}} \in \mathbb{R} : \exists \theta, \sigma : \textbf{\textit{h}}(\textbf{\textit{x}}; \sigma, \theta) = 0 \text{ and } H_0 : \tau(\theta) = \textbf{\textit{a}} \text{ not rejected at level } \alpha \}$$

- Convex hull: $\mathcal{A}^{\alpha} \subseteq [\min(\mathcal{A}^{\alpha}), \max(\mathcal{A}^{\alpha})] \equiv [\underline{a}, \overline{a}]$
- $A \neq \emptyset$ because $\tau(\hat{\theta}) \in A^{\alpha}$; not a singleton if $L \in C^{0}$ and $\alpha > 0$
- Computation of \underline{a} (\overline{a} analogously as max problem, or min $-\tau(\theta)$):

$$\hat{\underline{a}} = \min_{\theta \in \Theta, \sigma \in \Sigma} \tau(\theta)$$
s.t. $h(x; \sigma, \theta) = 0, \ \forall x \in S$

$$L(\theta; \sigma) \ge L(\hat{\theta}; \hat{\sigma}) - 0.5\chi_1^2(1 - \alpha)$$

- \mathcal{A}^{α} forms a $(1-\alpha)\cdot 100\%$ confidence interval for $\tau(\theta)$
 - In repeated sampling experiments and estimations of θ , \mathcal{A}^{α} would contain the "true" value of θ in $(1-\alpha)\cdot 100\%$ of the times
 - "Duality of hypothesis testing and confidence intervals"
 - Dimension-wise confidence intervals of θ using $\tau: \theta \mapsto \theta_k$

The Bus Engine Replacement Model (Rust, 1987)

- Dynamic machine renewal problem
 - Payoff function

$$u(x, i; \theta) + \varepsilon(i) = \begin{cases} \theta_{RC} + \varepsilon(1) & i = 1 \\ \theta_1 \cdot x + \varepsilon(0) & i = 0 \end{cases}$$

- Law of motion of the states:
 - $Pr(x'|x, i; \theta)$, with $Pr(x' < x|i = 0; \theta) = 0$ and $Pr(x' = 0|x, i = 1; \theta) > 0$ • $\varepsilon \sim EV1$ i.i.d.
- (Integrated) Bellman equation

$$\begin{split} EV(x,i) &\equiv \mathbb{E}[V(x',\varepsilon')|x,i] \\ &= \iint \max\{u(x',i';\theta) + \varepsilon'(i') + \beta EV(x',i')\} Pr(x'|x,i;\theta) q(\varepsilon') d\varepsilon' dx' \\ &\equiv T[EV;\theta](x,i) \end{split}$$

• Estimate θ from data $\{x_t, i_t\}_{t,i}$ (here: MPEC, but "nesting" NFXP)

$$\begin{split} \widehat{\theta}, \widehat{EV} &= \arg\max_{\theta \in \Theta, EV} L(\theta; EV) \\ \text{s.t. } &EV(x,i) = T[EV; \theta](x,i), \ \forall x \in \mathcal{S}, i \in \{0,1\} \end{split}$$

Confidence Intervals

• $(1-\alpha)\cdot 100\%$ Confidence intervals for $\tau=(\theta_{RC},\theta_1,\theta_{RC}/\theta_1)$ (and $-\tau$)

$$\begin{aligned} & \min_{\theta \in \Theta, EV} \tau_k \\ \text{s.t. } & EV(x,i) = T[EV_\theta; \theta](x,i), \ \forall x \in \mathcal{S}, i \in \{0,1\} \\ & L(\theta; EV) \geq L(\hat{\theta}; \widehat{EV}) - 0.5\chi_1^2(1-\alpha) \end{aligned}$$

- Coverage analysis:
 - ullet Simulate data sets under $ilde{ heta}$
 - Estimate $\hat{\theta}$ and its confidence intervals
 - Check for inclusion of $\tilde{\theta}$
- Comparison:
 - Two different data set sizes (8,112 and 780)
 - Various types of confidence intervals
 - Likelihood ratio confidence intervals (LRCI)
 - Wald/SE (with delta method for mapped parameters)
 - Bootstrapping (sample quantiles)

Confidence Intervals: Coverage Analysis (1)

	LRCI						
	Sample size: 8,112			Sample size: 780			
	coverage	min	max	coverage	min	max	
θ_{RC}	0.961	6.465	21.77	0.958	4.333	153.7	
$ heta_1$	0.953	0.558	7.888	0.938	7e-16	73.33	
$ heta_{RC}/ heta_1$	0.942	2.348	12.07	0.911	1.305	4e07	
	Wald/SE (with delta method)						
θ_{RC}	0.952	6.367	20.85	0.955	-42.53	132.8	
$ heta_1$	0.928	0.450	7.404	0.935	-22.60	61.00	
$ heta_{RC}/ heta_1$	0.962	2.212	10.30	0.791	-8e04	8e04	
	Bootstrap (sample quantiles)						
θ_{RC}	0.928	5.736	20.56	0.675	4.709	350.0	
$ heta_1$	0.939	0.273	7.723	0.813	1e-12	167.4	
$ heta_{RC}/ heta_1$	0.939	2.231	11.11	0.880	1.181	5e12	

	LRCI	Wald	Bootstrap
time (sec)	288	12	6,305

Confidence Intervals: Coverage Analysis (2)

Counter-Factuals: Demand Estimation in Rust (1987)

- Counter-factual: Use estimated model to carry out "policy experiments", e.g. by simulating/integrating the model variants to obtain and compare some derived quantity.
 - Assumption: Structural parameters are policy-invariant.
 - Goal: Analyze how estimation error propagates to derived quantities.
- Counter-factual is a map of the parameters, but its derivative is not always straightforward to compute (needed for delta method)
- Demand function estimation in Rust (1987)

$$d(heta_{RC}) \equiv \int \pi_{ heta}(x, i = 1) dx$$

where the stationary distribution is defined as

$$\pi(x,i) = \iint Pr(i|x; EV_{\theta}) Pr(x|x',i';\theta) \pi(x',i') dx' di',$$

Demand Curve in Rust (1987)

Confidence Intervals for Demand Curve (1)

• Confidence interval for $d(\theta_{RC})$ $(\theta_{RC}$ fix)

$$\begin{split} \hat{g}(\theta_{RC}) &= \arg \min_{\theta_1, \tilde{\theta}_{RC}, \pi, EV, \widetilde{EV}} \int \pi(x, i = 1) dx \\ \text{s.t. } \pi(x, i) &= \int \int Pr(i|x; EV) Pr(x|x', i'; \theta_{RC}, \theta_1) \pi(dx', di'), \forall x, i \\ EV(x, i) &= T[EV; \theta_{RC}, \theta_1](x, i), \ \forall x, i \\ \widetilde{EV}(x, i) &= T[\widetilde{EV}; \tilde{\theta}_{RC}, \theta_1](x, i), \ \forall x, i \\ L(\tilde{\theta}_{RC}, \theta_1; \widetilde{EV}) &\geq L(\hat{\theta}; \widehat{EV}) - 0.5\chi_1^2 (1 - \alpha) \end{split}$$

Confidence Intervals for Demand Curve (2)

Conclusions

- We propose an efficient and easy-to-implement way to compute likelihood ratio confidence intervals (LRCI) for structural parameters—and mappings thereof—using constrained optimization
- We demonstrate that LRCI have very competitive coverage properties, in particular for mappings and smaller data sets; runtime performance is somewhere in between standard error based CIs and bootstrapping approaches
- We demonstrate the applicability to counter-factuals—a specific kind of mapping—which would otherwise be hard to assess for estimation error