Not your grandparents' confidence intervals

Gregor Reich (NHH) and Ken Judd (Hoover)

March 23, 2021

The Likelihood Ratio Test

- Setup
 - Model \mathcal{M} : Structural parameters $\theta \in \Theta$, states $x \in \mathcal{S}$, "outcomes" $y \in \mathcal{Y}$, policy/endogenous variables $\sigma \in \Sigma$
 - Model solution conditions $h(x; \sigma, \theta) = 0, \ \forall x \in S$
 - Data set $\{\hat{x}_t, \hat{y}_t\}_{t=1}^T$
 - Log-likelihood function $L(\theta; \sigma) \equiv \log(P_{\mathcal{M}}(\{\hat{x}_t, \hat{y}_t\}_{t=1}^T; \sigma, \theta))$
- Estimation of θ (here: MPEC, but "nesting" NFXP):

$$\begin{split} \hat{\theta}, \hat{\sigma} &= \arg\max_{\theta \in \Theta, \sigma \in \Sigma} L(\theta; \sigma) \\ \text{s.t. } h(x; \sigma, \theta) &= 0, \ \forall x \in \mathcal{S} \end{split}$$

- Likelihood ratio test
 - Hypothesis function: $\tau:\Theta\to\mathbb{R},\ \tau\in\mathcal{C}^1$
 - Hypotheses: $H_0: \tau(\theta) = 0$ against $H_1: \tau(\theta) \neq 0$ (two-sided)
 - Test statistic: If H_0 is true, $2(L(\hat{\theta}; \hat{\sigma}) L(\theta_0; \sigma_0)) \stackrel{a}{\sim} \chi_1^2$, where

$$\theta_0, \sigma_0 = \arg\max_{\theta \in \Theta, \sigma \in \Sigma} L(\theta; \sigma)$$

s.t. $h(x; \sigma, \theta) = 0, \ \forall x \in \mathcal{S}$
 $\tau(\theta) = 0$

Test Inversion and Confidence Intervals

• Set of hypothesis values a which would not be rejected, given $L(\hat{\theta}; \hat{\sigma})$

$$\mathcal{A}^{\alpha} \equiv \{ \textbf{\textit{a}} \in \mathbb{R} : \exists \theta, \sigma : \textbf{\textit{h}}(\textbf{\textit{x}}; \sigma, \theta) = 0 \text{ and } H_0 : \tau(\theta) = \textbf{\textit{a}} \text{ not rejected at level } \alpha \}$$

- Convex hull: $\mathcal{A}^{\alpha} \subseteq [\min(\mathcal{A}^{\alpha}), \max(\mathcal{A}^{\alpha})] \equiv [\underline{a}, \overline{a}]$
- $A \neq \emptyset$ because $\tau(\hat{\theta}) \in A^{\alpha}$; not a singleton if $L \in C^{0}$ and $\alpha > 0$
- Computation of \underline{a} (\overline{a} analogously as max problem, or min $-\tau(\theta)$):

$$\hat{\underline{a}} = \min_{\theta \in \Theta, \sigma \in \Sigma} \tau(\theta)$$
s.t. $h(x; \sigma, \theta) = 0, \ \forall x \in S$

$$L(\theta; \sigma) \ge L(\hat{\theta}; \hat{\sigma}) - 0.5\chi_1^2(1 - \alpha)$$

- \mathcal{A}^{α} forms a $(1-\alpha)\cdot 100\%$ confidence interval for $\tau(\theta)$
 - In repeated sampling experiments and estimations of θ , \mathcal{A}^{α} would contain the "true" value of θ in $(1-\alpha)\cdot 100\%$ of the times
 - "Duality of hypothesis testing and confidence intervals"
 - Dimension-wise confidence intervals of θ using $\tau: \theta \mapsto \theta_k$

The Bus Engine Replacement Model (Rust, 1987)

- Dynamic machine renewal problem
 - Payoff function

$$u(x, i; \theta) + \varepsilon(i) = \begin{cases} \theta_{RC} + \varepsilon(1) & i = 1 \\ \theta_1 \cdot x + \varepsilon(0) & i = 0 \end{cases}$$

- · Law of motion of the states:
 - $Pr(x'|x, i; \theta)$, with $Pr(x' < x|i = 0; \theta) = 0$ and $Pr(x' = 0|x, i = 1; \theta) > 0$ • $\varepsilon \sim EV1$ i.i.d.
- (Integrated) Bellman equation

$$\begin{split} EV(x,i) &\equiv \mathbb{E}[V(x',\varepsilon')|x,i] \\ &= \iint \max\{u(x',i';\theta) + \varepsilon'(i') + \beta EV(x',i')\} Pr(x'|x,i;\theta) q(\varepsilon') d\varepsilon' dx' \\ &\equiv T[EV;\theta](x,i) \end{split}$$

• Estimate θ from data $\{x_t, i_t\}_{t,i}$ (here: MPEC, but "nesting" NFXP)

$$\begin{split} \widehat{\theta}, \widehat{EV} &= \arg\max_{\theta \in \Theta, EV} L(\theta; EV) \\ \text{s.t. } &EV(x,i) = T[EV; \theta](x,i), \ \forall x \in \mathcal{S}, i \in \{0,1\} \end{split}$$

Confidence Intervals

• $(1-\alpha)\cdot 100\%$ Confidence intervals for $au=(heta_{RC}, heta_1, heta_{RC}/ heta_1)$ (and - au)

$$\begin{split} \min_{\theta \in \Theta, EV} \tau_k \\ \text{s.t. } EV(x, i) &= T[EV_\theta; \theta](x, i), \ \forall x \in \mathcal{S}, i \in \{0, 1\} \\ L(\theta; EV) &\geq L(\hat{\theta}; \widehat{EV}) - 0.5\chi_1^2(1 - \alpha) \end{split}$$

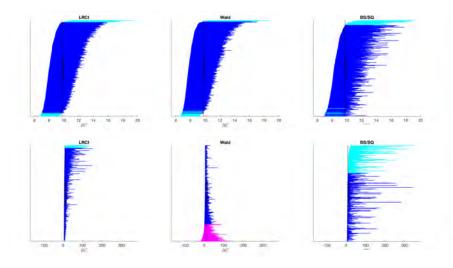
- Coverage analysis:
 - ullet Simulate data sets under $ilde{ heta}$
 - Estimate $\hat{\theta}$ and its confidence intervals
 - Check for inclusion of $\tilde{\theta}$
- Comparison:
 - Two different data set sizes (8,112 and 780)
 - Various types of confidence intervals
 - Likelihood ratio confidence intervals (LRCI)
 - Wald/SE (with delta method for mapped parameters)
 - Bootstrapping (sample quantiles)

Confidence Intervals: Coverage Analysis (1)

	LRCI						
	Sample size: 8,112			Sample size: 780			
	coverage	min	max	coverage	min	max	
θ_{RC}	0.961	6.465	21.77	0.958	4.333	153.7	
$ heta_1$	0.953	0.558	7.888	0.938	7e-16	73.33	
θ_{RC}/θ_1	0.942	2.348	12.07	0.911	1.305	4e07	
	Wald/SE (with delta method)						
θ_{RC}	0.952	6.367	20.85	0.955	-42.53	132.8	
$ heta_1$	0.928	0.450	7.404	0.935	-22.60	61.00	
$ heta_{RC}/ heta_1$	0.962	2.212	10.30	0.791	-8e04	8e04	
	Bootstrap (sample quantiles)						
θ_{RC}	0.928	5.736	20.56	0.675	4.709	350.0	
$ heta_1$	0.939	0.273	7.723	0.813	1e-12	167.4	
θ_{RC}/θ_1	0.939	2.231	11.11	0.880	1.181	5e12	

	LRCI	Wald	Bootstrap
time (sec)	288	12	6,305

Confidence Intervals: Coverage Analysis (2)



Counter-Factuals: Demand Estimation in Rust (1987)

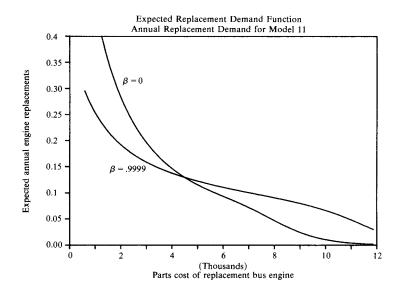
- Counter-factual: Use estimated model to carry out "policy experiments", e.g. by simulating/integrating the model variants to obtain and compare some derived quantity.
 - Assumption: Structural parameters are policy-invariant.
 - Goal: Analyze how estimation error propagates to derived quantities.
- Counter-factual is a map of the parameters, but its derivative is not always straightforward to compute (needed for delta method)
- Demand function estimation in Rust (1987)

$$d(\theta_{RC}) \equiv \int \pi_{\theta}(x, i = 1) dx$$

where the stationary distribution is defined as

$$\pi(x,i) = \iint Pr(i|x; EV_{\theta}) Pr(x|x',i';\theta) \pi(x',i') dx' di',$$

Demand Curve in Rust (1987)

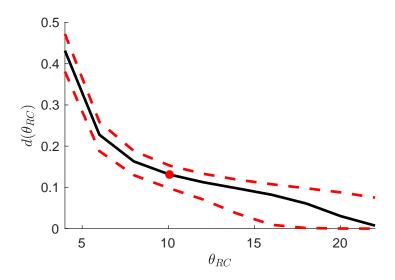


Confidence Intervals for Demand Curve (1)

• Confidence interval for $d(\theta_{RC})$ $(\theta_{RC}$ fix)

$$\begin{split} \widehat{g}(\theta_{RC}) &= \arg \min_{\theta_1, \widetilde{\theta}_{RC}, \pi, EV, \widetilde{EV}} \int \pi(x, i = 1) dx \\ \text{s.t. } \pi(x, i) &= \int \int Pr(i|x; EV) Pr(x|x', i'; \theta_{RC}, \theta_1) \pi(dx', di'), \forall x, i \\ EV(x, i) &= T[EV; \theta_{RC}, \theta_1](x, i), \ \forall x, i \\ \widetilde{EV}(x, i) &= T[\widetilde{EV}; \widetilde{\theta}_{RC}, \theta_1](x, i), \ \forall x, i \\ L(\widetilde{\theta}_{RC}, \theta_1; \widetilde{EV}) &\geq L(\widehat{\theta}; \widehat{EV}) - 0.5\chi_1^2(1 - \alpha) \end{split}$$

Confidence Intervals for Demand Curve (2)



Conclusions

- We propose an efficient and easy-to-implement way to compute likelihood ratio confidence intervals (LRCI) for structural parameters—and mappings thereof—using constrained optimization
- We demonstrate that LRCI have very competitive coverage properties, in particular for mappings and smaller data sets; runtime performance is somewhere in between standard error based CIs and bootstrapping approaches
- We demonstrate the applicability to counter-factuals—a specific kind of mapping—which would otherwise be hard to assess for estimation error