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Motivation

Many economic models (may) have multiple equilibria

Equilibrium conditions are often nonlinear systems of equations

Algorithms for finding all solutions to polynomial systems exist

– Economics: GAMBIT ?

– Groebner Bases

– Resultants, Multiresultants

– Homotopy Methods

What, if anything, works for interesting economic models?
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Solving Interesting Systems

Homotopy Methods: long history of applications in economics

Currently the only methods working for models of moderate size

Application of these methods requires work

Application in this paper:

Discrete-time stochastic games with a finite number of states

– Wide range of applications

– Active area of computational economics

– Examples of equilibrium multiplicity

– Polynomial equilibrium equations
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Overview of this Talk
• Polynomial Systems of Equations

• Homotopy Method in Complex Space

• Structural Properties

• Static Game: Bertrand Price Competition

• Dynamic Game: Patent Race

• Dynamic Game: Learning Curve
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Polynomial Systems of Equations

Complex polynomial system: f (z) = 0

z = (z1, z2, . . . , zn) ∈ Cn, f : Cn → Cn

Equation i:

fi(z1, z2, . . . , zn) =

mi∑
j=1

(
aij

n∏

k=1

z
dijk

k

)
= 0,

dijk ∈ N0: degree of the kth variable in the jth term of equation i

Degree of fi: di = maxj=1,...,mi

∑n
k=1 dijk

Total degree of f : d =
∏n

i=1 di
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Number of Solutions

Bezout’s Theorem Polynomial system f (z) = 0 has at most d isolated solutions

“Generic” polynomial systems have exactly d distinct isolated solutions

(Garcia and Li (1980))

Example:

f1(z1, z2) = z1z2 − z1 − z2 + 1 = 0

f2(z1, z2) = (z1)
2z2 − z1(z2)

2 + 1 = 0

d1 = 2, d2 = 3, so d = 2× 3 = 6
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Homotopy Approach

Construct “easy” polynomial system g(z) = 0

gi(z) = ci(zi)
di − bi for bi, ci ∈ C− {0}

gi(z) = 0 has di isolated solutions

g(z) = 0 has d =
∏n

i=1 di isolated solutions

Homotopy function

H(z, t) = (1− t)g(z) + tf (z) with t ∈ [0, 1)

H(z, 0) = g(z) = 0 has d known isolated solutions

H(z, 1) = f (z) = 0 is system of interest
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Theorem for Homotopy Approach

Morgan (1986):

For almost all parameters b ∈ Cn and c ∈ Cn, the following properties hold.

1. The preimage H−1(0) consists of d smooth paths.

2. Each path either diverges to infinity or converges to a solution
of f (z) = 0 as t approaches 1.

3. Each isolated solution of f (z) = 0 has a path converging to it.

4. Paths are monotonically increasing in t (Cauchy-Riemann equations).
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Example revisited

f1(z1, z2) = z1z2 − z1 − z2 + 1 = 0

f2(z1, z2) = (z1)
2z2 − z1(z2)

2 + 1 = 0

d = 6, so 6 paths must be tracked

Two real and two complex solutions
(

1,
1

2
(1±

√
5)

)
and

(
1

2
(1± i

√
3), 1

)

Two paths diverge to infinity
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Diverging Paths

Sequence of points (zs, ts), s = 1, 2, . . . , on a diverging path

ts → 1 and so ‖zs‖ → ∞
Sequence zs/‖zs‖ has a limit point z̄ 6= 0

0 =
Hi(z

s, ts)

‖zs‖di
=

(1− t)gi(z
s) + tfi(z

s)

‖zs‖di
→ f 0

i (z̄)

f 0
i (z) is the homogeneous part of fi, the terms of fi with maximal degree di

z̄ with f 0
i (z̄) = 0 and z̄i = 1 for some i: “solution at infinity”
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Example cont’d

f1(z1, z2) = z1z2 − z1 − z2 + 1 = 0

f2(z1, z2) = (z1)
2z2 − z1(z2)

2 + 1 = 0

Homogeneous part

f1(z1, z2) = z1z2 = 0

f2(z1, z2) = (z1)
2z2 − z1(z2)

2 = 0

Two solutions at infinity: (1,0) and (0,1)

Real solutions, complex solutions, solutions at infinity
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Two Difficulties
Homotopy approach is very intuitive, but has significant drawbacks

1. Number of finite solutions is usually much smaller than Bezout number d

– Bezout number grows exponentially in the number of nonlinear equations

– Most paths diverge

2. Paths diverging to infinity are a nuisance

– Of no economic interest

– Large computational effort

– Require decision to truncate

– Risk of truncating very long but converging path
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Homogenization

Homogenization f̂i(z0, z1, . . . , zn) of the polynomial fi(z1, . . . , zn) of degree di

f̂i(z0, z1, . . . , zn) = zdi
0 fi(

z1

z0
, . . . ,

zn

z0
).

Transformed system f̂ (ẑ) = 0 where ẑ = (z0, z1, . . . , zn)

n equations in n + 1 unknowns

Example cont’d: homogenized system

f̂1(z0, z1, z2) = z1z2 − z0z1 − z0z2 + (z0)
2 = 0

f̂2(z0, z1, z2) = (z1)
2z2 − z1(z2)

2 + (z0)
3 = 0
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Solutions of Homogenized System

If f̂ (ẑ) = 0 then f̂ (cẑ) = 0 for all c ∈ C
Solutions are complex lines through the origin in Cn+1

Relationship between solutions of

f (z) = 0, z ∈ Cn and f̂ (ẑ) = 0, ẑ ∈ Cn+1, z0 6= 0

If f (z) = 0 then for ẑ = (1, z), f̂ (ẑ) = 0

If f̂ (ẑ) = 0 for some ẑ = (z0, z) then f (z1
z0

, . . . , zn
z0

) = 0

13



Solutions at Infinity

If z0 = 0, so that ẑ = (0, z), then

f̂i(ẑ) = f 0
i (z1, . . . , zn), the homogeneous part of fi (only terms of degree di)

Solutions [ẑ] with z0 = 0 of f̂ (ẑ) = 0 are the solutions at infinity !

Example cont’d: homogenized system

f̂1(z0, z1, z2) = z1z2 − z0z1 − z0z2 + (z0)
2 = 0

f̂2(z0, z1, z2) = (z1)
2z2 − z1(z2)

2 + (z0)
3 = 0

f 0
1 (z1, z2) = z1z2 = 0

f 0
2 (z1, z2) = (z1)

2z2 − z1(z2)
2 = 0
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Projective Transformation

Define a new linear function, coefficients ξi ∈ C \ {0}
u(z0, z1, . . . , zn) = ξ0z0 + ξ1z1 + . . . + ξnzn

Projective transformation F (z0, z1, . . . , zn) of the polynomial f (z1, . . . , zn) is

F0(z0, z1, . . . , zn) = u(z0, z1, . . . , zn)− 1

Fi(z0, z1, . . . , zn) = f̂i(z0, z1, . . . , zn), i = 1, . . . , n

F (ẑ) = 0, system of n + 1 equations in n + 1 variables

Same degree d as the polynomial f (z)
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No Diverging Paths

Theorem [Morgan, 1986]

If the system f̂ (ẑ) = 0 has only a finite number of solutions in CP n, then

for almost all ξ ∈ Cn the system F (ẑ) = 0 has exactly d solutions

(counting multiplicities) in Cn+1 and so no solutions at infinity

Now use original homotopy on new system F
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Reduction in the Number of Paths

Idea: exploit special structure of polynomial system to eliminate extraneous paths

m-homogeneity: generalization of homogenization of f (z)

Partition the set of variables z1, . . . , zn into m subsets

Homogenize f (z) with respect to the variables in each subset

m-homogeneous Bezout Theorem: number of isolated solutions is at most B < d

Start system with same m-homogeneous structure: fewer paths
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Summary

Homotopy methods for finding all solutions of systems of polynomial equations

Smooth paths, parameter t increases along each path

Isolated solutions, diverging paths

Projective transformation: compactification of paths

Can reduce number of paths by initial analysis: m-homogeneity

Lots of other improvements possible, active field of research
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Polynomial Systems of Equations

Algorithms for finding all solutions

Drexler (1977), Garcia and Zangwill (1979), Morgan (1986),

Morgan and Sommese (1987), Verschelde and Cools (1993), Morgan et al. (1995),

Sturmfels (2002)

Publicly available software (among others)

POLSYS PLP (Wise et al. (2000)) based on HOMPACK90 (Watson et al. (1997))

PHCpack (Verschelde (1997)) written in Ada

Feasible to solve problems of moderate size
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Bertrand Price Competition

Two firms x and y producing goods x and y, resp., prices px, py

Three types of customers with demand functions:

Dx1 = A− px, Dy1 = 0; Dx3 = 0, Dy3 = A− py

Dx2 = np−σ
x

(
p1−σ

x + p1−σ
y

) γ−σ
−1+σ , Dy2 = np−σ

y

(
p1−σ

x + p1−σ
y

) γ−σ
−1+σ

Total Demand Dx = Dx1 + Dx2 + Dx3

Unit cost m, thus profit Rx = (px −m)

Necessary optimality condition MRx = MRy = 0
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First-Order Conditions

σ = 3; γ = 2; n = 2700; m = 1; A = 50

First-order conditions for the two firms

MRx = 50− px + (px − 1)


−1 +

2700

p6
x

(
p−2

x + p−2
y

)3/2
− 8100

p4
x

√
p−2

x + p−2
y


 +

2700

p3
x

√
p−2

x + p−2
y

MRy = 50− py + (py − 1)


−1 +

2700

p6
y

(
p−2

x + p−2
y

)3/2
− 8100

p4
y

√
p−2

x + p−2
y


 +

2700

p3
y

√
p−2

x + p−2
y

Polynomial equations ?
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Polynomial System

Define Z =
√

p−2
x + p−2

y , which yields a polynomial equation

0 = −p2
x − p2

y + Z2p2
xp

2
y

Substitute Z into denominator of MRx and MRy

0 = −2700 + 2700px + 8100Z2p2
x − 5400Z2p3

x + 51Z3p6
x − 2Z3p7

x

0 = −2700 + 2700py + 8100Z2p2
y − 5400Z2p3

y + 51Z3p6
y − 2Z3p7

y

Bezout number d = 6 · 10 · 10 = 600
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Solutions
POLSYS PLP: 3-homogeneous Bezout number B = 182 < d = 600

Total of 18 real solutions, 9 with negative values, 9 positive real solutions

Running time less than 12 sec

px py

1.75653 1.75653
8.07580 8.07580

22.98653 22.98653
2.03619 5.63058
5.63058 2.03619
2.16820 25.15680

25.15680 2.16820
7.69768 24.25903

24.25903 7.69768
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Global Optimality
Second-order conditions eliminate 5 positive real solutions

px py

1.75653 1.75653
22.98653 22.98653
2.16820 25.15680

25.15680 2.16820

Global optimality: Is px = 1.75653 globally optimal given py = 1.75653 ?

Another system of polynomial equations

0 = 0.32410568484991703p2
x + 1− Z2p2

x

0 = −2700 + 2700px + 8100Z2p2
x − 5400Z2p3

x + 51Z3p6
x − 2Z3p7

x
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Equilibria

POLSYS PLP: 2-homogeneous Bezout number B = 20 < d = 40

Total of 14 finite solutions, 8 complex, 6 real solutions (< 1.5 sec)

Solution px = 25.2234 leads to higher profit than px = 1.75653

Thus, (px, py) = (1.75653, 1.75653) not an equilibrium

Two asymmetric equilibria

px py

2.16820 25.15680
25.15680 2.16820
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Patent Race between Two Firms

N innovation stages

Firms start race at stage 0

Period t innovation stages: (x1,t, x2,t) where xi,t ∈ X ≡ {0, ..., N} , i = 1, 2

Period t investment: ai,t ∈ A = [0, Ā] ⊂ R+, i = 1, 2

Cost of investment: Ci(a) = cia
η, η ∈ N, ci > 0, i = 1, 2

Independent and stochastic innovation technologies

Transition from period to period: xi,t+1 = xi,t or xi,t+1 = xi,t + 1

Markov process (depends on investment levels)
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Transition from State to State

Firm i’s state evolves according to

xi,t+1 =

{
xi,t, with probability p(xi,t|ai,t, xi,t)

xi,t + 1, with probability p(xi,t + 1|ai,t, xi,t)

Distribution over next period’s states (polynomial specification!)

p(x|a, x) = F (x|x)a

p(x + 1|a, x) = 1− F (x|x)a

F (x|x) ∈ (0, 1) is probability that there is no change in state if a = 1

27



Firms’ Optimization Problem

First firm to reach state N wins the race and receives prize Ω

Ties are broken by flip of a coin

Firms discount future costs and revenues at common rate β < 1

Firms’ objective: maximize expected discounted payoffs
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Equilibrium I

Restriction to pure Markov strategies

Firm i’s strategy: σi(·) : X ×X → A

Expected discounted payoff: Vi(·) : X ×X → R

Bellmann equation for xi, x−i < N ,

Vi(xi, x−i)=max
ai




−Ci(ai) + β

∑

x′i,x′−i

p(x′i|ai, xi)p(x′−i|a−i, x−i)Vi(x
′
i, x

′
−i)




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Equilibrium II

Boundary condition at terminal states

Vi(xi, x−i) =





Ω, for x−i < xi = N

Ω/2, for xi = x−i = N

0, for xi < x−i = N

Optimal strategies satisfy

σi(xi, x−i) = arg max
ai∈A




−Ci(ai) + β

∑

x
′
i,x
′
−i

p(x′i|ai, xi)p(x′−i|a−i, x−i)Vi(x
′
i, x

′
−i)




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Our Equilibrium Equations

0 = −Vi(xi, x−i)− cia
η
i + β

∑

x
′
i,x
′
−i

p(x′i|ai, xi)p(x′−i|a−i, x−i)Vi(x
′
i, x

′
−i)

0 = −ηcia
η−1
i + β

∑

x
′
i,x
′
−i

∂

∂ai
p(x′i|ai, xi)p(x′−i|a−i, x−i)Vi(x

′
i, x

′
−i)

Parameter specification: η = 2, F (x1, x2) ≡ F

Unknowns: V1(x1, x2), V2(x1, x2), a1(x1, x2), a2(x1, x2)

Four equations per stage (xi, x−i)

Upwind Gauss-Seidel: instead of solving all equations simultaneously

solve each stage game separately
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Polynomial Equilibrium Equations

Equations for firm 1:

0 = a2
1(−c1) + a1V1a2(βF 2) + a1V1(−βF )

+ a1a2

(
βF 2(V(11) − V(01) − V(10))

)
+ a1(βFV(10))

+V1a2(−βF ) + V1(β − 1) + a2(βFV(01))

0 = a1(−2c1) + V1a2(βF 2) + V1(−βF )

+ a2

(
βF 2(V(11) − V(01) − V(10))

)
+ (βFV(10))

Total degree 3× 2× 3× 2 = 36

Linearity in V1, V2 allows reduction in number of equations and Bezout number
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Solutions
N = 3 stages, 0, 1, 2, prize Ω = 10

F = 1
4, cost coefficients c1 = c2 = 1, discount factor β = 0.96

Real and complex finite solutions

(0, 0), (1, 0), (1, 1) 3 real, 4 complex

(2, 1) 2 real, 4 complex

(2, 0) 6 real, 0 complex

(2, 2) 3 real, 4 complex

36 paths followed in less than 3 seconds

Only one economically meaningful solution: unique equilibrium

Other real solutions lead to negative transition probabilities
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Unique Equilibrium

a1 V1 a2 V2

(2, 2) 1.373 2.697 1.373 2.697

(2, 1) 0.939 6.725 0.317 0.205

(2, 0) 0.567 7.653 0.035 0.004

(1, 1) 0.904 1.911 0.904 1.911

(1, 0) 0.755 4.776 0.275 0.192

(0, 0) 0.673 1.419 0.673 1.419
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Learning Curve Game
Game with static and dynamic component

Firms play Cournot game in each period

Learning: output may lead to lower unit cost of production

Two goods and two firms, cost function ci(qi, xi) = xiqi, i = 1, 2

State is unit cost xi ∈ X = {ξ1, ξ2, . . . , ξN}, absorbing state ξN

Transition probabilities depend on output (polynomial specification)

Pr[xi,t+1 = ξj+1|xi,t = ξj] = F (xi,t)qi

Pr[xi,t+1 = ξj|xi,t = ξj] = 1− F (xi,t)qi

Absorbing state ξN : F (ξN) = 0
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Parametrization

Profit function of firm i, Πi(q1, q2, xi) = Pi(q1, q2) qi − xi qi

Price function Pi(q1, q2) = ∂
∂qi

u(q1, q2)

u(q1, q2) = 4
(
q

1/2
1 + q

1/2
2

)4/3

+ M

Parameter values: unit cost xi ∈ {3
2, 1,

1
2}, F (xi) = 0.001 for xi > 1

2
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Polynomial Equations

For eliminating rational exponents and clearing of denominators

0 = Q2
1 − q1, 0 = Q2

2 − q2, 0 = Q3 −Q1 −Q2

Bellman equation for firm 1

0 = 4QQ1 − (1− β)V1 + (F1βW 1
1,0 − x1)q1 − βF1q1V1 − βF1q2V1

+βF1F2q1q2V1 + βF1W
1
0,1q2 + (F1F2βW 1

1,1 − βF1F2W
1
0,1 − F1F2βW 1

1,0)q1q2

First-order condition for firm 1

0 = 8Q1 + 6Q2 + (3βF1W
1
1,0 − 3x1)Q

2Q1 − 3βF1Q
2Q1V1

+(3F1F2βW 1
1,1 − 3F1F2βW 1

0,1 − 3F1F2βW 1
1,0)Q

2Q1q2 + 3βF1F2Q
2Q1q2V1

Bezout number for F1F2 6= 0: 2 · 2 · 3 · (3 · 5)2 = 2700
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Equilibrium

m1 m2 Bezout 7-Bezout Real q1 q2 V1 V2
1
2

1
2 432 14 5 203 203 1452 1452

1
2 1 576 31 7 190 113 1404 1056
1
2

3
2 576 31 7 172 33 1201 550

1 1 2700 177 11 103 103 1011 1011

1 3
2 2700 177 10 86 28 820 516

3
2

3
2 2700 177 11 21 21 372 372

Running time for 177 paths less than 95 sec
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Summary

All-solution homotopy methods for polynomial systems

Real and complex solutions, solutions at infinity

Theoretical bounds on the number of solutions

Accounting for all finite and infinite solutions is possible

Find all solutions to equilibrium equations in economics

Computational approach to proving uniqueness
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Difficulties

POLSYS PLP currently cumbersome to use

Interface needed for solving many similar systems

Convergence problems due to manifolds at infinity

Other software packages have high set-up cost
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Extensions

Complementarity conditions

Generic systems and Cheater’s homotopy

Parallelization
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