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Introduction

Dynamic models are used nowadays in all �elds and areas of
economics: macroeconomics, �nance, international trade, labor
economics, etc.

A characteristic feature of such models is that they do not admit
closed-form (analytical) solutions.

Many interesting models (e.g., heterogeneous agents, sectors,
countries) cannot be solved with the existing methods in spite of
modern high-speed computers.
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Introduction

In this paper: we describe a class of numerical methods for solving
dynamic stochastic models based on stochastic simulation.

Stochastic simulation methods we propose are (i) simpler, (ii) faster
and (iii) more accurate than those existing in the previous literature.

Stochastic simulation methods are especially attractive for high
dimensional applications, where other methods are not feasible.

Example, dynamic stochastic models with 20 heterogeneous countries
and 40 state variables.
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Background

Three broad classes of numerical methods

1 Projection methods; Judd (1992), Christiano and Fisher (2000).
2 Perturbation methods; Judd and Guu (1993), Collard and Juillard
(2001).

3 Stochastic-simulation methods; den Haan and Marcet (1990),
Smith (1991).
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Illustrative example

A one-sector neoclassical growth model:

max
fkt+1,ctg∞

t=0

E0
∞

∑
t=0

δt ln (ct )

s.t. ct + kt+1 = (1� d) kt + at f (kt ) ,
ln at+1 = ρ ln at + εt+1,

where εt+1 � N
�
0, σ2

�
; and initial condition (k0, a0) is given;

u (�) = utility function; f (�) = production function;
ct = consumption; kt+1 = capital; at = productivity;
δ = discount factor; d = depreciation rate of capital;
ρ = autocorrelation coe¢ cient of the productivity level;
σ = standard deviation of the productivity shock.
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Projection methods

Characteristic features

Solve a model on a prespeci�ed grid of points.

Use numerical (quadrature) integration for approximating conditional
expectations.

Compute polynomial coe¢ cients of policy functions using Newton�s
type solver.
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A projection method for the growth model

Choose a grid of I points in the state space fki , aigIi=1 .
Parameterize the capital policy function by a polynomial

k 0i ' Ψ (ki , ai ; β) = β0 + β1ki + β2ai + β3k
2
i + β4a

2
i + ...

and substitute it in the Euler equation to get

min
β



u1 (ci (ki , ai ; β))� E �δu1
�
c 0i (ki , ai ; β)

� �
1� d + a0i f 0 (Ψ (ki , ai ; β))

�	


where β � (β0, β1, ...) is a vector of coe¢ cients and

a0i = aρ
i exp (ε)

k 00i = Ψ
�
Ψ (ki , ai ; β) , a0i ; β

�
ci (ki , ai ; β) = (1� d) ki + ai f (ki )� k 0i
c 0i (ki , ai ; β) = (1� d) k 0i + a0i f

�
k 0i
�
� k 00i

Find a vector of coe¢ cients β that minimizes the distance using a
Newton�s type of solver (this procedure involves evaluating
conditional expectations, i.e., numerical integration).
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Projection methods: curse of dimensionality

Very accurate and fast with few state variables but cost grows
exponentially with dimensionality!
(a) Product hypercube domain =) Curse of dimensionality!
(b) Product quadrature integration =) Curse of dimensionality!
(c) Newton�s solver (Jacobian, Hessian) =) Curse of dimensionality!

a4
a3
a2
a1

k1 k2 k3 k4

- 2 state variables with 4 grid
points ) 4� 4 = 42 = 16
- 3 state variables with 4 grid
points ) 43 = 64
...
- 10 state variables with 4 grid
points ) 410 = 1, 048, 576
(With 100 grid points
) 10010 = 1020).

Kruger and Kubler (2004): Smolyak�s sparse grid - e¢ cient grid with
relatively small number of points in a multidimensional hypercube.
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Perturbation methods

Characteristic features

Compute a solution in just one point (steady state).

Identify polynomial coe¢ cients of policy functions using k-order
Taylor�s expansion of the optimality conditions.
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Perturbation methods: a log-linearization example

Log-linearization - �rst-order Taylor�s expansion, e.g.,

u0 (ct ) ' u0 (c) + u00 (c) c
(ct � c)
c

= u0 (c) + u00 (c) cbct
where bct = ct�c

c = log-deviation of ct from the steady state c .

Substitute bct and bkt = kt�k
k in the optimality conditions to get a

linearized system of equations.

Postulate speci�c log-linear form for policy functions ct = C (kt , at )
and kt = K (kt , at ):

bkt+1 = ξkkbkt + ξkabat , bct = ξckbkt + ξcabat
where ξkk , ξka, ξck and ξca = coe¢ cients to be determined.

Solve the obtained system of equations =) identify the coe¢ cients
ξkk , ξka, ξck and ξca.
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Perturbation methods of higher orders

Perturbation is a Taylor�s expansion performed numerically. It is
a generalization of the (�rst-order) log-linearization method to higher
orders.

Perturbation methods are very fast but the range of their
accuracy is uncertain. This is a local approximation, and the
accuracy might deteriorate dramatically away from the steady state.

JEDC 2011 comparison results: 1st- and 2nd-order perturbation
methods, PER1 and PER2, of Kollmann, Kim and Kim (2011)
produce errors:

on a stochastic simulation up to 6.3% and 1.4%, respectively;
on a 30% deviation from steady state up to 65% and 50%, respectively.

These accuracy levels are not acceptable: a method that
produces errors of 6% per quarter in the US GDP is not satisfactory.
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Stochastic simulation methods

Characteristic features

Compute a solution on simulated series.

Use Monte Carlo integration for approximating conditional
expectations.

Main steps:

Step 1. Guess a policy function.
Step 2. Simulate time series.
Step 3. Use simulation results to check and to update the guess.
Iterate on Steps 2� 3 until convergence.
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A stochastic simulation method for the growth model

Parameterize the capital policy function by a polynomial

kt+1 ' Ψ (kt , at ; β) = β0 + β1kt + β2at + β3k
2
t + β4a

2
t + ...

and substitute it into the budget constraint to get

ct = (1� d) kt + at f (kt )�Ψ (kt , at ; β) .

Fix β � (β0, β1, ...). Given shocks fatg
T
t=0, simulate fct , kt+1g

T
t=0

and construct

yt � δ
u1 (ct+1)
u1 (ct )

�
1� d + at+1f 0 (kt+1)

�
kt+1.

Regress yt on
�
1, kt , at , k2t , a

2
t , ...

�
=) get bβ (Monte Carlo

integration).
Compute the next-iteration input β(j+1) as

β(j+1) = (1� µ) β(j) + µbβ,
where µ 2 (0, 1] = damping parameter.
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Key advantage of stochastic simulation methods

Stochastic simulation methods have endogenous solution domain:
the areas of the state space that are visited in simulation (the ergodic set).
Recall that for projection and perturbation methods: the domain is
an exogenous rectangular grid and the steady state point, respectively.
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Ratio of hypersphere volume to hypercube volume

2-dimensional case: a circle inscribed within a square occupies
about 79% of the area of the square.

p-dimensional case: the ratio of a hypersphere�s volume Ωs
p to a

hypercube�s volume Ωc
p :

Ωs
p

Ωc
p
=

8>><>>:
(π/2)

p�1
2

1�3�...�p for p = 1, 3, 5...

(π/2)
p
2

2�4�...�p for p = 2, 4, 6...

.

Ratio Ωs
p

Ωc
p
declines rapidly with the dimension of the state space:

when p = 10, the ratio Ωs
10

Ωc
10
= 3 � 10�3;

when p = 30, the ratio Ωs
30

Ωc
30
= 2 � 10�14.
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Ergodic set versus tensor-product grid: estimated
reduction in cost
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Stochastic simulation in problems with high dimensionality

In problems with high dimensionality:

The hypersphere ergodic set is just a tiny fraction of the hypercube
tensor-product grid.

We avoid computing a solution in an enormously large number of
points on the hypercube�s edges.

Stochastic simulation methods are attractive for high-dimensional
applications.

But ...

Previous stochastic simulation methods are numerically unstable.
For example, Marcet�s (1988) simulation-based version of
parameterized expectation algorithm is unstable even under low
(2-nd) degree polynomials; see den Haan and Marcet (1990).
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What causes numerical problems?

1 Ill-conditioning of the least-squares (LS) problem solved in the
approximation step,

min
β
[Y �Ψ (k, θ; β)]0 [Y �Ψ (k, θ; β)] .

It arises due to multicollinearity and poor scaling of explanatory
variables.

2 In addition, exponentiated polynomial approximation
Ψ (k, θ; β) = exp (β0 + β1 ln kt + β2 ln θt + ...), used in Marcet
(1988), should be estimated with non-linear least-squares (NLLS)
methods which

a) require supplying an initial guess;
b) involve computing costly Jacobian and Hessian matrices;
c) can have multiple local minima;
d) often fail to converge.
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LS problem

Consider �rst a LS problem

min
β
kY �Ψ (k, θ; β)k22 = min

β
[Y �Ψ (k, θ; β)]0 [Y �Ψ (k, θ; β)]

where k�k2 denotes L2 (Euclidean) vector norm.
Under the linear regression model, a solution is

bβ = �X 0X ��1 X 0Y
Under the non-linear regression model, the LS estimator generally
cannot be written explicitly and should be computed with NLLS
methods.
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Ill-conditioned LS problem in the linear regression model

The matrix X 0X is often ill-conditioned. The degree of ill-conditioning
of X 0X can be measured in terms of a condition number

κ
�
X 0X

�
� λ1/λn

λ1 = the largest eigenvalue of X 0X ; λn = its smallest eigenvalue.

The eigenvalues of X 0X are de�ned by

X 0X = VΛV 0

Λ = an n� n diagonal matrix with ordered eigenvalues of X 0X on its
diagonal; V = an n� n matrix of its eigenvectors.
κ " =) det (X 0X ) = det (Λ) = λ1λ2...λn # and the closer is X 0X to
being singular (not invertible).
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Multicollinearity problem

Multicollinearity occurs because high-order polynomial terms forming the
matrix X are signi�cantly correlated.

Example

Let Y =
�
y1
y2

�
and X = [X1,X2] =

�
x11 x11 + φ
x12 x12

�
, with x12 6= 0 and

φ 6= 0. In this case, the OLS solution bβ = (X 0X )�1 X 0Y is

bβ1 = y2
x12

� bβ2 and bβ2 = y1
φ
� y2x11

φx12
.

If φ ! 0, we have det (X 0X ) = x212φ
2 ! 0, κ (X 0X ) = x11+x12

φ ! ∞,bβ1, bβ2 ! �∞, and bβ1 � �bβ2, i.e. a large positive coe¢ cient on one
variable is canceled by a similarly large negative coe¢ cient on its
correlated counterpart.
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Poor scaling problem

The scaling problem arises when polynomial terms in X have
signi�cantly di¤erent means and variances.
Why? Due to di¤erential scaling among either the state variables (kt
and θt) or polynomial terms of di¤erent orders (e.g., kt and k5t ).

Example

Let Y =
�
y1
y2

�
and X = [X1,X2] =

�
x11 φ
x12 0

�
with x12 6= 0 and φ 6= 0.

In this case, the OLS solution bβ = (X 0X )�1 X 0Y is

bβ1 = y2
x12

and bβ2 = y1
φ
� y2x11

φx12
.

If φ ! 0, we have det (X 0X ) = x212φ
2 ! 0, κ (X 0X ) = x11

φ ! ∞, andbβ2 ! �∞, i.e. entries of X2 that are excessively small in absolute value
lead to an excessively large absolute value to coe¢ cient bβ2.
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Our strategies for enhancing the numerical stability

In the paper,

1. We introduce LS methods that are more numerically stable than the
standard OLS method.

2. We replace the ill-conditioned LS problem with some other less
ill-conditioned problem.
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LS approaches to the linear regression model

Two LS approaches that are more numerically stable and more suitable for
dealing with ill-conditioning than the standard OLS approach.

1 LS using SVD (LS-SVD): infers (X 0X )�1 matrix included in the OLS
formula from a singular value decomposition (SVD) of the matrix X .

2 Regularized LS using Tikhonov regularization (RLS-Tikhonov): relies
on a speci�c (Tikhonov) regularization of the ill-conditioned LS
problem that imposes penalties based on the size of the regression
coe¢ cients.

The LS-SVD approach �nds a solution to the original ill-conditioned LS
problem, while the RLS-Tikhonov approach modi�es (regularizes) the
original ill-conditioned LS problem into a well-conditioned problem.
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LS-SVD

SVD of the matrix X 2 RT�n

X = USV 0

where U 2 RT�n and V 2 Rn�n = orthogonal matrices; S 2 Rn�n

= diagonal matrix with diagonal entries s1 � s2 � ... � sn � 0,
known as singular values of X .

The OLS estimator bβ = (X 0X )�1 X 0Y in terms of the SVD:

bβ = �VS 0SV 0��1 VS 0U 0Y = VS�1U 0Y
If X 0X is well-conditioned =) the OLS formula and the LS-SVD
formula give identical estimates of β.

However, if X 0X is ill-conditioned and the standard OLS estimator
cannot be computed =) it is still possible that matrices X and S are
su¢ ciently well-conditioned =) can compute the LS-SVD estimator.
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LS-SVD

Example

Let Y =
�
y1
y2

�
and X = [X1,X2] =

�
φ 0
0 1

�
with φ 6= 0. Then, S = X

and U = V =
�
1 0
0 1

�
. The condition numbers of S and X 0X are

related by κ (S) =
p

κ (X 0X ) = φ. The OLS and the LS-SVD estimators
coincide,

bβ = �X 0X ��1 X 0Y = � 1/φ2 0
0 1

� �
φy1
y2

�
=

= VS�1U 0Y =
�
1/φ 0
0 1

� �
y1
y2

�
=

�
y1/φ
y2

�
.

If φ < 1, the largest elements of (X 0X )�1 and S�1 are 1/φ2 and 1/φ,
respectively. When φ � 0, the computer has a better chance to compute
1/φ than 1/φ2 since 1/φ � 1/φ2.
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RLS-Tikhonov

Regularization - process of re-formulating an ill-conditioned problem
by imposing additional restrictions on the solution.
Tikhonov regularization - the most commonly used regularization
method in approximation theory.
Impose an L2 penalty on the size of the regression coe¢ cients:

min
β
kY � X βk22 + η kβk22 = min

β
(Y � X β)0 (Y � X β) + ηβ0β

where η � 0 = regularization parameter.
Find the FOC with respect to βbβ (η) = �X 0X + ηIn

��1 X 0Y
where In = an identity matrix of order n.
Note: add a positive constant to X 0X prior to inverting this matrix.
=) Even if X 0X is singular, the matrix X 0X + ηIn is non-singular.
=) Can compute its inverse.
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LAD approaches to the linear regression model

Replace the ill-conditioned LS problem with a least absolute deviation
(LAD) problem

min
β
kY � X βk1 = min

β
10T jY � X βj

where k�k1 denotes L1 vector norm.
The LAD problem does not require computing (X 0X )�1.
No explicit solution. However, we can re-formulate the LAD problem
to consist of a linear objective function and linear constraints =)
Solve with standard linear programming techniques.
Substitute jY � X βj with a vector w 2 RT to obtain

min
β, w

10Tw

s.t. � w � Y � X β � w
This problem has n+ T unknowns. We argue that it is not the most
suitable for a numerical analysis.
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LAD: primal problem (LAD-PP)

Charnes et al. (1955): express the deviation for each observation as a
di¤erence between two non-negative variables ut and vt ,

yt �
n

∑
i=0

βixit = ut � vt (1)

ut and vt can be interpreted as non-negative vertical deviations above
and below the �tted line, byt = Xtbβ, respectively; ut + vt = absolute
deviation between the �t byt and the observation yt .
Primal problem: minimize the total sum of absolute deviations
subject to (1),

min
β,u,v

10T u + 1
0
T v

s.t. u � v + X β = Y

u � 0, v � 0
where u, v 2 RT .
This formulation is more simple to solve than the direct formulation.
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LAD: dual problem (LAD-DP)

Every primal problem can be converted into a dual problem.

Dual problem corresponding to the primal problem:

max
q
Y 0q

s.t. X 0q = 0

�1T � q � 1T

where q 2 RT is a vector of unknowns.

If the number of observations, T , is sizable (i.e. T � n), the dual
problem is less computationally cumbersome than the primal problem.
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Regularized LAD (RLAD)

Modify the original LAD problem to incorporate an L1 penalty on β.

The RLAD problem:

min
β
kY � X βk1 + η kβk1 = min

β
10T jY � X βj+ η10n jβj

where η � 0 = regularization parameter.
We develop a linear programming formulation of the RLAD problem
parallel to the LAD-PP: replace jβi j with two variables.
Wang, Gordon and Zhu (2006): represent jβi j as sign (βi ) βi .
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RLAD: primal problem (RLAD-PP)

To cast the RLAD problem into a linear programming form, we
represent β as βi = ai � bi , with ai � 0, bi � 0 for i = 1, ..., n.
We then impose a linear penalty on each ai and bi .

The resulting regularized version of the primal problem:

min
a,b,u,v

10T u + 1
0
T v + η10na+ η10nb

s.t. u � v + Xa� Xb = Y
u � 0, v � 0
a � 0, b � 0

where a, b 2 Rn = vectors that de�ne β.

This problem has 2T + 2n unknowns, as well as T equality
restrictions and 2T + 2n lower bounds.
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RLAD: dual problem (RLAD-DP)

The dual problem corresponding to the RLAD-PP:

max
q
Y 0q

s.t. X 0q 6 η � 1n
�X 0q 6 η � 1n
�1T � q � 1T

where q 2 RT = vector of unknowns.

Here, 2n linear inequality restrictions and 2T lower and upper bounds
on T unknown components of q.
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LS and LAD approaches to the non-linear regression model

Extensions to the case of the non-linear regression model,

Y = Ψ (k, θ; β) + ε

NLLS computes a Taylor�s expansion of Ψ (k, θ; β) around a initial
guess, β and makes a step ∆β toward a solution, bβ,bβ ' β+ ∆β

The step ∆β is a solution to the system of normal equations,

J 0J∆β = J 0∆Y

where J �

0B@
∂Ψ(k1,θ1;β)

∂β0
... ∂Ψ(k1,θ1;β)

∂βn
... ... ...

∂Ψ(kT ,θT ;β)
∂β0

... ∂Ψ(kT ,θT ;β)
∂βn

1CA is Jacobian and

∆Y �

0@ y1 �Ψ (k1, θ1; β)
...

yT �Ψ (kT , θT ; β)

1A
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LS and LAD approaches to the non-linear regression model

Gauss-Newton method,

∆β =
�
J 0J
��1 J 0∆Y looks like OLS β =

�
X 0X

��1 X 0Y
J 0J is ill-conditioned =) Employ the described approaches developed for
the linear regression model.

1 Compute an inverse of the ill-conditioned matrix J 0J by using LS
methods based on SVD or QR factorization of J.

2 Tikhonov type of regularization leading to the Levenberg-Marquart
method,

∆β =
�
J 0J + ηIn+1

��1 J 0∆Y
3 Replace the ill-conditioned NLLS problem with a non-linear LAD
(NLLAD) problem,

min
β
10T jY �Ψ (k, θ; β)j ' min

∆β
10T j∆Y � J∆βj

Formulate NLLAD problem as a linear programming problem:
non-regularized & regularized primal and dual problems.
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Uni�ed principal component method

We merge our approximation methods & the principal component
analysis into a uni�ed approach.
=) Can handle any degree of ill-conditioning.

Z � XV , where X 2 RT�n, Z 2 RT�n and V 2 Rn�n.

Z1, ...,Zn are called principal components of X and are orthogonal,
Z 0i Zi = s

2
i and Z

0
j Zi = 0 for any j 6= i , where si = i-th singular value

of X .

Idea: reduce ill-conditioning of X to a "desired" level by excluding low
variance principle components corresponding to small singular values.

Let κ = largest condition number of X that we are willing to accept.

Compute s1
s2
, ..., s1sn , where s1 = largest singular value.

κ (X ) = κ (S) = s1
sn
= actual condition number of the matrix X .
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Uni�ed principal component method

Let Z r � (Z1, ...,Zr ) 2 RT�r be the �rst r principal components for
which s1

si
� κ.

Remove the last n� r principal components for which s1
si
> κ.

By construction, κ (Z r ) � κ.

Re-write the linear regression model in terms of Z r ,

Y = Z rϑ+ ε

where ϑ 2 Rr = vector of coe¢ cients.

Estimate ϑ using any of the LS and LAD methods described.

Find bβ = V rbϑ 2 Rn, where V r = (V1, ...,Vr ) 2 Rn�r contains the
�rst r right singular vectors of X .
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Other factors a¤ecting the numerical stability

1 The choice of policy functions to parameterize (e.g., capital versus
marginal-utility policy functions).

2 The choice of a polynomial family (e.g., ordinary versus Hermite
polynomials).

3 Normalization of variables in the regression.
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Choosing a policy function to parameterize

Our benchmark case: parameterize capital decision function
kt+1 = K (kt , θt ),

kt+1 = Et

�
δ
u0 (ct+1)
u0 (ct )

�
1� d + θt+1f 0 (kt+1)

�
kt+1

�
' Ψ (kt , θt ; β)

where Ψ (kt , θt ; β) = �exible functional form that depends on a
vector of coe¢ cients β.

Many other parameterizations exist: e.g., parameterize marginal
utility as in den Haan and Marcet (1990)

u0 (ct ) = δEt
�
u0 (ct+1)

�
1� d + θt+1f 0 (kt+1)

�	
' δΨ (kt , θt ; β)
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Choosing a polynomial representation

Polynomial space of functions.
Ordinary polynomial representation - standard.
We consider Hermite polynomial representation.
Ordinary polynomials Pm (x) versus Hermite polynomials Hm (x) up
to degree �ve:

P0 (x) = 1 H0 (x) = 1
P1 (x) = x H1 (x) = x
P2 (x) = x2 H2 (x) = x2 � 1
P3 (x) = x3 H3 (x) = x3 � 3x
P4 (x) = x4 H4 (x) = x4 � 6x2 + 3
P5 (x) = x5 H5 (x) = x5 � 10x3 + 15x .

Pm (x), m = 1, ..., 5 appear very similar =) the explanatory variables
for the regression are likely to be correlated.
Hm (x), m = 1, ..., 5 are di¤erent in the shapes =) the
multicollinearity problem manifests to a much lesser degree, if at all.
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Choosing a polynomial representation
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Choosing a polynomial representation

We approximate the function Ψ by a complete set of polynomials in
kt and θt .

Example, the complete set of Hermite polynomials of degree three in
levels, kt and θt :

Ψ (kt , θt ; β) = β0+ β1kt + β2θt + β3
�
k2t � 1

�
+ β4ktθt + β5

�
θ2t � 1

�
+

+ β6
�
3k3t � 3kt

�
+ β7

�
k2t � 1

�
θt + β8kt

�
θ2t � 1

�
+ β9

�
3θ3t � 3θt

�
The polynomial approximations of orders one, two, three, four and
�ve have 3, 6, 10, 15 and 21 coe¢ cients, respectively.
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Normalizing the variables

Center - subtract the sample mean from each observation.

Scale - divide each observation by the sample standard deviation.

By construction, a centered variable has a zero mean, and a scaled
variable has a unit standard deviation.

After a regression model is estimated, the coe¢ cients in the original
(unnormalized) regression model are restored.
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Methodology and parameterization

Production function: f (kt ) = kα
t with α = 0.36.

Utility function: u (ct ) =
c1�γ
t �1
1�γ with γ 2 f0.1, 1, 10g.

Process for shocks: ρ = 0.95 and σ = 0.01.

Discount factor: δ = 0.99.

Depreciation rate: d = 1 and d = 0.02.

Under γ = 1 and d = 1 =) closed-form solution.

Sequence of shocks of length T = 10, 000, and T = 3, 000.

Unit-free Euler equation errors

e (kt , θt ) � Et

"
c�γ
t+1

c�γ
t

�
1� d + αθt+1kα�1

t+1

�#
� 1
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One-country model with closed-form solution

Non­regularization methods

Unnormalized data Normalized data Hermite polynomials
Regularization methods

Polynomial

emean emax CPU emean emax CPU emean emax CPU emean emax CPU

OLS RLS­Tikhonov, η = 1(­7)
1st degree 3.29(­4) 3.35(­3) 2(­1) 3.29(­4) 3.35(­3) 1(­1) 3.29(­4) 3.35(­3) 2(­1) 3.29(­4) 3.35(­3) 2(­1)
2nd degree 3.92(­6) 8.38(­5) 4 3.92(­6) 8.38(­5) 5 3.92(­6) 8.38(­5) 6 3.92(­6) 8.37(­5) 5
3rd degree ­ ­ ­ 1.76(­7) 5.71(­6) 4 1.71(­7) 5.94(­6) 3 1.69(­6) 3.94(­5) 2
4th degree ­ ­ ­ ­ ­ ­ 1.22(­8) 7.83(­7) 1 9.23(­7) 2.72(­5) 2
5th degree ­ ­ ­ ­ ­ ­ 1.04(­9) 8.34(­8) 2 7.83(­7) 2.84(­5) 4

LS­SVD RLS­TSVD, κ  = 1(6)
1st degree 3.29(­4) 3.35(­3) 2(­1) 3.29(­4) 3.35(­3) 2(­1) 3.29(­4) 3.35(­3) 2(­1) 3.29(­4) 3.35(­3) 2(­1)
2nd degree 3.92(­6) 8.38(­5) 5 3.92(­6) 8.38(­5) 5 3.92(­6) 8.38(­5) 6 3.92(­6) 8.38(­5) 8
3rd degree 1.71(­7) 5.94(­6) 3 1.71(­7) 5.94(­6) 3 1.71(­7) 5.94(­6) 3 1.71(­7) 5.94(­6) 3
4th degree 1.23(­8) 8.14(­7) 2 1.22(­8) 7.82(­7) 1 1.22(­8) 7.82(­7) 2 7.69(­8) 2.89(­6) 2
5th degree ­ ­ ­ 1.59(­9) 1.07(­7) 2(­1) 1.06(­9) 9.57(­8) 2 3.01(­8) 2.01(­6) 4

LAD­DP RLAD­DP, η = 1(­4)
1st degree 2.95(­4) 3.58(­3) 1(1) 3.29(­4) 3.36(­3) 1(1) 2.95(­4) 3.58(­3) 1(1) 3.29(­4) 3.36(­3) 1(1)
2nd degree 3.40(­6) 9.26(­5) 1(1) 3.39(­6) 9.31(­5) 1(1) 3.40(­6) 9.26(­5) 1(1) 3.39(­6) 9.24(­5) 2(1)
3rd degree 1.40(­7) 7.73(­6) 8 1.42(­7) 7.67(­6) 7 1.41(­7) 7.77(­6) 8 1.65(­7) 7.23(­6) 4(1)
4th degree ­ ­ ­ 1.23(­8) 1.20(­6) 4 9.92(­9) 9.55(­7) 4 2.37(­7) 1.07(­5) 6
5th degree ­ ­ ­ ­ ­ ­ 7.45(­10) 1.13(­7) 3 3.12(­7) 1.52(­5) 3(1)
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The model with a closed-form solution

OLS & unnormalized ordinary polynomials: cannot go beyond a
2-degree polynomial approximation, and the Euler equation errors are
of order 10�6.

OLS & normalized variables: the 3-degree approximation and
accuracy of order 10�7.

Dual formulation of the LAD problem & normalized variables: the
4-degree approximation and accuracy of order 10�8.

Primal formulation: costly in terms of memory and time.

Hermite polynomials: approximation of all �ve orders and accuracy of
order 10�9.

The same results for LS using SVD, Tikhonov regularization, principal
component method, and primal and dual LAD regularization methods.
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The general one-country model

Do not achieve such a remarkable accuracy: sample size restricts
accuracy.

However, our stochastic simulation algorithm is still stable and can
compute polynomial approximations up to the 5-degree.

The model with a highly risk averse agent: �xed-point iteration is
fragile under parameterization of capital decision function, however,
stability is restored if the marginal utility function instead of capital
function is parameterized.
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Multi-country model

J countries (2J state variables). Planner solves the following maximization
problem:

maxn
fc jt ,k jt+1g

J

j=1

o∞

t=0

E0
J

∑
j=1

υj

"
∞

∑
t=0

δt ln
�
c jt
�#

s.t. aggregate budget constraint,

J

∑
j=1
c jt +

J

∑
j=1
k jt+1 =

J

∑
j=1
k jt (1� d) +

J

∑
j=1

θjtAf
j
�
k jt
�
,

and the process for technology level,

ln θjt = ρ ln θjt�1 +
�

εt + ξ jt

�
, εt � N

�
0, σ2

�
, and ξ jt � N

�
0, σ2

�
,

where initial condition
n
k j0, θ

j
0

oJ
j=1

is given.
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Model with up to 200 countries (400 state variables)

Running time ranges from 3 min (2 countries) to 3 hours (200
countries). Linearly additive polynomial is crucial for speed!
The largest error of our least accurate solution is less than 0.2% (for
200 countries).

T = 10,000# of
countries

# of
coefficients emean emax CPU

J=2 5x2 7.9(­5) 6.3(­4) 2(2)
J=4 9x4 8.4(­5) 6.4(­4) 2(2)
J=6 13x6 8.3(­5) 5.7(­4) 3(2)
J=8 17x8 9.1(­5) 6.4(­4) 3(2)
J=10 21x10 1.1(­4) 7.1(­4) 5(2)
J=12 25x12 1.1(­4) 6.8(­4) 4(2)
J=16 33x16 1.3(­4) 8.3(­4) 5(2)
J=20 41x20 1.5(­4) 7.9(­4) 6(2)
J=30 61x30 1.8(­4) 8.7(­4) 9(2)
J=40 81x40 2.2(­4) 1.0(­3) 2(3)
J=60 121x60 2.5(­4) 1.2(­3) 3(3)
J=100 201x100 2.9(­4) 1.3(­3) 6(3)
J=150 301x150 3.4(­4) 1.6(­3) 1(4)
J=200 401x200 3.9(­4) 1.9(­3) 1(4)
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Conclusion

Standard LS methods (OLS and Gauss-Newton methods) fail when
problems are ill-conditioned.

We use more powerful and stable approximation methods.

Lessons:

1. Normalize the variables, as it never hurts.
2. Look for basis polynomial functions that do not automatically give
multicollinearity.

3. Use approximation methods that can handle ill-conditioned problems.
4. Apply the uni�ed principal component method if degrees of
ill-conditioning are very high.

5. Explore alternative decision functions to parameterize.

We solve problems of much higher dimensionality than the literature
and achieve high accuracy.
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