
Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005 1

AMPL
A Modeling Language for Large-Scale Optimization

Robert Fourer
AMPL Optimization LLC, www.ampl.com
Department of Industrial Engineering & Management Sciences,
Northwestern University, Evanston, IL 60208-3119, USA

Department of Economics, University of Chicago — 21 April 2005

Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005 2

Development History
Research projects since 1985

Bell Laboratories Computing Sciences Research Center,
David Gay and Brian Kernighan

NU IE & MS Department,
National Science Foundation grants,

Robert Fourer
. . . all code after 1987 written by Gay

Lucent Technologies divestiture 1996
Lucent retains Bell Laboratories
Bell Laboratories retains AMPL

Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005 3

Commercialization History
Sold by licensed vendors since 1992

CPLEX Optimization, subsequently ILOG/CPLEX
4-6 much smaller companies, including in Europe:

MOSEK (Denmark)
OptiRisk Systems (UK)

AMPL Optimization LLC formed 2002
Lucent assigns

vendor agreements, trademark, web domain
Lucent retains

ownership of AMPL and gets a small royalty
. . . two years to negotiate!

Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005 4

Commercialization History (cont’d)
Current members of LLC

Fourer, professor at Northwestern
Kernighan, professor at Princeton
Gay, researcher at Sandia National Laboratory

Current situation
Sandia licenses the AMPL source code

. . . another year to negotiate!

AMPL Optimization LLC is gradually arranging to
sell solvers, provide marketing and maintenance

Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005 5

Marketing Strategy
Goals

Clearest and most powerful language
Tutorial but comprehensive textbook
Broad base of satisfied users and consultants
Automated benchmarking services
Moderate price

Advantages
Marketing and support can be decentralized
New AMPL company can be expanded gradually

Disadvantages
Not much known about the user base
Development of new features can be hard to coordinate

Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005 6

Market Position
Competition from . . .

Other modeling languages & systems
(AIMMS, MPL, GAMS, LPL)

Proprietary systems of established solver vendors
(ILOG/OPL Studio, Dash/MOSEL, LINGO)

Other software used as a modeling system
(Excel/Frontline, MATLAB/Tomlab)

Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005 7

Outline
The basics: model, data, solution

A simple example
A set-intensive example

Complementarity problems
Stochastic programming
Combinatorial optimization
The NEOS Server

Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005 8

Ex 1: The McDonald’s Diet Problem
Foods:
QP Quarter Pounder
FR Fries, small
MD McLean Deluxe
SM Sausage McMuffin
BM Big Mac
1M 1% Lowfat Milk
FF Filet-O-Fish
OJ Orange Juice
MC McGrilled Chicken

Nutrients:
Prot Protein
Iron Iron
VitA Vitamin A
Cals Calories
VitC Vitamin C
Carb Carbohydrates
Calc Calcium

Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005 9

 QP MD BM FF MC FR SM 1M OJ

 Cost 1.8 2.2 1.8 1.4 2.3 0.8 1.3 0.6 0.7 Need:

 Protein 28 24 25 14 31 3 15 9 1 55
 Vitamin A 15 15 6 2 8 0 4 10 2 100
 Vitamin C 6 10 2 0 15 15 0 4 120 100
 Calcium 30 20 25 15 15 0 20 30 2 100
 Iron 20 20 20 10 8 2 15 0 2 100
 Calories 510 370 500 370 400 220 345 110 80 2000
 Carbo 34 35 42 38 42 26 27 12 20 350

McDonald’s Diet Problem Data

Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005 10

Formulation: Too General
Minimize cx
Subject to Ax = b

x ≥ 0

Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005 11

Formulation: Too Specific
Minimize 1.84 xQP + 2.19 xMD + 1.84 xBM + 1.44 xFF + 2.29 xMC + 0.77 xFR + 1.29 xSM + 0.60 x1M + 0.72 xOJ

Subject to 28 xQP + 24 xMD + 25 xBM + 14 xFF + 31 xMC + 3 xFR + 15 xSM + 9 x1M + 1 xOJ ≥ 55

15 xQP + 15 xMD + 6 xBM + 2 xFF + 8 xMC + 0 xFR + 4 xSM + 10 x1M + 2 xOJ ≥ 100

6 xQP + 10 xMD + 2 xBM + 0 xFF + 15 xMC + 15 xFR + 0 xSM + 4 x1M + 120 xOJ ≥ 100

30 xQP + 20 xMD + 25 xBM + 15 xFF + 15 xMC + 0 xFR + 20 xSM + 30 x1M + 2 xOJ ≥ 100

20 xQP + 20 xMD + 20 xBM + 10 xFF + 8 xMC + 2 xFR + 15 xSM + 0 x1M + 2 xOJ ≥ 100

510 xQP + 370 xMD + 500 xBM + 370 xFF + 400 xMC + 220 xFR + 345 xSM + 110 x1M + 80 xOJ ≥ 2000

34 xQP + 35 xMD + 42 xBM + 38 xFF + 42 xMC + 26 xFR + 27 xSM + 12 x1M + 20 xOJ ≥ 350

Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005 12

Algebraic Model

Given F, a set of foods

N, a set of nutrients

and aij ≥ 0, the units of nutrient i in one serving of food j,
for each i ∈ N and j ∈ F

bi > 0, units of nutrient i required, for each i ∈ N

cj > 0, cost per serving of food j, for each j ∈ F

Define xj ≥ 0, servings of food j to be purchased, for each j ∈ F

Minimize Σj∈F cj xj

Subject to Σj∈F aij xj ≥ bi, for each i ∈ N

Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005 13

Algebraic Model in AMPL
set NUTR; # nutrients
set FOOD; # foods

param amt {NUTR,FOOD} >= 0; # amount of nutrient in each food
param nutrLow {NUTR} >= 0; # lower bound on nutrients in diet
param cost {FOOD} >= 0; # cost of foods

var Buy {FOOD} >= 0 integer; # amounts of foods to be bought

minimize TotalCost: sum {j in FOOD} cost[j] * Buy[j];

subject to Need {i in NUTR}:
sum {j in FOOD} amt[i,j] * Buy[j] >= nutrLow[i];

Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005 14

Data for the AMPL Model
param: FOOD: cost :=
"Quarter Pounder" 1.84 "Fries, small" .77
"McLean Deluxe" 2.19 "Sausage McMuffin" 1.29
"Big Mac" 1.84 "1% Lowfat Milk" .60
"Filet-O-Fish" 1.44 "Orange Juice" .72
"McGrilled Chicken" 2.29 ;

param: NUTR: nutrLow :=
Prot 55 VitA 100 VitC 100
Calc 100 Iron 100 Cals 2000 Carb 350 ;

param amt (tr): Cals Carb Prot VitA VitC Calc Iron :=
"Quarter Pounder" 510 34 28 15 6 30 20
"McLean Deluxe" 370 35 24 15 10 20 20
"Big Mac" 500 42 25 6 2 25 20
"Filet-O-Fish" 370 38 14 2 0 15 10
"McGrilled Chicken" 400 42 31 8 15 15 8
"Fries, small" 220 26 3 0 15 0 2
"Sausage McMuffin" 345 27 15 4 0 20 15
"1% Lowfat Milk" 110 12 9 10 4 30 0
"Orange Juice" 80 20 1 2 120 2 2 ;

Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005 15

Continuous-Variable Solution
ampl: model mcdiet1.mod;
ampl: data mcdiet1.dat;

ampl: solve;

MINOS 5.5: ignoring integrality of 9 variables
MINOS 5.5: optimal solution found.
7 iterations, objective 14.8557377

ampl: display Buy;

Buy [*] :=
1% Lowfat Milk 3.42213

Big Mac 0
Filet-O-Fish 0
Fries, small 6.14754

McGrilled Chicken 0
McLean Deluxe 0
Orange Juice 0

Quarter Pounder 4.38525
Sausage McMuffin 0

Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005 16

Integer-Variable Solution
ampl: option solver cplex;

ampl: solve;

CPLEX 7.0.0: optimal integer solution; objective 15.05
41 MIP simplex iterations
23 branch-and-bound nodes

ampl: display Buy;

Buy [*] :=
1% Lowfat Milk 4

Big Mac 0
Filet-O-Fish 1
Fries, small 5

McGrilled Chicken 0
McLean Deluxe 0
Orange Juice 0

Quarter Pounder 4
Sausage McMuffin 0

Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005 17

Same for 63 Foods, 12 Nutrients
ampl: reset data;
ampl: data mcdiet2.dat;

ampl: option solver minos;

ampl: solve;

MINOS 5.5: ignoring integrality of 63 variables
MINOS 5.5: optimal solution found.

16 iterations, objective -1.786806582e-14

ampl: option omit_zero_rows 1;

ampl: display Buy;

Buy [*] :=
Bacon Bits 55

Barbeque Sauce 50
Hot Mustard Sauce 50

Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005 18

Improved Algebraic Model
set NUTR; # nutrients
set FOOD; # foods

param nutrLo {NUTR} >= 0;
param nutrHi {i in NUTR} >= nutrLo[i];

requirements for nutrients

param foodCost {FOOD} >= 0; # costs of foods
param foodLim {FOOD} >= 0; # limits on food amounts

param amt {NUTR,FOOD} >= 0; # amounts of nutrient in foods

var Buy {FOOD} integer >= 0, <= foodLim[j];
amounts of foods to be bought

minimize TotalCost: sum {j in FOOD} foodCost[j] * Buy[j];

subject to Need {i in NUTR}:
nutrLo[i] <= sum {j in FOOD} amt[i,j] * Buy[j] <= nutrHi[i];

Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005 19

Improved Algebraic Model (cont’d)
set F_SAL within FOOD; # Salads
set F_SAL_DRE within FOOD; # Salad dressings
set F_SAL_TOP within FOOD; # Salad toppings

param amt_sal_dre {F_SAL} > 0;
param amt_sal_top {F_SAL} > 0;

Limits on dressings & toppings per serving

subject to SaladDressingLimit:
sum {j in F_SAL_DRE} Buy[j]

<= sum {j in F_SAL} amt_sal_dre[j] * Buy[j];

subject to SaladToppingLimit:
sum {j in F_SAL_TOP} Buy[j]

<= sum {j in F_SAL} amt_sal_top[j] * Buy[j];

set DRINKS within FOOD; # Drinks
param drinkNum > 0; # Number of drinks required in diet

subject to DrinkLimit:
sum {j in DRINKS} Buy[j] = drinkNum;

Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005 20

Improved Algebraic Model (cont’d)
set F_NUG within FOOD; # Chicken McNuggets foods
set F_NUG_SCE within FOOD; # Chicken McNuggets sauces

param amt_nug_sce {F_NUG} > 0;
Limits on sauces per serving

subject to NuggetSauceLimit:
sum {j in F_NUG_SCE} Buy[j]

<= sum {j in F_NUG} amt_nug_sce[j] * Buy[j];

param fracCalFat >= 0, <= 1;
Fraction of calories that may be from fat

subject to CalFatLimit:
sum {j in FOOD} amt['CalFat',j] * Buy[j]

<= fracCalFat * sum {j in FOOD} amt['Cal',j] * Buy[j];

Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005 21

Improved Solution
ampl: model diet2.mod;
ampl: data diet2.dat;

ampl: option solver cplex;
ampl: solve;

CPLEX 9.0.0: optimal integer solution; objective 9.06
720 MIP simplex iterations
414 branch-and-bound nodes

ampl: option omit_zero_rows 1;
ampl: display Buy;

Buy [*] :=
Cheerios 1

Cheeseburger 1
'Chocolate Shake' 1

'Cinnamon Raisin Danish' 1
Croutons 1

'English Muffin' 1
'H-C Orange Drink (large)' 1

Hamburger 2
'Orange Juice' 1

'Side Salad' 1 ;

Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005 22

set FLEETS;
set CITIES;

set TIMES circular;

set FLEET_LEGS within

{f in FLEETS, c1 in CITIES, t1 in TIMES,

c2 in CITIES, t2 in TIMES: c1 <> c2 and t1 <> t2};

(f,c1,t1,c2,t2) represents the availability of fleet f
to cover the leg that leaves c1 at t1 and
whose arrival time plus turnaround time at c2 is t2

set LEGS = setof {(f,c1,t1,c2,t2) in FLEET_LEGS} (c1,t1,c2,t2);

the set of all legs that can be covered by some fleet

Ex 2: Airline Fleet Assignment

Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005 23

set SERV_CITIES {f in FLEETS} =
union {(f,c1,c2,t1,t2) in FLEET_LEGS} {c1,c2};

for each fleet, the set of cities that it serves

set OP_TIMES {f in FLEETS, c in SERV_CITIES[f]} circular by TIMES =

setof {(f,c,c2,t1,t2) in FLEET_LEGS} t1 union

setof {(f,c1,c,t1,t2) in FLEET_LEGS} t2;

for each fleet and city served by that fleet,
the set of active arrival & departure times at that city,
with arrival time adjusted for the turn requirement

param leg_cost {FLEET_LEGS} >= 0;

param fleet_size {FLEETS} >= 0;

Airline Fleet Assignment (cont’d)

Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005 24

minimize Total_Cost;

node Gate {f in FLEETS, c in SERV_CITIES[f], OP_TIMES[f,c]};

for each fleet and city served by that fleet,
a node for each possible time

arc Fly {(f,c1,t1,c2,t2) in FLEET_LEGS} >= 0, <= 1,

from Balance[f,c1,t1], to Balance[f,c2,t2],

obj Total_Cost leg_cost[f,c1,t1,c2,t2];

arcs for fleet/flight assignments

arc Sit {f in FLEETS, c in SERV_CITIES[f], t in OP_TIMES[f,c]} >= 0,

from Balance[f,c,t], to Balance[f,c,next(t)];

arcs for planes on the ground

Airline Fleet Assignment (cont’d)

Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005 25

subj to Service {(c1,t1,c2,t2) in LEGS}:

sum {(f,c1,t1,c2,t2) in FLEET_LEGS} Fly[f,c1,t1,c2,t2] = 1;

each leg must be served by some fleet

subj to Capacity {f in FLEETS}:

sum {(f,c1,t1,c2,t2) in FLEET_LEGS:

ord(t2,TIMES) < ord(t1,TIMES)} Fly[f,c1,t1,c2,t2] +

sum {c in SERV_CITIES[f]} Sit[f,c,last(OP_TIMES[f,c])] <= fleet_size[f];

number of planes used is the number in the air at the
last time (arriving "earlier" than they leave)
plus the number on the ground at the last time in each city

Airline Fleet Assignment (cont’d)

Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005 26

set FLEETS := 72S 73S L10 ;
set CITIES := ATL CVG DFW ;

set TIMES := 1200a 1210a 1220a 1230a 1240a 1250a
100a 110a 120a 130a 140a 150a
200a 210a 220a 230a 240a 250a
300a 310a 320a 330a 340a 350a

set FLEET_LEGS :=
(72S,ATL,*,CVG,*) 630a 740a 830a 950a 1210p 130p
(72S,ATL,*,CVG,*) 120p 240p 430p 600p 640p 810p
(72S,ATL,*,CVG,*) 850p 1010p 1150p 100a
(73S,ATL,*,CVG,*) 630a 740a 830a 950a 1210p 130p

param leg_cost :=
[72S,ATL,*,CVG,*] 630a 740a 33 830a 950a 33 1210p 130p 33
[72S,ATL,*,CVG,*] 120p 240p 33 430p 600p 33 640p 810p 33
[72S,ATL,*,CVG,*] 850p 1010p 33 1150p 100a 33
[73S,ATL,*,CVG,*] 630a 740a 30 830a 950a 30 1210p 130p 30

param fleet_size := 72S 6 73S 6 L10 2 ;

Airline Fleet Assignment Data

Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005 27

ampl: model fleet.mod;
ampl: data fleet.dat;

ampl: option solver kestrel;
ampl: option kestrel_options 'solver pcx';

ampl: option show_stats 1;

ampl: solve;

327 variables, all linear
258 constraints; 790 nonzeros

211 linear network constraints
47 general linear constraints

1 linear objective; 116 nonzeros.

Job has been submitted to Kestrel
Kestrel/NEOS Job number : 458598
Kestrel/NEOS Job password : lggrLQxk

Check the following URL for progress report :
http://www-neos.mcs.anl.gov/neos/neos-cgi/

check-status.cgi?job=458598&pass=lggrLQxk

In case of problems, e-mail :
neos-comments@mcs.anl.gov

Intermediate Solver Output: ...

Airline Fleet Assignment Solution

Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005 28

Executing algorithm...

Before Scaling: ScaleFactor = 0.0
Cholesky factor will have density 0.11448

FOUND 5 TINY DIAGONALS; REPLACED WITH INF

Maximum Gondzio corrections = 0

Iter Primal Dual (PriInf DualInf) log(mu) dgts Merit
0 1.0426e+04 1.7577e+03 (3.1e+00 8.9e-02) 0.77 0 1.8e+01
FOUND 3 TINY DIAGONALS; REPLACED WITH INF
1 6.0005e+03 1.8285e+03 (1.5e+00 1.5e-02) 0.30 0 8.7e+00
FOUND 4 TINY DIAGONALS; REPLACED WITH INF
2 2.4219e+03 1.9639e+03 (1.3e-01 8.4e-04) -0.49 0 9.3e-01
FOUND 3 TINY DIAGONALS; REPLACED WITH INF
3 2.1674e+03 2.0302e+03 (4.2e-02 1.5e-04) -1.12 1 2.8e-01
FOUND 2 TINY DIAGONALS; REPLACED WITH INF
4 2.0584e+03 2.0393e+03 (4.5e-03 3.9e-05) -1.73 2 3.8e-02
FOUND 4 TINY DIAGONALS; REPLACED WITH INF
5 2.0442e+03 2.0439e+03 (5.5e-05 3.7e-07) -3.66 3 4.6e-04
FOUND 1 TINY DIAGONALS; REPLACED WITH INF
6 2.0440e+03 2.0440e+03 (1.7e-10 8.5e-13) -9.23 9 1.4e-09

--termination with OPTIMAL status

Finished call

Optimal solution found.

Airline Fleet Assignment Solution (cont’d)

Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005 29

ampl: option display_eps .00001, omit_zero_rows 1, display_1col 100000;

ampl: display {f in FLEETS}:
ampl? {(f,c1,t1,c2,t2) in FLEET_LEGS} Fly[f,c1,t1,c2,t2];

Fly['72S',c1,t1,c2,t2] :=
CVG 110p DFW 220p 1
CVG 640p DFW 800p 1
CVG 850a DFW 1010a 1
DFW 1050a CVG 200p 1
DFW 440p CVG 800p 1
DFW 820p CVG 1140p 1
;

Fly['73S',c1,t1,c2,t2] :=
ATL 1010a DFW 1110a 1
ATL 1010p DFW 1120p 1
ATL 1140p DFW 1250a 1
ATL 1150p CVG 100a 1
ATL 120p CVG 240p 1
ATL 120p DFW 230p 1
ATL 1210p CVG 130p 1
ATL 430p CVG 600p 1
ATL 630a CVG 740a 1 ...

Airline Fleet Assignment Solution (cont’d)

30Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005

Definition
Collections of complementarity conditions:

Two inequalities must hold,
at least one of them with equality

Applications
Equilibrium problems in economics and engineering

Optimality conditions for nonlinear programs,
bi-level linear programs, bimatrix games, . . .

Complementarity Problems

31Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005

Economic equilibrium
set PROD; # products
set ACT; # activities

param cost {ACT} > 0; # cost per unit of each activity
param demand {PROD} >= 0; # units of demand for each product

param io {PROD,ACT} >= 0; # units of each product from
1 unit of each activity

var Price {i in PROD};
var Level {j in ACT};

subject to Pri_Compl {i in PROD}:
Price[i] >= 0 complements

sum {j in ACT} io[i,j] * Level[j] >= demand[i];

subject to Lev_Compl {j in ACT}:
Level[j] >= 0 complements

sum {i in PROD} Price[i] * io[i,j] <= cost[j];

Complementarity

Classical Linear Complementarity

. . . complementary slackness conditions
for an equivalent linear program

32Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005

Economic equilibrium with bounded variables
set PROD; # products
set ACT; # activities

param cost {ACT} > 0; # cost per unit
param demand {PROD} >= 0; # units of demand

param io {PROD,ACT} >= 0; # units of product per unit of activity

param level_min {ACT} > 0; # min allowed level for each activity
param level_max {ACT} > 0; # max allowed level for each activity

var Price {i in PROD};
var Level {j in ACT};

subject to Pri_Compl {i in PROD}:
Price[i] >= 0 complements

sum {j in ACT} io[i,j] * Level[j] >= demand[i];

subject to Lev_Compl {j in ACT}:
level_min[j] <= Level[j] <= level_max[j] complements

cost[j] - sum {i in PROD} Price[i] * io[i,j];

Complementarity

Mixed Linear Complementarity

. . . complementarity conditions
for optimality of an equivalent bounded-variable linear program

33Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005

Economic equilibrium with price-dependent demands
set PROD; # products
set ACT; # activities

param cost {ACT} > 0; # cost per unit
param demand {PROD} >= 0; # units of demand

param io {PROD,ACT} >= 0; # units of product per unit of activity

param demzero {PROD} > 0; # intercept and slope of the demand
param demrate {PROD} >= 0; # as a function of price

var Price {i in PROD};
var Level {j in ACT};

subject to Pri_Compl {i in PROD}:
Price[i] >= 0 complements

sum {j in ACT} io[i,j] * Level[j]
>= demzero[i] + demrate[i] * Price[i];

subject to Lev_Compl {j in ACT}:
Level[j] >= 0 complements

sum {i in PROD} Price[i] * io[i,j] <= cost[j];

Complementarity

Nonlinear Complementarity

. . . not equivalent to a linear program

34Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005

Two single inequalities
single-ineq1 complements single-ineq2

Both inequalities must hold, at least one at equality

One double inequality
double-ineq complements expr
expr complements double-ineq

The double-inequality must hold, and
if at lower limit then expr ≥ 0,
if at upper limit then expr ≤ 0,
if between limits then expr = 0

One equality
equality complements expr
expr complements equality

The equality must hold (included for completeness)

Complementarity
Operands to complements: always 2 inequalities

35Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005

“Square” systems
of variables =

of complementarity constraints +
of equality constraints

Transformation to a simpler canonical form required

MPECs
Mathematical programs with equilibrium constraints

No restriction on numbers of variables & constraints

Objective functions permitted

. . . solvers continuing to emerge

Complementarity

Solvers

36Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005

Extensions within AMPL (proposed)
Allow random distributions for some problem data

Make distributions available to solvers

Extensions using AMPL (substantially implemented)
Add special expressions and conventions for stages & scenario trees

Compile to standard AMPL

Generate problem descriptions for various solvers

SAMPL

StAMPL

Stochastic Programs

37Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005

Random Entities
SP within AMPL

param avail_mean >= 0;
param avail_var >= 0;

param avail {1..T} random
:= Normal (avail_mean, avail_var);

Distributions set in the model

param mktbas {PROD} >= 0;
param grow_min {PROD} >= 0;
param grow_max {PROD} >= 0;

var Market {PROD,1..T} random;

.......

let {p in PROD} Market[p,1] := mktbas[p];

let {p in PROD, t in 2..T} Market[p,t] :=

else Market[p,t-1] + Uniform (grow_min[p], grow_max[p]);

Distributions assigned as data

38Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005

Modeled like “random” parameters
Specify distributions in place of fixed data values

Instantiate the same model with different distributions

Processed like “defined” variables
Save a symbolic definition rather than a specific sample

Record in expression tree passed to solver driver

Evaluate (sample) as directed by solver

Parameters or Variables?
SP within AMPL

39Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005

Discrete distributions
Discrete (1/3, 20, 1/3, 50, 1/3, 175)

Discrete ({s in SCEN} (prob[s],demand[s]))

Stochastic objectives
Default: expected value of objective

Explicit: using functions Expected_Value and Variance

New Expression Types
SP within AMPL

40Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005

Modeling
Recourse variables indicated by user-defined .stage suffix

Chance constraints defined by
new function Probability (logical-expression)

Processing
For Discrete, Uniform, and other (half-) bounded distributions,

AMPL’s presolve phase may eliminate constraints.

Jacobian entries indicate
which constraints involve which random entities

Further Concerns
SP within AMPL

41Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005

SAMPL

Patrick Valente, Gautam Mitra, Mustapha Sadki
Brunel University, Uxbridge, Middlesex, UK

P. Valente, G. Mitra, M. Sadki and R. Fourer,
“Extending Algebraic Modelling Languages for
Stochastic Programming” (2004).

AMPL SP Extensions

42Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005

Stages
Two-stage recourse model

SAMPL

suffix stage IN;

var x {Prod, Fact, t in Time, Scen} >=0,
suffix stage if t = 1 then 1 else 2;

var y {Prod, Fact, t in Time, Scen} >=0,
suffix stage if t = 1 then 1 else 2;

.......

Multi-stage recourse model

suffix stage IN;

var x {Prod, Fact, t in Time, Scen} >=0, suffix stage t;

var y {Prod, Fact, t in Time, Scen} >=0, suffix stage t;

.......

43Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005

Scenarios
Scenario set

SAMPL

param NS > 1;

scenarioset Sc = 1..NS;

Scenario probabilities

probability param Pr {Sc} = 1 / card(Sc); # uniform case

44Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005

Scenario Trees: General Form
Bundle form

SAMPL

tree FourStageExample :=

bundles {

(1,1),
(2,1),(2,4),(2,6),
(3,1),(3,4),(3,6),(3,7),
(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(4,7)(4,8),(4,9)

};

Treelist form (if scenario paths never cross)

tree FourStageEXample := tlist {1,4,4,2,4,2,3,4,4};

45Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005

Scenario Trees: Standard Forms
Uniform branching at each stage

SAMPL

multibranch (n1,n2,..., nST);

Uniform branching at all stages

nway (n);

Binary at all stages

binary;

Two-stage

twostage;

46Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005

Random Parameters
Declaration

SAMPL

random param d {Time,Scen} >=0; # demand

Compact data

random param dem :=

1 1 10.0
2 1 5.0
2 3 15.0
3 1 2.5
3 2 7.5
3 3 7.5
3 4 22.5 ;

Expanded data

random param dem (tr):=

1 2 3

1 10 5 2.5

2 10 5 7.5

3 10 15 7.5

4 10 15 22.5 ;

47Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005

Chance Constraints
Random parameter in constraint

SAMPL

random param d {Prod,Deal,Time,Scen} >= 0 # demand

subj to satisfy_demand {j in Prod, k in Deal, t in Time, s in Scen}:

sum {i in Fact} z[j,i,k,t,s] = d[j,k,t,s];

Conversion to a chance constraint

param beta := 0.9;

chance {j in Prod, k in Deal, t in Time,s in Scen}

satisfy_demand[j,k,t,s] >= beta;

48Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005

Further Issues

Communication with solvers
Need a standard form for communicating

stochastic programming instances to solvers

Existing “SMPS” form is outdated and inadequate
(and not entirely standard)

Communication with scenario generators
Independent generators:

consistency with model must be ensured somehow

Integrated generator:
modeling language calls generator as needed

Integration in a modeling environment
SPInE: scenario generation, modeling, solving, results analysis

SAMPL

49Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005

StAMPL

Leo Lopes
PhD, Northwestern University;
Assistant Professor, University of Arizona

R. Fourer and L. Lopes, “StAMPL: A Filtration-Oriented
Modeling Tool for Stochastic Programming” (2003).

AMPL SP Extensions

50Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005

Main Features

Non-technical

Fewer indexes

Modular

Fewer conditions

Technical

No non-anticipativity
constraints

Recourse and
technology matrices are
apparent at first
inspection

StAMPL

51Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005

Syntax: Stage Definition

definestage
statement

Similar to the AMPL
problem statement

StAMPL

52Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005

Syntax: Connecting Problems

parent() function

Returns a model
object

All components of the
parent model can be
accessed using the '.'
(dot) operator

StAMPL

53Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005

Syntax: Stage Information

stage() and stages()
functions

Return the number of
the current stage and
the total stages

Uses:

Defining stages

Discounting

Multi-period

constraints

StAMPL

54Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005

Scenario Trees

Issues
Trees don't fit well with AML paradigms
Generating scenario trees is very specialized
Usually involves developing special routines
Often demands specialized software

Conclusion
Write a general-purpose language library (C++)

The library generates an intermediary file

Export the library to each necessary environment using

SWIG

XML-RPC, .NET

System-specific libraries

StAMPL

55Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005

How It Works
StAMPL

56Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005

Formulations
More natural for modelers than integer programs

Independent of solvers

Compatible with existing modeling languages

Solution methods
Theoretically optimal

Based on tree search (like branch & bound)

Sensitive to details of search strategy

Combinatorial Optimization

57Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005

Given
A set of jobs, with

production times, due times and earliness penalties
One machine that processes one job at a time
Setup costs and times between jobs
Precedence relations between certain jobs

Choose
A sequence for the jobs

Minimizing
Setup costs plus earliness penalties

Example: Job Sequencing with Setups
Combinatorial

C. Jordan & A. Drexl, A Comparison of Constraint and Mixed Integer
Programming Solvers for Batch Sequencing with Sequence Dependent Setups.

ORSA Journal on Computing 7 (1995) 160–165.

58Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005

Either way
ComplTime[j] is the completion time of job j

Earliness penalty is the sum over jobs j of
duePen[j] * (dueTime[j] - ComplTime[j])

Integer programming formulation
Seq[i,j] = 1 iff i immediately precedes j
Setup cost is the sum over job pairs (i,j) of

setupCost[i,j] * Seq[i,j]

More natural formulation
JobForSlot[k] is the job in the kth slot in sequence
Setup cost is the sum over slots k of

setupCost[JobForSlot[k],JobForSlot[k+1]]

Example: Variables and Costs
Combinatorial

59Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005

Integer programming formulation
For each job i, ComplTime[i] ≤ dueTime[i]

For each job pair (i,j),
ComplTime[i] + setupTime[i,j] + procTime[j] ≤
ComplTime[j] + BIG * (1 - Seq[i,j])

More natural formulation
For each slot k,

ComplTime[JobForSlot[k]] = min (
dueTime[JobForSlot[k]],
ComplTime[JobForSlot[k+1]]
- procTime[JobForSlot[k+1]]
- setupTime[JobForSlot[k],JobForSlot[k+1]])

Example: Production Constraints
Combinatorial

60Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005

Integer programming formulation
For each job i,

sum {j in JOBS} Seq[i,j] = 1

For each job i,
sum {j in JOBS} Seq[j,i] = 1

More natural formulation
all_different {k in SLOTS} JobForSlot[k]

Example: Sequencing Constraints
Combinatorial

61Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005

General format

lower-bound ≤ linear-expr + nonlinear-expr ≤ upper-bound

Arrays of lower-bound and upper-bound values

Coefficient lists for linear-expr

Expression tree for nonlinear-expr

Expression tree nodes
Variables, constants

Binary, unary operators

Iterated summation, min, max

Piecewise-linear terms

If-then-else terms

. . . single array of variables

Representing “Range” Constraints
Combinatorial

*

+x[1]

log 175

x[7]

62Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005

IloNumVarArray Var(env, n_var);

for (j = 0; j < n_var - n_var_int; j++)
Var[j] = IloNumVar(env, loVarBnd[j], upVarBnd[j], ILOFLOAT);

for (j = n_var - n_var_int; j < n_var; j++)
Var[j] = IloNumVar(env, loVarBnd[j], upVarBnd[j], ILOINT);

Example: AMPL interface to ILOG Concert

Definition of variables

“Walking the Tree”
Combinatorial

63Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005

Tree Walk (cont’d)
Combinatorial

IloRangeArray Con(env, n_con);

for (i = 0; i < n_con; i++) {

IloExpr conExpr(env);

if (i < nlc)
conExpr += build_expr (con_de[i].e);

for (cg = Cgrad[i]; cg; cg = cg->next)
conExpr += (cg -> coef) * Var[cg -> varno];

Con[i] = (loConBnd[i] <= conExpr <= upConBnd[i]);
}

Top-level processing of constraints

64Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005

IloExpr build_expr (expr *e)

{
expr **ep;
IloInt opnum;
IloExpr partSum;

opnum = (int) e->op;

switch(opnum) {

case PLUS_opno: ...

case MINUS_opno: ...

.......

}
}

Tree-walk function for expressions

Tree Walk (cont’d)
Combinatorial

65Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005

switch(opnum) {

case PLUS_opno:
return build_expr (e->L.e) + build_expr (e->R.e);

case SUMLIST_opno:
partSum = IloExpr(env);
for (ep = e->L.ep; ep < e->R.ep; *ep++)

partSum += build_expr (*ep);
return partSum;

case LOG_opno:
return IloLog (build_expr (e->L.e));

case CONST_opno:
return IloExpr (env, ((expr_n*)e)->v);

case VAR_opno:
return Var[e->a];

.......

}

Tree-walk cases for expression nodes

Tree Walk (cont’d)
Combinatorial

66Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005

Simple forms
constraint and constraint
constraint or constraint
not constraint

Representation
Expression tree for entire constraint

Constraint nodes whose children are constraint nodes

Constraint nodes whose children are expression nodes

Logical Constraints
Combinatorial

(X[1] = 0 and X[2] = 0) or X[1] + X[2] >= 100

or

>=and

100=

X[1] 0 X[2] 0

+

X[1] X[2]

=

67Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005

IloConstraint build_constr (expr *e)

{
expr **ep;
IloInt opnum;

opnum = (int) e->op;

switch(opnum) {

.......

}
}

Tree-walk function for constraints

Tree Walk (cont’d)
Combinatorial

68Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005

switch(opnum) {

case OR_opno:
return build_constr (e->L.e) || build_constr (e->R.e);

case AND_opno:
return build_constr (e->L.e) && build_constr (e->R.e);

case GE_opno:
return build_expr (e->L.e) >= build_expr (e->R.e);

case EQ_opno:
return build_expr (e->L.e) == build_expr (e->R.e);

.......

}

Tree-walk cases for constraint nodes

Tree Walk (cont’d)
Combinatorial

69Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005

Constraint types
Counting expressions and constraints

Structure (global) constraints

Variables in subscripts

Solver inputs
C++ types and operators (ILOG Concert)

Unindexed algebraic input format (BARON)

Codelist of 4-tuples (GlobSol)

Compact, flexible NOP format (GLOPT)

Further Logical Constraint Cases
Combinatorial

70Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005

AMPL Studio / Optirisk Systems Ltd.

71Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005

AMPL Studio (continued)

72Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005

AMPL Studio (continued)

73Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005

AMPL Studio / Optirisk Systems Ltd.

Windows IDE for AMPL
Manage projects, edit files
Set solver options and solve
View results
Run command scripts

COM objects for AMPL
Embed AMPL in applications

74Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005

CONOPT / ARKI Consulting & Development A/S

Local optimization of smooth nonlinear problems
Large and sparse problems
Highly nonlinear functions

Multi-method architecture
Extended generalized reduced gradient method
Special phase 0
Linear mode iterations
Sequential linear programming
Sequential quadratic programming

. . . can take advantage of 2nd derivatives

75Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005

KNITRO / Ziena Optimization Inc.

For all smooth nonlinear optimization problems
Interior-point / barrier

KNITRO/InteriorCG (handles large/dense Hessians)
KNITRO/InteriorDirect (handles ill-conditioned problems)

Active-set SLQP (new October 2004!)
KNITRO/Active (good for warm starts)

Trust-region approach
Supported by global convergence theory

Numerous options
1st or 2nd derivatives, exact or approximated
Feasibility of iterates

76Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005

KNITRO Interfaces

C/C++/Fortran
Easily integrated within existing applications

via callable library

AMPL (or GAMS)
Flexible and powerful syntax
Derivatives computed automatically
Focus on modeling and analysis of results
Ideal for prototyping

MATLAB (through TOMLAB)
Excel (through Frontline Systems solver)

77Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005

KNITRO Derivative Options

First derivative options
User or modeling language provides exact derivatives
KNITRO computes finite difference derivatives (forward or centered)

Second derivative options
User or modeling language provides exact derivatives
User or modeling language

provides exact Hessian-vector products
KNITRO computes Hessian-vector products
Dense quasi-Newton (BFGS or SR1)
Limited-memory BFGS

78Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005

KNITRO Feasible Option

Concepts
By default constraints may be violated

during the optimization process
Feasible option enforces feasibility

with respect to inequalities,
given initial point satisfying inequalities

Advantages
Constraints may be undefined outside feasible region
Allows early termination with feasible solution

79Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005

AMPL Solver Support

Full list at www.ampl.com/solvers.html
Linear programming: MINOS, PCx
Linear & linear integer programming: CPLEX, FortMP, lp_solve,

MINTO, MOSEK, SOPT, XA, Xpress-MP
Quadratic & convex programming: LOQO, OOQP
Quadratic & quadratic integer programming:

CPLEX, FortMP, MOSEK, OOQP, Xpress-MP
Differentiable nonlinear programming: CONOPT, DONLP2, IPOPT,

KNITRO, LOQO, MINOS, SNOPT
Nondifferentiable and global nonlinear programming:

ACRS, CONDOR, MINLP
Complementarity: PATH
Problem analysis: MProbe

80Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005

NEOS www-neos.mcs.anl.gov/neos/

A general-purpose optimization server
Over 45 solvers in all

Linear, linear network, linear integer
Nonlinear, nonlinear integer, nondifferentiable & global
Stochastic, semidefinite, semi-infinite, complementarity

Commercial as well as experimental solvers

Central scheduler with distributed solver sites

A research project
Currently free of charge

Supported through the Optimization Technology Center

of Northwestern University & Argonne National Laboratory

. . . 4402 submissions last week
. . . as many as 11906 submissions in a week

81Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005

AMPL Solver Support . . . via NEOS

Full list at www-neos.mcs.anl.gov/neos/server-solver-types.html
Linear programming: MINOS, PCx
Linear & linear integer programming: FortMP, MINTO, MOSEK
Quadratic & convex programming: LOQO, OOQP
Quadratic & quadratic integer programming: FortMP, OOQP
Differentiable nonlinear programming:

FILTER, IPOPT, KNITRO, LANCELOT, LOQO, MINOS, SNOPT
Nondifferentiable and global nonlinear programming:

ACRS, CONDOR, MINLP, MLOCPSOA
Complementarity: PATH

82Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005

Flexible architecture
Central controller and scheduler machine

Distributed solver sites

Numerous formats
Low-level formats: MPS, SIF, SDPA

Programming languages: C/ADOL-C, Fortran/ADIFOR

High-level modeling languages: AMPL, GAMS

Varied submission options
E-mail – Web forms – Direct function call

TCP/IP socket-based submission tool: Java or tcl/tk

. . . more in next week’s presentation

Design
NEOS

