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Development History
Research projects since 1985 

Bell Laboratories Computing Sciences Research Center,
David Gay and Brian Kernighan

NU IE & MS Department,
National Science Foundation grants,

Robert Fourer
. . . all code after 1987 written by Gay

Lucent Technologies divestiture 1996
Lucent retains Bell Laboratories
Bell Laboratories retains AMPL
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Commercialization History
Sold by licensed vendors since 1992 

CPLEX Optimization, subsequently ILOG/CPLEX
4-6 much smaller companies, including in Europe:

MOSEK (Denmark)
OptiRisk Systems (UK)

AMPL Optimization LLC formed 2002
Lucent assigns 

vendor agreements, trademark, web domain
Lucent retains 

ownership of AMPL and gets a small royalty
. . . two years to negotiate!
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Commercialization History (cont’d)
Current members of LLC 

Fourer, professor at Northwestern
Kernighan, professor at Princeton
Gay, researcher at Sandia National Laboratory

Current situation
Sandia licenses the AMPL source code

. . . another year to negotiate!

AMPL Optimization LLC is gradually arranging to 
sell solvers, provide marketing and maintenance
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Marketing Strategy
Goals 

Clearest and most powerful language
Tutorial but comprehensive textbook
Broad base of satisfied users and consultants
Automated benchmarking services
Moderate price

Advantages
Marketing and support can be decentralized
New AMPL company can be expanded gradually

Disadvantages
Not much known about the user base
Development of new features can be hard to coordinate
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Market Position
Competition from . . . 

Other modeling languages & systems
(AIMMS, MPL, GAMS, LPL)

Proprietary systems of established solver vendors
(ILOG/OPL Studio, Dash/MOSEL, LINGO)

Other software used as a modeling system
(Excel/Frontline, MATLAB/Tomlab)
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Outline
The basics: model, data, solution

A simple example
A set-intensive example

Complementarity problems
Stochastic programming
Combinatorial optimization
The NEOS Server
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Ex 1: The McDonald’s Diet Problem
Foods:
QP Quarter Pounder
FR Fries, small
MD McLean Deluxe
SM Sausage McMuffin
BM Big Mac
1M 1% Lowfat Milk
FF Filet-O-Fish
OJ Orange Juice
MC McGrilled Chicken

Nutrients:
Prot Protein 
Iron Iron
VitA Vitamin A 
Cals Calories 
VitC Vitamin C 
Carb Carbohydrates 
Calc Calcium
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              QP MD BM FF MC FR SM 1M OJ

    Cost  1.8 2.2 1.8 1.4 2.3 0.8 1.3 0.6 0.7 Need:

    Protein  28 24 25 14 31 3 15 9 1 55
    Vitamin A  15 15 6 2 8 0 4 10 2 100
    Vitamin C  6 10 2 0 15 15 0 4 120 100
    Calcium 30 20 25 15 15 0 20 30 2 100
    Iron  20 20 20 10 8 2 15 0 2 100
    Calories  510 370 500 370 400 220 345 110 80 2000
    Carbo  34 35 42 38 42 26 27 12 20 350

McDonald’s Diet Problem Data
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Formulation: Too General
Minimize cx
Subject to Ax = b

x ≥ 0
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Formulation: Too Specific
Minimize 1.84 xQP + 2.19 xMD + 1.84 xBM + 1.44 xFF +  2.29 xMC + 0.77 xFR + 1.29 xSM + 0.60 x1M + 0.72 xOJ

Subject to 28 xQP + 24 xMD + 25 xBM + 14 xFF +  31 xMC + 3 xFR + 15 xSM + 9 x1M + 1 xOJ ≥ 55

15 xQP + 15 xMD + 6 xBM + 2 xFF +  8 xMC + 0 xFR + 4 xSM + 10 x1M + 2 xOJ ≥ 100

6 xQP + 10 xMD + 2 xBM + 0 xFF +  15 xMC + 15 xFR + 0 xSM + 4 x1M + 120 xOJ ≥ 100

30 xQP + 20 xMD + 25 xBM + 15 xFF +  15 xMC + 0 xFR + 20 xSM + 30 x1M + 2 xOJ ≥ 100

20 xQP + 20 xMD + 20 xBM + 10 xFF +  8 xMC + 2 xFR + 15 xSM + 0 x1M + 2 xOJ ≥ 100

510 xQP + 370 xMD + 500 xBM + 370 xFF +  400 xMC + 220 xFR + 345 xSM + 110 x1M + 80 xOJ ≥ 2000

34 xQP + 35 xMD + 42 xBM + 38 xFF +  42 xMC + 26 xFR + 27 xSM + 12 x1M + 20 xOJ ≥ 350
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Algebraic Model

Given F, a set of foods

N, a set of nutrients

and aij ≥ 0, the units of nutrient i in one serving of food j, 
for each  i ∈ N and  j ∈ F

bi > 0, units of nutrient i required, for each  i ∈ N

cj > 0, cost per serving of food j, for each j ∈ F

Define xj ≥ 0, servings of food j to be purchased, for each j ∈ F

Minimize Σj∈F cj xj

Subject to Σj∈F aij xj ≥ bi,  for each i ∈ N
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Algebraic Model in AMPL
set NUTR;   # nutrients 
set FOOD;   # foods 

param amt {NUTR,FOOD} >= 0;   # amount of nutrient in each food 
param nutrLow {NUTR} >= 0;    # lower bound on nutrients in diet
param cost {FOOD} >= 0;       # cost of foods 

var Buy {FOOD} >= 0 integer;  # amounts of foods to be bought

minimize TotalCost: sum {j in FOOD} cost[j] * Buy[j]; 

subject to Need {i in NUTR}: 
sum {j in FOOD} amt[i,j] * Buy[j] >= nutrLow[i];
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Data for the AMPL Model
param: FOOD:           cost := 
"Quarter Pounder"    1.84     "Fries, small"        .77 
"McLean Deluxe"      2.19     "Sausage McMuffin"   1.29 
"Big Mac"            1.84     "1% Lowfat Milk"      .60 
"Filet-O-Fish"       1.44     "Orange Juice"        .72 
"McGrilled Chicken"  2.29 ; 

param: NUTR: nutrLow := 
Prot  55   VitA 100   VitC  100 
Calc 100   Iron 100   Cals 2000   Carb 350 ; 

param amt (tr):         Cals  Carb  Prot  VitA  VitC  Calc  Iron := 
"Quarter Pounder"     510    34    28    15     6    30    20
"McLean Deluxe"       370    35    24    15    10    20    20
"Big Mac"             500    42    25     6     2    25    20
"Filet-O-Fish"        370    38    14     2     0    15    10 
"McGrilled Chicken"   400    42    31     8    15    15     8 
"Fries, small"        220    26     3     0    15     0     2
"Sausage McMuffin"    345    27    15     4     0    20    15
"1% Lowfat Milk"      110    12     9    10     4    30     0
"Orange Juice"         80    20     1     2   120     2     2 ;
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Continuous-Variable Solution
ampl: model mcdiet1.mod;
ampl: data mcdiet1.dat;

ampl: solve;

MINOS 5.5: ignoring integrality of 9 variables 
MINOS 5.5: optimal solution found. 
7 iterations, objective 14.8557377 

ampl: display Buy;        

Buy [*] :=                   
1% Lowfat Milk 3.42213 

Big Mac 0       
Filet-O-Fish   0       
Fries, small 6.14754 

McGrilled Chicken 0       
McLean Deluxe 0       
Orange Juice 0       

Quarter Pounder 4.38525 
Sausage McMuffin 0       
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Integer-Variable Solution
ampl: option solver cplex; 

ampl: solve; 

CPLEX 7.0.0: optimal integer solution; objective 15.05 
41 MIP simplex iterations 
23 branch-and-bound nodes

ampl: display Buy;        

Buy [*] :=                   
1% Lowfat Milk 4 

Big Mac 0 
Filet-O-Fish   1 
Fries, small 5 

McGrilled Chicken 0 
McLean Deluxe 0 
Orange Juice 0 

Quarter Pounder 4 
Sausage McMuffin 0



Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005 17

Same for 63 Foods, 12 Nutrients
ampl: reset data;
ampl: data mcdiet2.dat; 

ampl: option solver minos;

ampl: solve; 

MINOS 5.5: ignoring integrality of 63 variables 
MINOS 5.5: optimal solution found. 

16 iterations, objective -1.786806582e-14 

ampl: option omit_zero_rows 1; 

ampl: display Buy; 

Buy [*] :=            
Bacon Bits 55 

Barbeque Sauce 50 
Hot Mustard Sauce 50
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Improved Algebraic Model
set NUTR;   # nutrients 
set FOOD;   # foods 

param nutrLo {NUTR} >= 0;
param nutrHi {i in NUTR} >= nutrLo[i];

# requirements for nutrients

param foodCost {FOOD} >= 0;   # costs of foods
param foodLim {FOOD} >= 0; # limits on food amounts

param amt {NUTR,FOOD} >= 0;   # amounts of nutrient in foods

var Buy {FOOD} integer >= 0, <= foodLim[j];
# amounts of foods to be bought

minimize TotalCost: sum {j in FOOD} foodCost[j] * Buy[j];

subject to Need {i in NUTR}:
nutrLo[i] <= sum {j in FOOD} amt[i,j] * Buy[j] <= nutrHi[i];
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Improved Algebraic Model (cont’d)
set F_SAL within FOOD;       # Salads
set F_SAL_DRE within FOOD;   # Salad dressings
set F_SAL_TOP within FOOD;   # Salad toppings

param amt_sal_dre {F_SAL} > 0;
param amt_sal_top {F_SAL} > 0;

# Limits on dressings & toppings per serving

subject to SaladDressingLimit:
sum {j in F_SAL_DRE} Buy[j] 

<= sum {j in F_SAL} amt_sal_dre[j] * Buy[j];

subject to SaladToppingLimit:
sum {j in F_SAL_TOP} Buy[j] 

<= sum {j in F_SAL} amt_sal_top[j] * Buy[j];

set DRINKS within FOOD;    # Drinks
param drinkNum > 0;        # Number of drinks required in diet

subject to DrinkLimit:
sum {j in DRINKS} Buy[j] = drinkNum;
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Improved Algebraic Model (cont’d)
set F_NUG within FOOD;       # Chicken McNuggets foods
set F_NUG_SCE within FOOD;   # Chicken McNuggets sauces

param amt_nug_sce {F_NUG} > 0;
# Limits on sauces per serving

subject to NuggetSauceLimit:
sum {j in F_NUG_SCE} Buy[j] 

<= sum {j in F_NUG} amt_nug_sce[j] * Buy[j];

param fracCalFat >= 0, <= 1; 
# Fraction of calories that may be from fat

subject to CalFatLimit:
sum {j in FOOD} amt['CalFat',j] * Buy[j] 

<= fracCalFat * sum {j in FOOD} amt['Cal',j] * Buy[j];
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Improved Solution
ampl: model diet2.mod;
ampl: data diet2.dat;

ampl: option solver cplex;
ampl: solve;

CPLEX 9.0.0: optimal integer solution; objective 9.06
720 MIP simplex iterations
414 branch-and-bound nodes

ampl: option omit_zero_rows 1;
ampl: display Buy;

Buy [*] :=
Cheerios  1

Cheeseburger  1
'Chocolate Shake'  1

'Cinnamon Raisin Danish'  1
Croutons  1

'English Muffin'  1
'H-C Orange Drink (large)'  1

Hamburger  2
'Orange Juice'  1

'Side Salad'  1 ;
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set FLEETS;
set CITIES;

set TIMES circular;

set FLEET_LEGS within

{f in FLEETS, c1 in CITIES, t1 in TIMES, 

c2 in CITIES, t2 in TIMES: c1 <> c2 and t1 <> t2};

# (f,c1,t1,c2,t2) represents the availability of fleet f
# to cover the leg that leaves c1 at t1 and 
# whose arrival time plus turnaround time at c2 is t2 

set LEGS = setof {(f,c1,t1,c2,t2) in FLEET_LEGS} (c1,t1,c2,t2);

# the set of all legs that can be covered by some fleet

Ex 2: Airline Fleet Assignment
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set SERV_CITIES {f in FLEETS} =
union {(f,c1,c2,t1,t2) in FLEET_LEGS} {c1,c2};

# for each fleet, the set of cities that it serves

set OP_TIMES {f in FLEETS, c in SERV_CITIES[f]} circular by TIMES =

setof {(f,c,c2,t1,t2) in FLEET_LEGS} t1 union 

setof {(f,c1,c,t1,t2) in FLEET_LEGS} t2;

# for each fleet and city served by that fleet,
# the set of active arrival & departure times at that city,
# with arrival time adjusted for the turn requirement

param leg_cost {FLEET_LEGS} >= 0;

param fleet_size {FLEETS} >= 0;

Airline Fleet Assignment (cont’d)
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minimize Total_Cost;

node Gate {f in FLEETS, c in SERV_CITIES[f], OP_TIMES[f,c]};

# for each fleet and city served by that fleet,
# a node for each possible time

arc Fly {(f,c1,t1,c2,t2) in FLEET_LEGS} >= 0, <= 1,

from Balance[f,c1,t1], to Balance[f,c2,t2],

obj Total_Cost leg_cost[f,c1,t1,c2,t2];

# arcs for fleet/flight assignments

arc Sit {f in FLEETS, c in SERV_CITIES[f], t in OP_TIMES[f,c]} >= 0,

from Balance[f,c,t], to Balance[f,c,next(t)];

# arcs for planes on the ground

Airline Fleet Assignment (cont’d)
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subj to Service {(c1,t1,c2,t2) in LEGS}:

sum {(f,c1,t1,c2,t2) in FLEET_LEGS} Fly[f,c1,t1,c2,t2] = 1;

# each leg must be served by some fleet

subj to Capacity {f in FLEETS}:

sum {(f,c1,t1,c2,t2) in FLEET_LEGS: 

ord(t2,TIMES) < ord(t1,TIMES)} Fly[f,c1,t1,c2,t2] +

sum {c in SERV_CITIES[f]} Sit[f,c,last(OP_TIMES[f,c])] <= fleet_size[f];

# number of planes used is the number in the air at the
# last time (arriving "earlier" than they leave)
# plus the number on the ground at the last time in each city

Airline Fleet Assignment (cont’d)
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set FLEETS := 72S 73S L10 ;
set CITIES := ATL CVG DFW ;

set TIMES := 1200a 1210a 1220a 1230a 1240a 1250a
100a  110a  120a  130a  140a  150a
200a  210a  220a  230a  240a  250a
300a  310a  320a  330a  340a  350a

set FLEET_LEGS := 
(72S,ATL,*,CVG,*)  630a  740a   830a  950a  1210p  130p
(72S,ATL,*,CVG,*)  120p  240p   430p  600p   640p  810p
(72S,ATL,*,CVG,*)  850p 1010p  1150p  100a
(73S,ATL,*,CVG,*)  630a  740a   830a  950a  1210p  130p

param leg_cost := 
[72S,ATL,*,CVG,*]  630a  740a 33   830a  950a 33  1210p 130p 33
[72S,ATL,*,CVG,*]  120p  240p 33   430p  600p 33   640p 810p 33
[72S,ATL,*,CVG,*]  850p 1010p 33  1150p  100a 33
[73S,ATL,*,CVG,*]  630a  740a 30   830a  950a 30  1210p 130p 30

param fleet_size :=  72S 6  73S 6  L10 2 ;

Airline Fleet Assignment Data
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ampl: model fleet.mod;
ampl: data fleet.dat;

ampl: option solver kestrel;
ampl: option kestrel_options 'solver pcx';

ampl: option show_stats 1;

ampl: solve;

327 variables, all linear
258 constraints; 790 nonzeros

211 linear network constraints
47 general linear constraints

1 linear objective; 116 nonzeros.

Job has been submitted to Kestrel
Kestrel/NEOS Job number    : 458598
Kestrel/NEOS Job password  : lggrLQxk

Check the following URL for progress report : 
http://www-neos.mcs.anl.gov/neos/neos-cgi/

check-status.cgi?job=458598&pass=lggrLQxk

In case of problems, e-mail :
neos-comments@mcs.anl.gov

Intermediate Solver Output: ...

Airline Fleet Assignment Solution
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Executing algorithm...

Before Scaling: ScaleFactor = 0.0
Cholesky factor will have density  0.11448

FOUND      5 TINY DIAGONALS; REPLACED WITH INF

Maximum Gondzio corrections = 0

Iter    Primal       Dual      (PriInf  DualInf)  log(mu) dgts  Merit
0   1.0426e+04   1.7577e+03  (3.1e+00 8.9e-02)    0.77    0   1.8e+01
FOUND      3 TINY DIAGONALS; REPLACED WITH INF
1   6.0005e+03   1.8285e+03  (1.5e+00 1.5e-02)    0.30    0   8.7e+00
FOUND      4 TINY DIAGONALS; REPLACED WITH INF
2   2.4219e+03   1.9639e+03  (1.3e-01 8.4e-04)   -0.49    0   9.3e-01
FOUND      3 TINY DIAGONALS; REPLACED WITH INF
3   2.1674e+03   2.0302e+03  (4.2e-02 1.5e-04)   -1.12    1   2.8e-01
FOUND      2 TINY DIAGONALS; REPLACED WITH INF
4   2.0584e+03   2.0393e+03  (4.5e-03 3.9e-05)   -1.73    2   3.8e-02
FOUND      4 TINY DIAGONALS; REPLACED WITH INF
5   2.0442e+03   2.0439e+03  (5.5e-05 3.7e-07)   -3.66    3   4.6e-04
FOUND      1 TINY DIAGONALS; REPLACED WITH INF
6   2.0440e+03   2.0440e+03  (1.7e-10 8.5e-13)   -9.23    9   1.4e-09

--termination with OPTIMAL status

Finished call

Optimal solution found.

Airline Fleet Assignment Solution (cont’d)
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ampl: option display_eps .00001, omit_zero_rows 1, display_1col 100000;

ampl: display {f in FLEETS}: 
ampl?    {(f,c1,t1,c2,t2) in FLEET_LEGS} Fly[f,c1,t1,c2,t2];

Fly['72S',c1,t1,c2,t2] :=
CVG 110p  DFW 220p    1
CVG 640p  DFW 800p    1
CVG 850a  DFW 1010a   1
DFW 1050a CVG 200p    1
DFW 440p  CVG 800p    1
DFW 820p  CVG 1140p   1
;

Fly['73S',c1,t1,c2,t2] :=
ATL 1010a DFW 1110a   1
ATL 1010p DFW 1120p   1
ATL 1140p DFW 1250a   1
ATL 1150p CVG 100a    1
ATL 120p  CVG 240p    1
ATL 120p  DFW 230p    1
ATL 1210p CVG 130p    1
ATL 430p  CVG 600p    1
ATL 630a  CVG 740a    1   ...

Airline Fleet Assignment Solution (cont’d)
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Definition
Collections of complementarity conditions:

Two inequalities must hold,
at least one of them with equality

Applications
Equilibrium problems in economics and engineering

Optimality conditions for nonlinear programs,
bi-level linear programs, bimatrix games, . . .

Complementarity Problems
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Economic equilibrium
set PROD;   # products
set ACT; # activities

param cost {ACT} > 0;      # cost per unit of each activity
param demand {PROD} >= 0;  # units of demand for each product

param io {PROD,ACT} >= 0;  # units of each product from
# 1 unit of each activity

var Price {i in PROD};
var Level {j in ACT};

subject to Pri_Compl {i in PROD}:
Price[i] >= 0 complements

sum {j in ACT} io[i,j] * Level[j] >= demand[i];

subject to Lev_Compl {j in ACT}:
Level[j] >= 0 complements

sum {i in PROD} Price[i] * io[i,j] <= cost[j];

Complementarity

Classical Linear Complementarity

. . . complementary slackness conditions
for an equivalent linear program
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Economic equilibrium with bounded variables
set PROD;   # products
set ACT; # activities

param cost {ACT} > 0;       # cost per unit
param demand {PROD} >= 0;   # units of demand

param io {PROD,ACT} >= 0;   # units of product per unit of activity

param level_min {ACT} > 0;  # min allowed level for each activity
param level_max {ACT} > 0;  # max allowed level for each activity

var Price {i in PROD};
var Level {j in ACT};

subject to Pri_Compl {i in PROD}:
Price[i] >= 0 complements

sum {j in ACT} io[i,j] * Level[j] >= demand[i];

subject to Lev_Compl {j in ACT}:
level_min[j] <= Level[j] <= level_max[j] complements

cost[j] - sum {i in PROD} Price[i] * io[i,j];

Complementarity

Mixed Linear Complementarity

. . . complementarity conditions
for optimality of an equivalent bounded-variable linear program
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Economic equilibrium with price-dependent demands
set PROD;   # products
set ACT; # activities

param cost {ACT} > 0;       # cost per unit
param demand {PROD} >= 0;   # units of demand

param io {PROD,ACT} >= 0;   # units of product per unit of activity

param demzero {PROD} > 0;   # intercept and slope of the demand
param demrate {PROD} >= 0;  # as a function of price

var Price {i in PROD};
var Level {j in ACT};

subject to Pri_Compl {i in PROD}:
Price[i] >= 0 complements

sum {j in ACT} io[i,j] * Level[j]
>= demzero[i] + demrate[i] * Price[i];

subject to Lev_Compl {j in ACT}:
Level[j] >= 0 complements

sum {i in PROD} Price[i] * io[i,j] <= cost[j];

Complementarity

Nonlinear Complementarity

. . . not equivalent to a linear program 
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Two single inequalities
single-ineq1 complements single-ineq2

Both inequalities must hold, at least one at equality

One double inequality
double-ineq complements expr
expr complements double-ineq

The double-inequality must hold, and
if at lower limit then expr ≥ 0,
if at upper limit then expr ≤ 0, 
if between limits then expr = 0

One equality
equality complements expr
expr complements equality

The equality must hold (included for completeness)

Complementarity
Operands to complements: always 2 inequalities
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“Square” systems
# of variables =

# of complementarity constraints +
# of equality constraints 

Transformation to a simpler canonical form required

MPECs
Mathematical programs with equilibrium constraints

No restriction on numbers of variables & constraints

Objective functions permitted

. . . solvers continuing to emerge

Complementarity

Solvers
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Extensions within AMPL (proposed)
Allow random distributions for some problem data

Make distributions available to solvers

Extensions using AMPL (substantially implemented)
Add special expressions and conventions for stages & scenario trees

Compile to standard AMPL

Generate problem descriptions for various solvers

SAMPL

StAMPL

Stochastic Programs
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Random Entities
SP within AMPL

param avail_mean >= 0;
param avail_var >= 0;

param avail {1..T} random
:= Normal (avail_mean, avail_var);

Distributions set in the model

param mktbas {PROD} >= 0;
param grow_min {PROD} >= 0;
param grow_max {PROD} >= 0;

var Market {PROD,1..T} random;

.......

let {p in PROD} Market[p,1] := mktbas[p];

let {p in PROD, t in 2..T} Market[p,t] :=

else Market[p,t-1] + Uniform (grow_min[p], grow_max[p]);

Distributions assigned as data
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Modeled like “random” parameters
Specify distributions in place of fixed data values

Instantiate the same model with different distributions

Processed like “defined” variables
Save a symbolic definition rather than a specific sample

Record in expression tree passed to solver driver

Evaluate (sample) as directed by solver

Parameters or Variables?
SP within AMPL
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Discrete distributions
Discrete (1/3, 20, 1/3, 50, 1/3, 175)

Discrete ( {s in SCEN} (prob[s],demand[s]) )

Stochastic objectives
Default: expected value of objective

Explicit: using functions Expected_Value and Variance

New Expression Types
SP within AMPL
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Modeling
Recourse variables indicated by user-defined .stage suffix

Chance constraints defined by
new function Probability (logical-expression)

Processing
For Discrete, Uniform, and other (half-) bounded distributions,

AMPL’s presolve phase may eliminate constraints.

Jacobian entries indicate 
which constraints involve which random entities

Further Concerns
SP within AMPL
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SAMPL

Patrick Valente, Gautam Mitra, Mustapha Sadki
Brunel University, Uxbridge, Middlesex, UK

P. Valente, G. Mitra, M. Sadki and R. Fourer, 
“Extending Algebraic Modelling Languages for 
Stochastic Programming” (2004).

AMPL SP Extensions
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Stages
Two-stage recourse model

SAMPL

suffix stage IN;

var x {Prod, Fact, t in Time, Scen} >=0, 
suffix stage if t = 1 then 1 else 2;

var y {Prod, Fact, t in Time, Scen} >=0, 
suffix stage if t = 1 then 1 else 2;

.......

Multi-stage recourse model

suffix stage IN;

var x {Prod, Fact, t in Time, Scen} >=0, suffix stage t;

var y {Prod, Fact, t in Time, Scen} >=0, suffix stage t;

.......
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Scenarios
Scenario set

SAMPL

param NS > 1;

scenarioset Sc = 1..NS;

Scenario probabilities

probability param Pr {Sc} = 1 / card(Sc);   # uniform case
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Scenario Trees: General Form
Bundle form

SAMPL

tree FourStageExample :=

bundles {

(1,1),
(2,1),(2,4),(2,6),
(3,1),(3,4),(3,6),(3,7),
(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(4,7)(4,8),(4,9)

};

Treelist form (if scenario paths never cross)

tree FourStageEXample := tlist {1,4,4,2,4,2,3,4,4};
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Scenario Trees: Standard Forms
Uniform branching at each stage

SAMPL

multibranch (n1,n2,..., nST);

Uniform branching at all stages

nway (n);

Binary at all stages

binary;

Two-stage

twostage;
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Random Parameters
Declaration

SAMPL

random param d {Time,Scen} >=0;  # demand

Compact data

random param dem :=

1 1  10.0
2 1   5.0
2 3  15.0
3 1   2.5
3 2   7.5
3 3   7.5
3 4  22.5 ;

Expanded data

random param dem (tr):=

1   2    3

1  10   5   2.5

2  10   5   7.5

3  10  15   7.5

4  10  15  22.5 ;
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Chance Constraints
Random parameter in constraint

SAMPL

random param d {Prod,Deal,Time,Scen} >= 0  # demand

subj to satisfy_demand {j in Prod, k in Deal, t in Time, s in Scen}: 

sum {i in Fact} z[j,i,k,t,s] = d[j,k,t,s];

Conversion to a chance constraint

param beta := 0.9;

chance {j in Prod, k in Deal, t in Time,s in Scen} 

satisfy_demand[j,k,t,s] >= beta;
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Further Issues

Communication with solvers
Need a standard form for communicating

stochastic programming instances to solvers

Existing “SMPS” form is outdated and inadequate
(and not entirely standard)

Communication with scenario generators
Independent generators:

consistency with model must be ensured somehow

Integrated generator:
modeling language calls generator as needed

Integration in a modeling environment
SPInE: scenario generation, modeling, solving, results analysis

SAMPL
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StAMPL

Leo Lopes
PhD, Northwestern University;
Assistant Professor, University of Arizona

R. Fourer and L. Lopes, “StAMPL: A Filtration-Oriented 
Modeling Tool for Stochastic Programming” (2003).

AMPL SP Extensions
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Main Features

Non-technical

Fewer indexes

Modular

Fewer conditions

Technical

No non-anticipativity
constraints

Recourse and
technology matrices are
apparent at first
inspection

StAMPL
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Syntax: Stage Definition

definestage
statement

Similar to the AMPL
problem statement

StAMPL
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Syntax: Connecting Problems

parent() function

Returns a model
object

All components of the
parent model can be
accessed using the '.'
(dot) operator

StAMPL
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Syntax: Stage Information

stage() and stages()
functions

Return the number of
the current stage and
the total stages

Uses:

Defining stages

Discounting

Multi-period

constraints

StAMPL
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Scenario Trees

Issues
Trees don't fit well with AML paradigms
Generating scenario trees is very specialized
Usually involves developing special routines
Often demands specialized software

Conclusion
Write a general-purpose language library (C++)

The library generates an intermediary file

Export the library to each necessary environment using

SWIG

XML-RPC, .NET

System-specific libraries

StAMPL



55Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005

How It Works
StAMPL
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Formulations
More natural for modelers than integer programs

Independent of solvers

Compatible with existing modeling languages

Solution methods
Theoretically optimal

Based on tree search (like branch & bound)

Sensitive to details of search strategy

Combinatorial Optimization
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Given
A set of jobs, with

production times, due times and earliness penalties
One machine that processes one job at a time
Setup costs and times between jobs
Precedence relations between certain jobs

Choose
A sequence for the jobs

Minimizing
Setup costs plus earliness penalties

Example: Job Sequencing with Setups
Combinatorial

C. Jordan & A. Drexl, A Comparison of Constraint and Mixed Integer
Programming Solvers for Batch Sequencing with Sequence Dependent Setups.

ORSA Journal on Computing 7 (1995) 160–165.
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Either way
ComplTime[j] is the completion time of job j

Earliness penalty is the sum over jobs j of
duePen[j] * (dueTime[j] - ComplTime[j])

Integer programming formulation
Seq[i,j] = 1 iff i immediately precedes j
Setup cost is the sum over job pairs (i,j) of

setupCost[i,j] * Seq[i,j]

More natural formulation
JobForSlot[k] is the job in the kth slot in sequence
Setup cost is the sum over slots k of

setupCost[JobForSlot[k],JobForSlot[k+1]]

Example: Variables and Costs
Combinatorial



59Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005

Integer programming formulation
For each job i, ComplTime[i] ≤ dueTime[i]

For each job pair (i,j),
ComplTime[i] + setupTime[i,j] + procTime[j] ≤
ComplTime[j] + BIG * (1 - Seq[i,j])

More natural formulation
For each slot k,

ComplTime[JobForSlot[k]] = min (
dueTime[JobForSlot[k]],
ComplTime[JobForSlot[k+1]]
- procTime[JobForSlot[k+1]]
- setupTime[JobForSlot[k],JobForSlot[k+1]] )

Example: Production Constraints
Combinatorial
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Integer programming formulation
For each job i,

sum {j in JOBS} Seq[i,j] = 1

For each job i,
sum {j in JOBS} Seq[j,i] = 1

More natural formulation
all_different {k in SLOTS} JobForSlot[k]

Example: Sequencing Constraints
Combinatorial
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General format

lower-bound ≤ linear-expr + nonlinear-expr ≤ upper-bound

Arrays of lower-bound and upper-bound values

Coefficient lists for linear-expr

Expression tree for nonlinear-expr

Expression tree nodes
Variables, constants

Binary, unary operators

Iterated summation, min, max

Piecewise-linear terms

If-then-else terms

. . . single array of variables

Representing “Range” Constraints
Combinatorial

*

+x[1]

log 175

x[7]
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IloNumVarArray Var(env, n_var);

for (j = 0; j < n_var - n_var_int; j++)
Var[j] = IloNumVar(env, loVarBnd[j], upVarBnd[j], ILOFLOAT);

for (j = n_var - n_var_int; j < n_var; j++)
Var[j] = IloNumVar(env, loVarBnd[j], upVarBnd[j], ILOINT);

Example: AMPL interface to ILOG Concert

Definition of variables

“Walking the Tree”
Combinatorial
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Tree Walk (cont’d)
Combinatorial

IloRangeArray Con(env, n_con);

for (i = 0; i < n_con; i++) {

IloExpr conExpr(env);

if (i < nlc)
conExpr += build_expr (con_de[i].e);

for (cg = Cgrad[i]; cg; cg = cg->next)
conExpr += (cg -> coef) * Var[cg -> varno];

Con[i] = (loConBnd[i] <= conExpr <= upConBnd[i]);
}

Top-level processing of constraints
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IloExpr build_expr (expr *e)

{
expr **ep;
IloInt opnum;
IloExpr partSum;

opnum = (int) e->op;

switch(opnum) {

case PLUS_opno: ...

case MINUS_opno: ...

.......

}
}

Tree-walk function for expressions

Tree Walk (cont’d)
Combinatorial
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switch(opnum) {

case PLUS_opno:
return build_expr (e->L.e) + build_expr (e->R.e);

case SUMLIST_opno:
partSum = IloExpr(env);
for (ep = e->L.ep; ep < e->R.ep; *ep++)

partSum += build_expr (*ep);
return partSum;

case LOG_opno:
return IloLog (build_expr (e->L.e));

case CONST_opno:
return IloExpr (env, ((expr_n*)e)->v);

case VAR_opno:
return Var[e->a];

.......

}

Tree-walk cases for expression nodes

Tree Walk (cont’d)
Combinatorial
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Simple forms
constraint and constraint
constraint or constraint
not constraint

Representation
Expression tree for entire constraint

Constraint nodes whose children are constraint nodes

Constraint nodes whose children are expression nodes

Logical Constraints
Combinatorial

(X[1] = 0 and X[2] = 0) or X[1] + X[2] >= 100

or

>=and

100=

X[1] 0 X[2] 0

+

X[1] X[2]

=
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IloConstraint build_constr (expr *e)

{
expr **ep;
IloInt opnum;

opnum = (int) e->op;

switch(opnum) {

.......

}
}

Tree-walk function for constraints

Tree Walk (cont’d)
Combinatorial
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switch(opnum) {

case OR_opno:
return build_constr (e->L.e) || build_constr (e->R.e);

case AND_opno:
return build_constr (e->L.e) && build_constr (e->R.e);

case GE_opno:
return build_expr (e->L.e) >= build_expr (e->R.e);

case EQ_opno:
return build_expr (e->L.e) == build_expr (e->R.e);

.......

}

Tree-walk cases for constraint nodes

Tree Walk (cont’d)
Combinatorial
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Constraint types
Counting expressions and constraints

Structure (global) constraints

Variables in subscripts

Solver inputs
C++ types and operators (ILOG Concert)

Unindexed algebraic input format (BARON)

Codelist of 4-tuples (GlobSol)

Compact, flexible NOP format (GLOPT)

Further Logical Constraint Cases
Combinatorial
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AMPL Studio / Optirisk Systems Ltd.
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AMPL Studio (continued)
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AMPL Studio (continued)



73Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005

AMPL Studio / Optirisk Systems Ltd.

Windows IDE for AMPL
Manage projects, edit files
Set solver options and solve
View results
Run command scripts

COM objects for AMPL
Embed AMPL in applications
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CONOPT / ARKI Consulting & Development A/S

Local optimization of smooth nonlinear problems
Large and sparse problems
Highly nonlinear functions

Multi-method architecture
Extended generalized reduced gradient method
Special phase 0
Linear mode iterations
Sequential linear programming
Sequential quadratic programming 

. . . can take advantage of 2nd derivatives
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KNITRO / Ziena Optimization Inc.

For all smooth nonlinear optimization problems
Interior-point / barrier

KNITRO/InteriorCG (handles large/dense Hessians)
KNITRO/InteriorDirect (handles ill-conditioned problems)

Active-set SLQP (new October 2004!)
KNITRO/Active (good for warm starts)

Trust-region approach
Supported by global convergence theory

Numerous options
1st or 2nd derivatives, exact or approximated
Feasibility of iterates
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KNITRO Interfaces

C/C++/Fortran
Easily integrated within existing applications

via callable library

AMPL (or GAMS)
Flexible and powerful syntax
Derivatives computed automatically
Focus on modeling and analysis of results
Ideal for prototyping

MATLAB (through TOMLAB)
Excel (through Frontline Systems solver)



77Robert Fourer, AMPL Presentation, Department of Economics, University of Chicago — 21 April 2005

KNITRO Derivative Options

First derivative options
User or modeling language provides exact derivatives
KNITRO computes finite difference derivatives (forward or centered) 

Second derivative options
User or modeling language provides exact derivatives
User or modeling language

provides exact Hessian-vector products
KNITRO computes Hessian-vector products
Dense quasi-Newton (BFGS or SR1)
Limited-memory BFGS
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KNITRO Feasible Option

Concepts
By default constraints may be violated 

during the optimization process
Feasible option enforces feasibility 

with respect to inequalities, 
given initial point satisfying inequalities

Advantages
Constraints may be undefined outside feasible region
Allows early termination with feasible solution
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AMPL Solver Support

Full list at www.ampl.com/solvers.html
Linear programming: MINOS, PCx
Linear & linear integer programming: CPLEX, FortMP, lp_solve, 

MINTO, MOSEK, SOPT, XA, Xpress-MP
Quadratic & convex programming: LOQO, OOQP
Quadratic & quadratic integer programming:

CPLEX, FortMP, MOSEK, OOQP, Xpress-MP
Differentiable nonlinear programming: CONOPT, DONLP2, IPOPT, 

KNITRO, LOQO, MINOS, SNOPT
Nondifferentiable and global nonlinear programming:

ACRS, CONDOR, MINLP
Complementarity: PATH
Problem analysis: MProbe
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NEOS www-neos.mcs.anl.gov/neos/

A general-purpose optimization server
Over 45 solvers in all

Linear, linear network, linear integer
Nonlinear, nonlinear integer, nondifferentiable & global
Stochastic, semidefinite, semi-infinite, complementarity

Commercial as well as experimental solvers

Central scheduler with distributed solver sites

A research project
Currently free of charge

Supported through the Optimization Technology Center

of Northwestern University & Argonne National Laboratory

. . . 4402 submissions last week
. . . as many as 11906 submissions in a week
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AMPL Solver Support . . . via NEOS

Full list at www-neos.mcs.anl.gov/neos/server-solver-types.html
Linear programming: MINOS, PCx
Linear & linear integer programming: FortMP, MINTO, MOSEK
Quadratic & convex programming: LOQO, OOQP
Quadratic & quadratic integer programming: FortMP, OOQP
Differentiable nonlinear programming:

FILTER, IPOPT, KNITRO, LANCELOT, LOQO, MINOS, SNOPT
Nondifferentiable and global nonlinear programming:

ACRS, CONDOR, MINLP, MLOCPSOA
Complementarity: PATH
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Flexible architecture
Central controller and scheduler machine

Distributed solver sites

Numerous formats
Low-level formats: MPS, SIF, SDPA

Programming languages: C/ADOL-C, Fortran/ADIFOR

High-level modeling languages: AMPL, GAMS

Varied submission options
E-mail – Web forms – Direct function call

TCP/IP socket-based submission tool: Java or tcl/tk

. . . more in next week’s presentation

Design
NEOS


