AMPL

A Modeling Language for Large-Scale Optimization

Robert Fourer

AMPL Optimization LLC, www.ampl.com

Department of Industrial Engineering & Management Sciences, Northwestern University, Evanston, IL 60208-3119, USA

Department of Economics, University of Chicago — 21 April 2005

Development History

Research projects since 1985

Bell Laboratories Computing Sciences Research Center, David Gay and Brian Kernighan

NU IE & MS Department,
National Science Foundation grants,

Robert Fourer

... all code after 1987 written by Gay

Lucent Technologies divestiture 1996

Lucent retains Bell Laboratories

Bell Laboratories retains AMPL

Commercialization History

Sold by licensed vendors since 1992

CPLEX Optimization, subsequently ILOG/CPLEX

4-6 much smaller companies, including in Europe:

- ➤ MOSEK (Denmark)
- ➤ OptiRisk Systems (UK)

AMPL Optimization LLC formed 2002

Lucent assigns

vendor agreements, trademark, web domain

Lucent retains

ownership of AMPL and gets a small royalty

... two years to negotiate!

Commercialization History (cont'd)

Current members of LLC

Fourer, professor at Northwestern Kernighan, professor at Princeton Gay, researcher at Sandia National Laboratory

Current situation

Sandia licenses the AMPL source code

... another year to negotiate!

AMPL Optimization LLC is gradually arranging to sell solvers, provide marketing and maintenance

Marketing Strategy

Goals

Clearest and most powerful language

Tutorial but comprehensive textbook

Broad base of satisfied users and consultants

Automated benchmarking services

Moderate price

Advantages

Marketing and support can be decentralized

New AMPL company can be expanded gradually

Disadvantages

Not much known about the user base

Development of new features can be hard to coordinate

Market Position

Competition from . . .

Other modeling languages & systems (AIMMS, MPL, GAMS, LPL)

Proprietary systems of established solver vendors (ILOG/OPL Studio, Dash/MOSEL, LINGO)

Other software used as a modeling system (Excel/Frontline, MATLAB/Tomlab)

Outline

The basics: model, data, solution

A simple example

A set-intensive example

Complementarity problems

Stochastic programming

Combinatorial optimization

The NEOS Server

Ex 1: The McDonald's Diet Problem

Foods:

QP Quarter Pounder

FR Fries, small

MD McLean Deluxe

SM Sausage McMuffin

BM Big Mac

1M 1% Lowfat Milk

FF Filet-O-Fish

OJ Orange Juice

MC McGrilled Chicken

Nutrients:

Prot Protein

Iron Iron

VitA Vitamin A

Cals Calories

VitC Vitamin C

Carb Carbohydrates

Calc Calcium

McDonald's Diet Problem Data

	QP	MD	BM	FF	MC	FR	SM	1M	OJ	
Cost	1.8	2.2	1.8	1.4	2.3	0.8	1.3	0.6	0.7	Need:
Protein	28	24	25	14	31	3	15	9	1	55
Vitamin A	15	15	6	2	8	0	4	10	2	100
Vitamin C	6	10	2	0	15	15	0	4	120	100
Calcium	30	20	25	15	15	0	20	30	2	100
Iron	20	20	20	10	8	2	15	0	2	100
Calories	510	370	500	370	400	220	345	110	80	2000
Carbo	34	35	42	38	42	26	27	12	20	350

Formulation: Too General

Minimize cxSubject to Ax = b $x \ge 0$

Formulation: Too Specific

Algebraic Model

```
F, a set of foods
Given
                 \mathcal{N}, a set of nutrients
                 a_{ij} \ge 0, the units of nutrient i in one serving of food j,
and
                            for each i \in \mathcal{N} and j \in \mathcal{F}
                 b_i > 0, units of nutrient i required, for each i \in \mathcal{N}
                 c_i > 0, cost per serving of food j, for each j \in \mathcal{F}
Define
                 x_i \ge 0, servings of food j to be purchased, for each j \in \mathcal{F}
Minimize \sum_{j \in \mathcal{F}} c_j x_j
Subject to \sum_{i \in \mathcal{F}} a_{ij} x_i \geq b_i, for each i \in \mathcal{N}
```

Algebraic Model in AMPL

```
set NUTR; # nutrients
set FOOD; # foods

param amt {NUTR,FOOD} >= 0; # amount of nutrient in each food
param nutrLow {NUTR} >= 0; # lower bound on nutrients in diet
param cost {FOOD} >= 0; # cost of foods

var Buy {FOOD} >= 0 integer; # amounts of foods to be bought

minimize TotalCost: sum {j in FOOD} cost[j] * Buy[j];

subject to Need {i in NUTR}:
    sum {j in FOOD} amt[i,j] * Buy[j] >= nutrLow[i];
```

Data for the AMPL Model

```
param: FOOD:
                      cost :=
                      1.84
  "Ouarter Pounder"
                               "Fries, small"
                                                     .77
                                                    1.29
  "McLean Deluxe"
                      2.19
                               "Sausage McMuffin"
                      1.84
  "Big Mac"
                               "1% Lowfat Milk"
                                                     . 60
                                                     .72
  "Filet-O-Fish"
                      1.44
                               "Orange Juice"
  "McGrilled Chicken" 2.29;
param: NUTR: nutrLow :=
  Prot 55 VitA 100 VitC
                              100
  Calc 100 Iron 100 Cals 2000 Carb 350;
                       Cals
                             Carb
                                  Prot VitA VitC
                                                     Calc
param amt (tr):
                                                           Iron :=
                        510
                               34
                                     28
                                           15
                                                       30
                                                             20
   "Ouarter Pounder"
                                                  6
   "McLean Deluxe"
                        370
                               35
                                     24
                                           15
                                                 10
                                                       20
                                                             20
                                     25
                                                             20
   "Big Mac"
                        500
                               42
                                            6
                                                       25
                        370
                               38
                                     14
                                            2
                                                  0
                                                       15
                                                             10
   "Filet-O-Fish"
                               42
                                     31
                                            8
   "McGrilled Chicken"
                        400
                                                 15
                                                       15
                                                              8
                                                 15
   "Fries, small"
                        220
                               26
                                      3
                                            0
                                                        0
   "Sausage McMuffin"
                        345
                                     15
                                                  0
                                                       20
                                                             15
                               27
                                            4
   "1% Lowfat Milk"
                        110
                               12
                                      9
                                           10
                                                       30
                                                              0
                                                  4
   "Orange Juice"
                         80
                               20
                                      1
                                            2
                                                120
                                                        2
                                                              2 ;
```

Continuous-Variable Solution

```
ampl: model mcdiet1.mod;
ampl: data mcdiet1.dat;
ampl: solve;
MINOS 5.5: ignoring integrality of 9 variables
MINOS 5.5: optimal solution found.
7 iterations, objective 14.8557377
ampl: display Buy;
Buy [*] :=
   1% Lowfat Milk 3.42213
          Big Mac 0
     Filet-O-Fish 0
     Fries, small 6.14754
McGrilled Chicken 0
    McLean Deluxe 0
     Orange Juice 0
  Quarter Pounder 4.38525
  Sausage McMuffin
```

Integer-Variable Solution

```
ampl: option solver cplex;
ampl: solve;
CPLEX 7.0.0: optimal integer solution; objective 15.05
41 MIP simplex iterations
23 branch-and-bound nodes
ampl: display Buy;
Buy [*] :=
      1% Lowfat Milk
            Big Mac
        Filet-O-Fish
        Fries, small 5
   McGrilled Chicken
      McLean Deluxe
        Orange Juice 0
     Quarter Pounder
    Sausage McMuffin
```

Same for 63 Foods, 12 Nutrients

```
ampl: reset data;
ampl: data mcdiet2.dat;
ampl: option solver minos;
ampl: solve;
MINOS 5.5: ignoring integrality of 63 variables
MINOS 5.5: optimal solution found.
16 iterations, objective -1.786806582e-14
ampl: option omit zero rows 1;
ampl: display Buy;
Buy [*] :=
                  Bacon Bits
                               55
                               50
              Barbeque Sauce
                               50
           Hot Mustard Sauce
```

Improved Algebraic Model

```
set NUTR; # nutrients
set FOOD; # foods
param nutrLo {NUTR} >= 0;
param nutrHi {i in NUTR} >= nutrLo[i];
                              # requirements for nutrients
param foodCost {FOOD} >= 0; # costs of foods
param foodLim {FOOD} >= 0; # limits on food amounts
param amt {NUTR, FOOD} >= 0; # amounts of nutrient in foods
var Buy {FOOD} integer >= 0, <= foodLim[j];</pre>
                              # amounts of foods to be bought
minimize TotalCost: sum {j in FOOD} foodCost[j] * Buy[j];
subject to Need {i in NUTR}:
   nutrLo[i] <= sum {j in FOOD} amt[i,j] * Buy[j] <= nutrHi[i];</pre>
```

Improved Algebraic Model (cont'd)

```
set F SAL within FOOD; # Salads
set F SAL DRE within FOOD; # Salad dressings
set F SAL TOP within FOOD; # Salad toppings
param amt sal dre {F SAL} > 0;
param amt sal top {F SAL} > 0;
                   # Limits on dressings & toppings per serving
subject to SaladDressingLimit:
   sum {j in F SAL DRE} Buy[j]
      <= sum {j in F SAL} amt sal dre[j] * Buy[j];</pre>
subject to SaladToppingLimit:
   sum {j in F SAL TOP} Buy[j]
      <= sum {j in F SAL} amt sal top[j] * Buy[j];</pre>
set DRINKS within FOOD; # Drinks
param drinkNum > 0; # Number of drinks required in diet
subject to DrinkLimit:
   sum {j in DRINKS} Buy[j] = drinkNum;
```

Improved Algebraic Model (cont'd)

Improved Solution

```
ampl: model diet2.mod;
ampl: data diet2.dat;
ampl: option solver cplex;
ampl: solve;
CPLEX 9.0.0: optimal integer solution; objective 9.06
720 MIP simplex iterations
414 branch-and-bound nodes
ampl: option omit zero rows 1;
ampl: display Buy;
Buy [*] :=
                     Cheerios 1
                 Cheeseburger
            'Chocolate Shake'
     'Cinnamon Raisin Danish'
                     Croutons
             'English Muffin'
   'H-C Orange Drink (large)'
                    Hamburger
               'Orange Juice'
                 'Side Salad'
```

Ex 2: Airline Fleet Assignment

Airline Fleet Assignment (cont'd)

```
set SERV_CITIES {f in FLEETS} =
   union {(f,c1,c2,t1,t2) in FLEET_LEGS} {c1,c2};

   # for each fleet, the set of cities that it serves

set OP_TIMES {f in FLEETS, c in SERV_CITIES[f]} circular by TIMES =
   setof {(f,c,c2,t1,t2) in FLEET_LEGS} t1 union
   setof {(f,c1,c,t1,t2) in FLEET_LEGS} t2;

   # for each fleet and city served by that fleet,
   # the set of active arrival & departure times at that city,
   # with arrival time adjusted for the turn requirement

param leg_cost {FLEET_LEGS} >= 0;
param fleet_size {FLEETS} >= 0;
```

Airline Fleet Assignment (cont'd)

```
minimize Total_Cost;

node Gate {f in FLEETS, c in SERV_CITIES[f], OP_TIMES[f,c]};
    # for each fleet and city served by that fleet,
    # a node for each possible time

arc Fly {(f,c1,t1,c2,t2) in FLEET_LEGS} >= 0, <= 1,
    from Balance[f,c1,t1], to Balance[f,c2,t2],
    obj Total_Cost leg_cost[f,c1,t1,c2,t2];
    # arcs for fleet/flight assignments

arc Sit {f in FLEETS, c in SERV_CITIES[f], t in OP_TIMES[f,c]} >= 0,
    from Balance[f,c,t], to Balance[f,c,next(t)];
    # arcs for planes on the ground
```

Airline Fleet Assignment (cont'd)

```
subj to Service {(c1,t1,c2,t2) in LEGS}:
    sum {(f,c1,t1,c2,t2) in FLEET_LEGS} Fly[f,c1,t1,c2,t2] = 1;

    # each leg must be served by some fleet

subj to Capacity {f in FLEETS}:
    sum {(f,c1,t1,c2,t2) in FLEET_LEGS:
        ord(t2,TIMES) < ord(t1,TIMES)} Fly[f,c1,t1,c2,t2] +
        sum {c in SERV_CITIES[f]} Sit[f,c,last(OP_TIMES[f,c])] <= fleet_size[f];

    # number of planes used is the number in the air at the
    # last time (arriving "earlier" than they leave)
    # plus the number on the ground at the last time in each city</pre>
```

Airline Fleet Assignment Data

```
set FLEETS := 72S 73S L10 ;
set CITIES := ATL CVG DFW ;
set TIMES := 1200a 1210a 1220a 1230a 1240a 1250a
             100a 110a 120a 130a 140a 150a
             200a 210a 220a 230a 240a 250a
             300a 310a 320a 330a 340a 350a
set FLEET LEGS :=
        (72S,ATL,*,CVG,*) 630a 740a 830a 950a 1210p 130p
        (72S,ATL,*,CVG,*) 120p 240p 430p 600p
                                                640p 810p
        (72S,ATL,*,CVG,*) 850p 1010p 1150p 100a
        (73S,ATL,*,CVG,*) 630a 740a 830a 950a 1210p 130p
param leg cost :=
        [72S,ATL,*,CVG,*] 630a 740a 33 830a 950a 33
                                                      1210p
                                                             130p 33
        [72S,ATL,*,CVG,*] 120p 240p 33 430p 600p 33
                                                      640p 810p 33
        [72S,ATL,*,CVG,*] 850p 1010p 33 1150p 100a 33
        [73S,ATL,*,CVG,*] 630a 740a 30
                                        830a 950a 30
                                                      1210p 130p 30
param fleet size := 72S 6 73S 6 L10 2 ;
```

Airline Fleet Assignment Solution

```
ampl: model fleet.mod;
ampl: data fleet.dat;
ampl: option solver kestrel;
ampl: option kestrel options 'solver pcx';
ampl: option show stats 1;
ampl: solve;
327 variables, all linear
258 constraints; 790 nonzeros
         211 linear network constraints
        47 general linear constraints
1 linear objective; 116 nonzeros.
Job has been submitted to Kestrel
Kestrel/NEOS Job number
                           : 458598
Kestrel/NEOS Job password : lggrLQxk
Check the following URL for progress report :
     http://www-neos.mcs.anl.gov/neos/neos-cgi/
          check-status.cgi?job=458598&pass=lggrLQxk
In case of problems, e-mail:
     neos-comments@mcs.anl.gov
Intermediate Solver Output: ...
```

Airline Fleet Assignment Solution (cont'd)

```
Executing algorithm...
Before Scaling: ScaleFactor = 0.0
Cholesky factor will have density 0.11448
            5 TINY DIAGONALS; REPLACED WITH INF
 FOUND
Maximum Gondzio corrections = 0
                          (PriInf DualInf)
Iter
       Primal
                   Dual
                                               log(mu) dgts
                                                            Merit
     1.0426e+04
                  1.7577e+03 (3.1e+00 8.9e-02)
                                                 0.77
                                                             1.8e+01
  0
                                                         0
            3 TINY DIAGONALS; REPLACED WITH INF
 FOUND
                                                 0.30
                  1.8285e+03 (1.5e+00 1.5e-02)
                                                         0 8.7e+00
     6.0005e+03
            4 TINY DIAGONALS; REPLACED WITH INF
 FOUND
                                                -0.49
                  1.9639e+03 (1.3e-01 8.4e-04)
                                                             9.3e-01
     2.4219e+03
            3 TINY DIAGONALS; REPLACED WITH INF
 FOUND
                                                             2.8e-01
                  2.0302e+03 (4.2e-02 1.5e-04)
                                                -1.12
     2.1674e+03
            2 TINY DIAGONALS: REPLACED WITH INF
 FOUND
                  2.0393e+03 (4.5e-03 3.9e-05)
                                                -1.73
                                                             3.8e-02
     2.0584e+03
            4 TINY DIAGONALS; REPLACED WITH INF
 FOUND
                                                -3.66
                                                            4.6e-04
                  2.0439e+03 (5.5e-05 3.7e-07)
     2.0442e+03
            1 TINY DIAGONALS; REPLACED WITH INF
 FOUND
                                                             1.4e-09
     2.0440e+03 2.0440e+03 (1.7e-10 8.5e-13) -9.23
--termination with OPTIMAL status
Finished call
Optimal solution found.
```

Airline Fleet Assignment Solution (cont'd)

```
ampl: option display eps .00001, omit zero rows 1, display 1col 100000;
ampl: display {f in FLEETS}:
ampl? {(f,c1,t1,c2,t2) in FLEET LEGS} Fly[f,c1,t1,c2,t2];
Fly['72S',c1,t1,c2,t2] :=
CVG 110p DFW 220p
CVG 640p DFW 800p
CVG 850a DFW 1010a 1
DFW 1050a CVG 200p
DFW 440p CVG 800p 1
DFW 820p CVG 1140p 1
Fly['73S',c1,t1,c2,t2] :=
ATL 1010a DFW 1110a
ATL 1010p DFW 1120p
ATL 1140p DFW 1250a 1
ATL 1150p CVG 100a 1
ATL 120p CVG 240p 1
ATL 120p DFW 230p 1
ATL 1210p CVG 130p 1
ATL 430p CVG 600p 1
ATL 630a CVG 740a 1
```

Complementarity Problems

Definition

Collections of complementarity conditions:

Two inequalities must hold, at least one of them with equality

Applications

Equilibrium problems in economics and engineering

Optimality conditions for nonlinear programs, bi-level linear programs, bimatrix games, . . .

Classical Linear Complementarity

Economic equilibrium

... complementary slackness conditions for an equivalent linear program

Mixed Linear Complementarity

Economic equilibrium with bounded variables

```
set PROD; # products
set ACT; # activities

param cost {ACT} > 0; # cost per unit
param demand {PROD} >= 0; # units of demand

param io {PROD,ACT} >= 0; # units of product per unit of activity

param level_min {ACT} > 0; # min allowed level for each activity
param level_max {ACT} > 0; # max allowed level for each activity

var Price {i in PROD};
var Level {j in ACT};

subject to Pri_Compl {i in PROD}:
    Price[i] >= 0 complements
        sum {j in ACT} io[i,j] * Level[j] >= demand[i];

subject to Lev_Compl {j in ACT}:
    level_min[j] <= Level[j] <= level_max[j] complements
        cost[j] - sum {i in PROD} Price[i] * io[i,j];</pre>
```

... complementarity conditions for optimality of an equivalent bounded-variable linear program

Nonlinear Complementarity

Economic equilibrium with price-dependent demands

```
set PROD; # products
set ACT; # activities
param cost {ACT} > 0; # cost per unit
param demand {PROD} >= 0; # units of demand
param io {PROD,ACT} >= 0; # units of product per unit of activity
param demzero {PROD} > 0; # intercept and slope of the demand
param demrate {PROD} >= 0; # as a function of price
var Price {i in PROD};
var Level {j in ACT};
subject to Pri Compl {i in PROD}:
   Price[i] >= 0 complements
      sum {j in ACT} io[i,j] * Level[j]
         >= demzero[i] + demrate[i] * Price[i];
subject to Lev Compl {j in ACT}:
   Level[j] >= 0 complements
      sum {i in PROD} Price[i] * io[i,j] <= cost[j];</pre>
```

... not equivalent to a linear program

Operands to complements: always 2 inequalities

Two single inequalities

```
single-ineq1 complements single-ineq2

Both inequalities must hold, at least one at equality
```

One double inequality

```
double-ineq complements expr
expr complements double-ineq
The double-inequality must hold, and
if at lower limit then expr \ge 0,
if at upper limit then expr \le 0,
if between limits then expr = 0
```

One equality

```
equality complements expr
expr complements equality

The equality must hold (included for completeness)
```

Solvers

"Square" systems

```
# of variables =
    # of complementarity constraints +
    # of equality constraints
```

Transformation to a simpler canonical form required

MPECs

Mathematical programs with equilibrium constraints

No restriction on numbers of variables & constraints

Objective functions permitted

... solvers continuing to emerge

Stochastic Programs

Extensions within AMPL (proposed)

Allow random distributions for some problem data

Make distributions available to solvers

Extensions using AMPL (substantially implemented)

Add special expressions and conventions for stages & scenario trees

Compile to standard AMPL

Generate problem descriptions for various solvers

- > SAMPL
- > StAMPL

Random Entities

Distributions set in the model

```
param avail_mean >= 0;
param avail_var >= 0;
param avail {1..T} random
    := Normal (avail_mean, avail_var);
```

Distributions assigned as data

```
param mktbas {PROD} >= 0;
param grow_min {PROD} >= 0;
param grow_max {PROD} >= 0;
var Market {PROD,1..T} random;
.....
let {p in PROD} Market[p,1] := mktbas[p];
let {p in PROD, t in 2..T} Market[p,t] :=
   else Market[p,t-1] + Uniform (grow_min[p], grow_max[p]);
```

SP within AMPL

Parameters or Variables?

Modeled like "random" parameters

Specify distributions in place of fixed data values

Instantiate the same model with different distributions

Processed like "defined" variables

Save a symbolic definition rather than a specific sample

Record in expression tree passed to solver driver

Evaluate (sample) as directed by solver

SP within AMPL

New Expression Types

Discrete distributions

```
Discrete (1/3, 20, 1/3, 50, 1/3, 175)
Discrete ( {s in SCEN} (prob[s], demand[s]) )
```

Stochastic objectives

Default: expected value of objective

Explicit: using functions Expected_Value and Variance

SP within AMPL

Further Concerns

Modeling

Recourse variables indicated by user-defined .stage suffix

Chance constraints defined by new function **Probability** (logical-expression)

Processing

For **Discrete**, **Uniform**, and other (half-) bounded distributions, AMPL's presolve phase may eliminate constraints.

Jacobian entries indicate which constraints involve which random entities

AMPL SP Extensions

SAMPL

Patrick Valente, Gautam Mitra, Mustapha Sadki

Brunel University, Uxbridge, Middlesex, UK

➤ P. Valente, G. Mitra, M. Sadki and R. Fourer, "Extending Algebraic Modelling Languages for Stochastic Programming" (2004).

Stages

Two-stage recourse model

Multi-stage recourse model

```
suffix stage IN;
var x {Prod, Fact, t in Time, Scen} >=0, suffix stage t;
var y {Prod, Fact, t in Time, Scen} >=0, suffix stage t;
......
```

Scenarios

Scenario set

```
param NS > 1;
scenarioset Sc = 1..NS;
```

Scenario probabilities

```
probability param Pr {Sc} = 1 / card(Sc); # uniform case
```

Scenario Trees: General Form

Bundle form

```
tree FourStageExample :=
bundles {
    (1,1),
    (2,1),(2,4),(2,6),
    (3,1),(3,4),(3,6),(3,7),
    (4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(4,7)(4,8),(4,9)
};
```


Treelist form (if scenario paths never cross)

```
tree FourStageEXample := tlist {1,4,4,2,4,2,3,4,4};
```

Scenario Trees: Standard Forms

Uniform branching at each stage

```
multibranch (n1,n2,..., nST);
```

Uniform branching at all stages

```
nway (n);
```

Binary at all stages

binary;

Two-stage

twostage;

Random Parameters

Declaration

```
random param d {Time,Scen} >=0; # demand
```

Compact data

```
random param dem :=

1 1 10.0
2 1 5.0
2 3 15.0
3 1 2.5
3 2 7.5
3 3 7.5
3 4 22.5;
```

Expanded data

```
random param dem (tr):=

1 2 3

1 10 5 2.5

2 10 5 7.5

3 10 15 7.5

4 10 15 22.5;
```

Chance Constraints

Random parameter in constraint

```
random param d {Prod,Deal,Time,Scen} >= 0 # demand
subj to satisfy_demand {j in Prod, k in Deal, t in Time, s in Scen}:
   sum {i in Fact} z[j,i,k,t,s] = d[j,k,t,s];
```

Conversion to a chance constraint

```
param beta := 0.9;
chance {j in Prod, k in Deal, t in Time,s in Scen}
satisfy_demand[j,k,t,s] >= beta;
```

Further Issues

Communication with solvers

Need a standard form for communicating stochastic programming instances to solvers

Existing "SMPS" form is outdated and inadequate (and not entirely standard)

Communication with scenario generators

Independent generators:

consistency with model must be ensured somehow

Integrated generator:

modeling language calls generator as needed

Integration in a modeling environment

SPInE: scenario generation, modeling, solving, results analysis

AMPL SP Extensions

StAMPL

Leo Lopes

PhD, Northwestern University; Assistant Professor, University of Arizona

➤ R. Fourer and L. Lopes, "StAMPL: A Filtration-Oriented Modeling Tool for Stochastic Programming" (2003).

Main Features

Non-technical

Fewer indexes

Modular

Fewer conditions

Technical

No non-anticipativity constraints

Recourse and technology matrices are apparent at first inspection

```
definestage 1;
set INSTR;
var Buy{INSTR} >= 0;
param initial_wealth;
subject to InvestAll:
     sum{i in INSTR} Buy[i] = initial_wealth;
*************************************
definestage 2..(stages()-1);
set INSTR:
var Buy{INSTR} >= 0;
param return{INSTR};
subject to ReinvestAll:
     sum{i in INSTR} parent().Buy[i]*return[i] =
     sum{i in INSTR} Buy[i];
************************************
definestage stages();
set INSTR;
var Shortage >= 0;
var Overage >= 0;
param shortage_penalty;
param overage_reward;
     check: shortage_penalty > overage_reward;
param return{INSTR};
param goal;
maximize Final_Wealth:
     overage_reward*Overage -
shortage_penalty*Shortage;
subject to ReinvestAll:
     sum{i in INSTR} parent().Buy[i]*return[i]
    + Shortage - Overage = goal;
```

Syntax: Stage Definition

definestage definestage 1; set INSTR: statement $var Buy{INSTR} >= 0;$ param initial wealth: subject to InvestAll: Similar to the AMPL sum{i in INSTR} Buy[i] = initial_wealth; problem statement <u>...................................</u> definestage 2..(stages()-1); set INSTR: $var Buy{INSTR} >= 0;$ param return{INSTR}; subject to ReinvestAll: sum{i in INSTR} parent().Buy[i]*return[i] = sum{i in INSTR} Buy[i]; ************************************* definestage stages(); set INSTR; var Shortage >= 0; var Overage >= 0; param shortage_penalty; param overage_reward; check: shortage_penalty > overage_reward; param return{INSTR}; param qoal; maximize Final_Wealth: overage_reward*Overage shortage_penalty*Shortage; subject to ReinvestAll: sum{i in INSTR} parent().Buy[i]*return[i] + Shortage - Overage = goal;

Syntax: Connecting Problems

parent() function

Returns a model object

All components of the parent model can be accessed using the '.' (dot) operator

```
definestage 1;
set INSTR:
var Buy{INSTR} >= 0;
param initial_wealth;
subject to InvestAll:
     sum{i in INSTR} Buy[i] = initial_wealth;
definestage 2..(stages()-1);
set INSTR:
var Buy{INSTR} >= 0;
param return{INSTR};
subject to ReinvestAll:
     sum{i in INSTR} parent().Buy[i]*return[i] =
     sum{i in INSTR} Buy[i];
************************************
definestage stages();
set INSTR:
var Shortage >= 0;
var Overage >= 0;
param shortage_penalty;
param overage_reward;
     check: shortage_penalty > overage_reward;
param return{INSTR}:
param goal;
maximize Final_Wealth:
     overage_reward*Overage
shortage_penalty*Shortage;
subject to ReinvestAll:
     sum{i in INSTR} parent().Buy[i]*return[i]
     + Shortage - Overage = goal;
```

Syntax: Stage Information

stage() and stages() functions

Return the number of the current stage and the total stages

Uses:

- ➤ Defining stages
- ➤ Discounting
- > Multi-period
- > constraints

```
definestage 1;
param initial_wealth;
subject to InvestAll:
     sum{i in INSTR} Buy[i] = initial_wealth;
***************<del>****</del>*************
definestage 2...(stages()-1);
set INSTR:
var Buy{INSTR} >= 0;
param return{INSTR};
subject to ReinvestAll:
     sum{i in INSTR} parent().Buy[i]*return[i] =
     sum{i in INSTR} Buy[i];
definestage stages():
set INSTR;
var Shortage >= 0;
var Overage >= 0;
param shortage_penalty;
param overage_reward:
     check: shortage_penalty > overage_reward;
param return{INSTR};
param goal;
maximize Final_Wealth:
     overage_reward*Overage -
shortage_penalty*Shortage;
subject to ReinvestAll:
     sum{i in INSTR} parent().Buy[i]*return[i]
     + Shortage - Overage = goal;
```

Scenario Trees

Issues

Trees don't fit well with AML paradigms
Generating scenario trees is very specialized
Usually involves developing special routines
Often demands specialized software

Conclusion

Write a general-purpose language library (C++)

> The library generates an intermediary file

Export the library to each necessary environment using

- > SWIG
- > XML-RPC, .NET
- > System-specific libraries

How It Works

Combinatorial Optimization

Formulations

More natural for modelers than integer programs

Independent of solvers

Compatible with existing modeling languages

Solution methods

Theoretically optimal

Based on tree search (like branch & bound)

Sensitive to details of search strategy

Example: Job Sequencing with Setups

Given

A set of jobs, with production times, due times and earliness penalties

One machine that processes one job at a time

Setup costs and times between jobs

Precedence relations between certain jobs

Choose

A sequence for the jobs

Minimizing

Setup costs plus earliness penalties

C. Jordan & A. Drexl, A Comparison of Constraint and Mixed Integer Programming Solvers for Batch Sequencing with Sequence Dependent Setups.

ORSA Journal on Computing 7 (1995) 160–165.

Example: Variables and Costs

Either way

```
ComplTime[j] is the completion time of job j
Earliness penalty is the sum over jobs j of
   duePen[j] * (dueTime[j] - ComplTime[j])
```

Integer programming formulation

```
Seq[i,j] = 1 iff i immediately precedes j
Setup cost is the sum over job pairs (i,j) of
setupCost[i,j] * Seq[i,j]
```

More natural formulation

```
JobForSlot[k] is the job in the kth slot in sequence
Setup cost is the sum over slots k of
setupCost[JobForSlot[k], JobForSlot[k+1]]
```

Example: Production Constraints

Integer programming formulation

```
For each job i, ComplTime[i] ≤ dueTime[i]
For each job pair (i,j),
    ComplTime[i] + setupTime[i,j] + procTime[j] ≤
    ComplTime[j] + BIG * (1 - Seq[i,j])
```

More natural formulation

Example: Sequencing Constraints

Integer programming formulation

```
For each job i,
    sum {j in JOBS} Seq[i,j] = 1
For each job i,
    sum {j in JOBS} Seq[j,i] = 1
```

More natural formulation

```
all_different {k in SLOTS} JobForSlot[k]
```

Representing "Range" Constraints

General format

 $lower-bound \leq linear-expr + nonlinear-expr \leq upper-bound$

Arrays of *lower-bound* and *upper-bound* values

Coefficient lists for *linear-expr*

Expression tree for *nonlinear-expr*

Expression tree nodes

Variables, constants

Binary, unary operators

Iterated summation, min, max

Piecewise-linear terms

If-then-else terms

... single array of variables

"Walking the Tree"

Example: AMPL interface to ILOG Concert

Definition of variables

```
IloNumVarArray Var(env, n_var);
for (j = 0; j < n_var - n_var_int; j++)
    Var[j] = IloNumVar(env, loVarBnd[j], upVarBnd[j], ILOFLOAT);
for (j = n_var - n_var_int; j < n_var; j++)
    Var[j] = IloNumVar(env, loVarBnd[j], upVarBnd[j], ILOINT);</pre>
```

Top-level processing of constraints

```
IloRangeArray Con(env, n_con);
for (i = 0; i < n_con; i++) {
    IloExpr conExpr(env);
    if (i < nlc)
        conExpr += build_expr (con_de[i].e);
    for (cg = Cgrad[i]; cg; cg = cg->next)
        conExpr += (cg -> coef) * Var[cg -> varno];
    Con[i] = (loConBnd[i] <= conExpr <= upConBnd[i]);
}</pre>
```

Tree-walk function for expressions

```
IloExpr build_expr (expr *e)
{
    expr **ep;
    IloInt opnum;
    IloExpr partSum;
    opnum = (int) e->op;
    switch(opnum) {
        case PLUS_opno: ...
        case MINUS_opno: ...
        ......
}
```

Tree-walk cases for expression nodes

```
switch(opnum) {
case PLUS opno:
    return build expr (e->L.e) + build expr (e->R.e);
 case SUMLIST opno:
    partSum = IloExpr(env);
    for (ep = e-\lambda L.ep; ep < e-\lambda R.ep; *ep++)
       partSum += build expr (*ep);
    return partSum;
 case LOG opno:
    return IloLog (build expr (e->L.e));
 case CONST opno:
    return IloExpr (env, ((expr n*)e)->v);
case VAR opno:
    return Var[e->a];
```

Logical Constraints

Simple forms

constraint and constraint constraint or constraint not constraint

$$(X[1] = 0 \text{ and } X[2] = 0) \text{ or } X[1] + X[2] >= 100$$

Representation

Expression tree for entire constraint

Constraint nodes whose children are constraint nodes

Constraint nodes whose children are expression nodes

Tree-walk function for constraints

```
IloConstraint build_constr (expr *e)
{
    expr **ep;
    IloInt opnum;
    opnum = (int) e->op;
    switch(opnum) {
        ......
    }
}
```

Tree-walk cases for constraint nodes

```
switch(opnum) {
  case OR_opno:
    return build_constr (e->L.e) || build_constr (e->R.e);
  case AND_opno:
    return build_constr (e->L.e) && build_constr (e->R.e);
  case GE_opno:
    return build_expr (e->L.e) >= build_expr (e->R.e);
  case EQ_opno:
    return build_expr (e->L.e) == build_expr (e->R.e);
  ......
}
```

Further Logical Constraint Cases

Constraint types

Counting expressions and constraints

Structure (global) constraints

Variables in subscripts

Solver inputs

C++ types and operators (ILOG Concert)

Unindexed algebraic input format (BARON)

Codelist of 4-tuples (GlobSol)

Compact, flexible NOP format (GLOPT)

AMPL Studio / Optirisk Systems Ltd.

AMPL Studio (continued)

AMPL Studio (continued)

AMPL Studio / Optirisk Systems Ltd.

Windows IDE for AMPL

Manage projects, edit files Set solver options and solve View results Run command scripts

COM objects for AMPL

Embed AMPL in applications

CONOPT / ARKI Consulting & Development A/S

Local optimization of smooth nonlinear problems

Large and sparse problems Highly nonlinear functions

Multi-method architecture

Extended generalized reduced gradient method

Special phase 0

Linear mode iterations

Sequential linear programming

Sequential quadratic programming

... can take advantage of 2nd derivatives

KNITRO / Ziena Optimization Inc.

For all smooth nonlinear optimization problems

Interior-point / barrier

- ➤ KNITRO/InteriorCG (handles large/dense Hessians)
- KNITRO/InteriorDirect (handles ill-conditioned problems)

Active-set SLQP (new October 2004!)

KNITRO/Active (good for warm starts)

Trust-region approach
Supported by global convergence theory

Numerous options

1st or 2nd derivatives, exact or approximated Feasibility of iterates

KNITRO Interfaces

C/C++/Fortran

Easily integrated within existing applications via callable library

AMPL (or GAMS)

Flexible and powerful syntax
Derivatives computed automatically
Focus on modeling and analysis of results
Ideal for prototyping

MATLAB (through TOMLAB)

Excel (through Frontline Systems solver)

KNITRO Derivative Options

First derivative options

User or modeling language provides exact derivatives KNITRO computes finite difference derivatives (forward or centered)

Second derivative options

User or modeling language provides exact derivatives

User or modeling language

provides exact Hessian-vector products

KNITRO computes Hessian-vector products

Dense quasi-Newton (BFGS or SR1)

Limited-memory BFGS

KNITRO Feasible Option

Concepts

By default constraints may be violated during the optimization process

Feasible option enforces feasibility with respect to inequalities, given initial point satisfying inequalities

Advantages

Constraints may be undefined outside feasible region Allows early termination with feasible solution

AMPL Solver Support

Full list at www.ampl.com/solvers.html

Linear programming: MINOS, PCx

Linear & linear integer programming: CPLEX, FortMP, lp_solve, MINTO, MOSEK, SOPT, XA, Xpress-MP

Quadratic & convex programming: LOQO, OOQP

Quadratic & quadratic integer programming: CPLEX, FortMP, MOSEK, OOQP, Xpress-MP

Differentiable nonlinear programming: CONOPT, DONLP2, IPOPT, KNITRO, LOQO, MINOS, SNOPT

Nondifferentiable and global nonlinear programming: ACRS, CONDOR, MINLP

Complementarity: PATH

Problem analysis: MProbe

NEOS www-neos.mcs.anl.gov/neos/

A general-purpose optimization server

- > Over 45 solvers in all
 - * Linear, linear network, linear integer
 - * Nonlinear, nonlinear integer, nondifferentiable & global
 - * Stochastic, semidefinite, semi-infinite, complementarity
- Commercial as well as experimental solvers
- > Central scheduler with distributed solver sites

A research project

- > Currently free of charge
- ➤ Supported through the Optimization Technology Center of Northwestern University & Argonne National Laboratory

... 4402 submissions last week ... as many as 11906 submissions in a week

AMPL Solver Support . . . via NEOS

Full list at www-neos.mcs.anl.gov/neos/server-solver-types.html

Linear programming: MINOS, PCx

Linear & linear integer programming: FortMP, MINTO, MOSEK

Quadratic & convex programming: LOQO, OOQP

Quadratic & quadratic integer programming: FortMP, OOQP

Differentiable nonlinear programming:

FILTER, IPOPT, KNITRO, LANCELOT, LOQO, MINOS, SNOPT

Nondifferentiable and global nonlinear programming:

ACRS, CONDOR, MINLP, MLOCPSOA

Complementarity: PATH

NEOS

Design

Flexible architecture

Central controller and scheduler machine
Distributed solver sites

Numerous formats

Low-level formats: MPS, SIF, SDPA

Programming languages: C/ADOL-C, Fortran/ADIFOR

High-level modeling languages: AMPL, GAMS

Varied submission options

E-mail – Web forms – Direct function call

TCP/IP socket-based submission tool: Java or tcl/tk

... more in next week's presentation