Solving Equations

Suppose

 $f: \mathbb{R}^n \to \mathbb{R}^n$

Consider

f(x) = 0

Typical algorithms

Newtons' method: fast, but can diverge may try to evaluate f(x) where it does not exist Homotopy method: reliable, but slow

Alternative: Reformulate as an optimization problem

 $Min_x 1$

s.t. f(x) = 0

Advantages

Variety of solvers

Can use KNITRO, CONOPT, Filter, SNOPT, NPSOL, etc

4 eqns.nb

Can impose constraints

Impose domain conditions

Suppose f(x) is not defined for $x \le 0$. Then solve

 $Min_x = 1$

s.t. f(x) = 0 $x \ge \epsilon$

for some small $\epsilon > 0$. Can't use x=>0 because then solver may consider some $x_i = 0$.

Use auxiliary information about solution

Suppose you know that the solution to f(x)=0 satisfies a < x < b (a and b are vectors). We can use that information in

 $Min_x = 1$

s.t. f(x) = 0 $a \le x \le b$

More generally, if we know that $a \le g(x) \le b$, for some a, b, and g, then solve

 $Min_x = 1$

s.t. f(x) = 0

 $a \leq g(x) \leq b$

6 eqns.nb

• Stabilize algorithm with *L*₂ penalty

Suppose that the Jacobian of f is nearly singular near the solution. Then, the following quadratic penalty formulation stabilizes the algorithm:

 $Min_x ||x||_2^2$

s.t. f(x) = 0

where P is some penalty parameter, preferably small.

• Stabilize algorithm with *L*₁ penalty

An L_1 penalty might also help

 $Min_x ||x||_1$

s.t. f(x) = 0

where P is some penalty parameter, preferably small. (More later about how to do this.)

Stabilize via relaxation

We can instead try to find something that nearly solves the equations:

 $Min_x ||\lambda||_1$

s.t.
$$-\lambda_i \leq f(x) \leq \lambda_i$$

 $\lambda_i \geq 0$

This will give you something instead of just saying "Can't find a solution"

• Find multiple solutions

If there are many solutions, one could resolve the following problem several times for different π parameters:

 $Min_x \pi . x$

s.t. f(x) = 0

This will go after solutions on the boundary of the set of solutions. The following will go after the solution closest to some chosen x_0 :

 $Min_x ||x_0 - x||_2^2$

s.t. f(x) = 0