Automating the Implicit Function Theorem
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Introduction
Economics revolves around solving equilibrium models

Common features of equilibrium models

(1) They are often solutions to systems of equations of analytic functions

(2) Different models often have common structure in terms of functional forms, and differ only in terms of parameter values
(3) There are usually a few special (often degenerate) cases where we can solve for the solution explicitly

(4) The implicit function theorem tells us that there is an analytic map between exogenous parameters and the equilibrium
outcome near these cases.

Our objective today:

(1) Display the structure of basic economic models, using simple examples

(2) Show how one can use AD and IFT to compute equilibria for pieces of the parameter space

(3) Argue that for many purposes this approach may dominate numerical methods for solving specific instances
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A Specific Example - Easy one
Let's examine a very simple example. Suppose that p is the price of a good and the demand function for that good is

bmd[p_] = p%;

Suppose that producers pay a tax of 7 p for each unit it sells where 7 is the tax rate (like a VAT) and that supply is a function of
the after-tax price received by the producer

supply[p_, t_] = (p (1-1))"?;

The excess demand for price p and tax rate 7 is
ExDmd[p_, t_] = Dmd[p] - Supply[p, t]
1
—-yPp(1l-17)

p3

The true solution is
Ptrue[z_] = (1-1) -1,
Examination of the excess demand function shows that price is 1 when the tax is 7=0. Therefore

P[0] = 1;
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Write the excess demand as a function of the tax 7 and the equilibrium price P[7]

ExDmdTax[t_] = ExDmd[P[t], t]

PLe)? -\ (1-1)P[t]
T

ExDmdTax[7]=0 for all tax rates 7.

The task: Use the parameterized equilibrium equation, the P[0]=1 condition, and the IFT to trace out the equilibrium manifold,
P[7], for 7 close to zero.

Differentiate ExXDmdTax[r] at 7=0 to compute P'[0]
ExDmdTax ' [0] // Expand
1 7P [0]

2 2

solpl = Solve[% == 0, P'[0]][[1]]
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We do the same to get P"[0] and P"'[0].
Solve [ExDmdTax ' '[0] == 0, P''[0]]1[[1]]

1
{P”[O] > — (1+2P[0] +49 P’[O}Z)}
14

solp2 =% //. solpl

8

{P”[O] N E}

Solve[ExDmdTax '''[0] ==0, P'''[0]][[1]];
solp3 =% //. solpl //. solp2

120
{P“') 0] > E}
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The degree 3 Taylor series of P[7] at 7=0 is

Series[P[t], {t, 0, 3}]

% /. solp3
% /. solp2
% /. solpl
% // Normal
1 1
1+P[0] T+ —P'[0] 2+ —P3[0]3+0[r]*
2 6
1 20 ¢3
1+P[0] T+ —P'[0] T2+ +o[t]?
2 343
4t 2073
1+P[0] T+ + +0[z]?
49 343




= SolveAlways Command

The degree 3 Taylor series of ExXDmdTax[7] at =0 is
ser = Series[ExDmdTax[t], {t, 0, 3}]

1 7P[0] 1 )
— - ——— | t+— (1+2P[0] +49P[0]"-14P"[0]) T’ +
2 2 8

1
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— (3+3P7[0] ~3P'[0]%-483P [0]°+6P"[0] +294P [0] P”[0] -28P(3) [0]) *+o[zcl*

48
We will use the SolveAlways command to solve out for the derivatives of P at 7=0.
sol = SolveAlways[ser == 0, t][[1]]

, 120 8 1
{P< )[0] > ——, P"[0] > —, P'[0] - 7}
343 49 7

We now substitute this into the the Taylor series expansion for P[7] at 7=0.
Series[P[t], {t, O, 3}] /. sol

T 4t® 20713
1+ —+ +

7 49 343

4

+0[tT

The degree 3 Taylor series of P[7] at 7=0 is
solPp[t_] = Series[P[t], {t, O, 3}] /. sol // Normal

t 4t? 2073
1+ —+ +

7 49 343

|7
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= Quality check
Question: How good is our Taylor series approximation.

Answer 1: Since we know the solution, display the relative error of the approximation. The error is less than 0.1 per cent for tax
rates below 0.30; not bad. Higher order series will do better.

Plot[Log[10, 1 - solPp[t] / Ptrue[t]], {t, 0, 1}]

L 02 04 0.6 0.8 0

But we generally do not know the answer!
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Answer 2: Check the residual. We can always do that.

Residual[t_] = ExDmdTax[t] /. P » solPp

1 t 41?2 2073
- (1-7) |1+ —+ +
T 42 20 3 3 7 49 343
1+?+ PEREYY

Plot[Log[10, Residual[t] / Dmd[solPp[t]]], {t, O, 1}]

02 04 0.6 0.8 0

The residual, normalized relative to demand, is less than 0.1 percent for tax rates below 0.30.

In practice, we check residual to determine the order of the Taylor series necessary for a good solution.

K]
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An Abstract Example in General Style

In general, we will want to compute the approximation for many different parameter sets.
Therefore, we take the following approach.

Consider a constant elasticity specification, a generalization of our simple example

Dmd[p_] = Ap™Y; Supply[p_, t_] = B(p(1-1))";
ExDmd[p_, t_] = Dmd[p] - Supply[p, t];
ExDmdTax[t_] = ExDmd[P[t], t]

AP[t]Y-B((l-1)P[T])"

We know the solution at 7=0:

1

P[0] = (A/B)™;
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= Compute Derivatives

We first compute derivatives of ExXDmdTax|[t] at t=0 in symbolic form

ExDmdTax ' [0]
% // PowerExpand
% // Simplify

1y -1-v 1 -1l+n 1

ExDmdTax ''[0] // PowerExpand // Simplify

24y n 24n4v

A v B [-ATB (-1+n)n-

Lan+y 1

sAa BT (2nP[0] -

2

AB1+"7‘: <,r]+r]2—v (1+v)) P,[O}
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ExDmdTax '''[0] // PowerExpand // Simplify

341

A B

“B v (L+v) (2+v) P'[0]%+

1 1 3 1 1 1 1
(-2+7n) (-1+n)n A*e“f—Br‘/P’[O]) -3A" B (-1+n)n AT‘/—BT‘/P’[O]) (2P'[0] -P”[0]) +

1 2 2 1 2 1

3A7 B™ v (L+v) P'[0] P[0] +An B n (3P7[0] - [0]) -A™ B vP[0]

Collect and store these expressions.

derivs = {ExDmdTax '[0], ExDmdTax''[0], ExDmdTax'''[0]} // PowerExpand // Simplify;



Econ and IFT Static CGE China.nb |13

= Using Series to get derivatives

Sometimes, the following is a faster way to get these derivatives

ser = Series[ExDmdTax[t], {t, O, 3}] // Normal;

ser = ser // PowerExpand // Simplify

14n+v 1

Y n-AB" (n+v) P[0]] -

1+v v

A B T [A

1 v _n fasiad N
“ AT B g2 (A B (-1+n) n+AB T (-nen?-v (L+v)) P'[0]2-
2
L g b 1, b
A B v (2nP[0] -P’[0]) +A v B v \/P"[O]j +
L * 2 L 2
— A B [—BW v (Bw (2+43v+v?) P'[0]°-3A7 B (L+v) P'[0] P“[0] +A™ PP [0]]+
6
1 2

n (AnT (2-3n+n?) -8B (2-3n+n?) P'[01°+3A7 B (-1+n) P'[0] (nP'[0] -P"[0]) -

A B (3n°P'[0] -3 (P'[0] +P"[0]) +P¥ [01))]
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coeffs = CoefficientList[ser, t]

1+v v 1+n+v 1
{o,a B [AT n-AB (n+v) P’[O]J,

2

A B A B(-1+n) n+AB (-n+n®-v (1+v)) P[0]°-

1 2+v n ( 2+4n+v 2
2

Len+y 1 1 1enev

A7 B (20 P (0] -P7[0]) +A" T B

vp"[O]],

2 1 1 2

B (2+3v+v2)P[0]°-3A" B (1+v)P'[0]P"[0] +A PP [0]]+

— A7 By |-Biv v

1 -3+n v 1
2

3 3 1 2
n (AnT (2-3n+n?) -8B (2-3n+n?) P'[01°+3A7 B (-1+n) P'[0] (nP'[0] -P"[0]) -

A" B (372 (0] -37 (P'[0] +P7[0]) +P<3>[01))]}
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derivs = Rest[coeffs]

1ev v Lansv 1
{A"W B [AT n-AB™ (n+v) P’[O}],

1 v 2+n+y +i
- — A B (A " B (-1+n)n+AB (-n+n®-v (1+v)) P[0]°-

2

1en+v 1+L 1+L 1en+v
A7 B v (2nP[0] -P”[0]) +A 7 B vP”[O]],

1 2o i 2 L 2
— A B [—Bw v B (2+3v+v?) P'[0]°-3A" B (1+v) P [0] P"[0] +A PP [0] ]+
6

1 2

n (AnT (2-3n+n?) -8B (2-3n+n?) P'[01°+3A7 B (-1+n) P'[0] (nP'[0] -P"[0]) -

A" B (372 (0] -37 (P'[0] +P7[0]) +P<3>[01))]}



16 | Econ and IFT Static CGE China.nb

= Power Series Solution
We want to solve for the first three derivatives of P[7] at 7=0. This is accomplished by using the derivatives for ExDmdTax at
7=0 and solving out for P'[0], P"[0], and P"'[0].
Pderivs = Solve[derivs == 0, {P'[0], P''[0], P"'"'[0]}];
% // Simplify
A B (607 +Tnv+2v?) A B 7 (2N +V) AT B
{21015 , P7[0] > P P0] > ———}}

(n+v)3 (n+v)? n+v

Create the degree three power series for P[7] at 7=0 using the solutions in Pderivs.
Series[P[t], {t, 0, 3}] /. Pderivs[[1]];
% // Simplify

1 1 1 1 1 1

: ol R 2 B 2 2) ;3
[A)M Ay B oyt A B (2n+V) T Anv B 71 n<6n +777v+2v)t
+

4

+ + +0([t]

n+v 2 (n+v)? 6 (n+v)3

This is an asymptotically valid third-order solution to computing the equilibrium as we change the tax 7.
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= Numerical Applications

It is normally impractical to compute the abstract form of the derivatives of P. Of course, these closed-form solutions are not the
objective. We generally will want to compute the Taylor series for P[r] for some specific parameter values. The issue is when do
we make those substitutions. We now follow the following strategy: compute the abstract derivatives of the implicit expression

that defines P, then replace the parameters with numerical values, and solve for the derivatives of P.

Repeat the construction of the derivatives:

ExDmdTax ' [0]

derivs = {ExDmdTax '[0], ExDmdTax''[0], ExDmdTax'''[0]} // PowerExpand // Simplify

1+ v 1en+y 1 24v n 2en+y
{A’Tv B [AT n-AB™ (n+v) P’[Oj], A B (—A?B (-1+n)n-

2 Len+v 1
AB 7 (-nen?-v (1+v)) P'[0]%+A 7 BT (21 P/ [0] -P7[0]) AT B vEUI0] ],

3

1 1 3
B v (L+v) (2+v) P [0]%+ (=2+m) (-1+1) 7 (AW—BWP’[O}] -

“341 v

A B

3Am B (-1+7)n (ATV—B”TP’[O]] (2P'[0] -P”[0]) +

1 2 2 1 2 1

3A7 B v (L+v) P'[0] P"[0] +A By (3P7[0] -PP[0]) -A™ B v [0]}}
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Then, when one wants to compute specific cases, evaluate these expressions with parameter values. This is not as easy as it
sounds due to round-off error.

vals = Thread[{v, n, A, B} » {2., 3., 1., 5.}];
In general, we need to solve the equations in a sequential linear manner.
The first derivative expression gives us a linear equation for P'[0], which we then use to solve for P'[0].
eql = derivs[[1]] /. vals // Expand
5.71096 - 13.1326 P’ [0]
soll = Solve[eql == 0, P'[0]][[1]]
{P'[0] - 0.434868}
The second derivative implies
eq2 = derivs[[2]] /. vals // Expand
~11.4219+47.2775P[0] +0. P'[0]%-13.1326 P [0]
Solving for P"[0] gives us
sol2 = Solve[eq2 == 0, P''[0]]1[[1]]
{P"[0] 5 -0.0761462 (11.4219 -47.2775P'[0] + 0. P’[O}Z)}
which contains P'[0]. We now substitute the solution for P'[0] to complete the solution for P"[0]
sol2 = sol2 /. soll

{P"[0] - 0.695788}
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The third derivative is solved by the following sequence:
eq3 = derivs[[3]] /. vals // Expand

11.4219-141.833 P [0] +195.691 P [0]%-150.P [0]° +
70.9163 P [0] - 1.35263 x10° 2 P’ [0] P"[0] - 13.1326 P [0]

sol3 = Solve[eq3 ==0, P'''[0]]1[[1]]

{P)[0] > -0.0761462 (-11.4219 +141.833P'[0] -
195.691 P [0]° +150. P'[0]° - 70.9163 P [0] + 1.35263 x 10 ** P'[0] P"[0] ) }

sol3 = sol3 /. sol2 /. soll

{P¥[0] > 1.80905}
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Multiple Consumers and Firms

We represent demand and supply implicitly through optimality conditions implied by the utility and production functions:
Ui[di, p]=0 iff di is agent i's demand at price p.
Fi[qi, p(1-t)]=0 iff qi is firm i's output when after-tax price is p(1-t)

eqns = {Ul[dl, p], U2[d2, p], U3[d3, p],

Fl[ql, p(1-1t)], F2[92, p (1-17)], (91 +q2) - (d1+d2+d3)} /. p~> P[t];
eqns = % /. dl » D1[t] /. d2 » D2[t] /. d3 »D3[t] /. ql »Q1[t] /. q2 - Q2[z];

eqns // TableForm

Ul[Dl[t], P[t]]

U2[D2[t], P[t]]

U3[D3[t], P[t]]

F1[Ql[z], (1-1t) P[t]]

F2[Q2([z], (1-1t) P[T]]

-D1[t] -D2[t] -D3[t] +Q1[t] +Q2[T]



Initialize the solutions at t=0.
P[0] = pO;
Q01[0] = ql0; 02[0] = q20; D1[0] = d10; D2[0] = d20; D3[0] = d30;
Ul[d1l0, pO] = 0; U2[d20, pO] = 0; U3[d30, p0] = 0;
Fl1[ql0, pO] = 0; F2[q20, pO] = 0;

eqns0 = (D[eqns, t]) /. T > 0;
% // MatrixForm

p'[0] U1V [d10, p0] +D1'[0] UL® [d10, pO]
P'[0] U221 [d20, p0] +D2'[0] U2 [d20, pO]
P'[0] U3(°Y) [d30, p0] + D3’ [0] U3*% [d30, p0]
(-p0 + P [0]) F1(° Y [q10, p0] +Q1"[0] F11*¥ [gq10, pO]
(-p0 + P [0]) F2(% Y [q20, p0] + Q2 [0] F21*¥ [g20, pO]
-D1'[0] -D2/[0] -D3'[0] +Q1'[0] +Q2'[0]

vars = {P'[0], D1'[0], D2'[0O], D3'[0], ©Q1'[0], ©2'[0]};
Let's use a substitution that reduces size of expressions.

sbs = Derivative[jj_ _]1[gg__ ]1[xx_ ] -» Derivative[jj][gg];
This substitution makes our variable list simpler

vars /. sbs

{p’, D1’, D2, D3’, Q1’, Q2'}
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LinSystem is the linear system implied by IFT.
LinSystem = CoefficientArrays[ (eqnsO /. sbs), (vars /. sbs)];
LinSystem[[2]] is the Jacobian, and LinSystem[[1]] is the vector term.

jac = LinSystem[[2]];
jac // MatrixForm

vl g1 0 0 0 0

U201 0 u2 (0 0 0 0

u3 (0 0 0 u3 (0 0 0

F1(0b 0 0 o F1M® 0

F2(0 1) 0 0 0 0 F2 (10
0 -1 -1 -1 1 1

The vector term is:

vec = LinSystem[[1]];
vec // MatrixForm

0
0
0

~-pO F1(%V
~-p0F2(%Y
0

We can use LinearSolve to solve this system, but the result is not pretty. Delete the apostrophe in the next command to see the
result.

LinearSolve[jac, vec];



Econ and IFT Static CGE China.nb |23

= General problem

In general
(1) There will be many goods, making the di's and p's vectors.

(2) The diagonal terms involving Ui will be blocks corresponding to Jacobians of equations, one block for each demander.
(3) Similarly for the blocks with Fi
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= Functional forms

We will want to solve such systems with thousands of demanders and hundreds of goods. This is quite feasible.

Typically, the functional forms of the Ui's are the same across people; the differences are really only in the parameter values. For
example, Ui could be

Uilg, pl = A; (a; + bi )"
Similarly for the production equation, Fi.

For multiple goods, it is often impossible to solve out for the demand vector explicitly; must use implicit form. Same for the
output vectors for firms.

So, even if you have thousands of demanders and hundreds of goods, applying AD to construct the derivatives needed to con-
struct LinSystem (which is done only when one has substituted in the parameters for Ui's and Fi's) is feasible.
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= Higher-order terms

We can go to higher-order derivatives
eqnstt = D[eqns, T, t]; eqnsO = eqnstt /. t -» 0; eqnsO = eqnsO0 /. sbs;
vars = {P''[0], D1''[0], D2''[0], D3''[0], ©1''[0], ©2''[0]} /. sbs;
LinSystem = CoefficientArrays[eqnsO, vars];

The solvability matrix is unchanged.

LinSystem[[2]] // MatrixForm

U1 g0 0 0 0 0

U2 0 U2 (10 0 0 0

U3 0 0 u3 10 0 0

F1(0:1) 0 0 0 F1(1:0 0

F2(0 b 0 0 0 o F2t%
0 -1 -1 -1 1 1

The vector term is more complex, but still fits our framework.



