
Numerical Methods in Economics

MIT Press, 1998

Chapter 12 Notes

Numerical Dynamic Programming

Kenneth L. Judd

Hoover Institution

November 10, 2010

1

Discrete-Time Dynamic Programming

• Objective:

E

{

T
∑

t=1

π(xt, ut, t) +W (xT+1)

}

, (12.1.1)

— X: set of states

— D: the set of controls

— π(x, u, t) payoffs in period t, for x ∈ X at the beginning of period t, and control u ∈ D is

applied in period t.

— D(x, t) ⊆ D: controls which are feasible in state x at time t.

— F (A;x, u, t) : probability that xt+1 ∈ A ⊂ X conditional on time t control and state

• Value function

V (x, t) ≡ sup

U(x,t)

E

{

T
∑

s=t

π(xs, us, s) +W (xT+1)|xt = x

}

. (12.1.2)

• Bellman equation

V (x, t) = sup

u∈D(x,t)

π(x, u, t) + E {V (xt+1, t + 1)|xt = x, ut = u} (12.1.3)

• Existence: boundedness of π is sufficient

2

Autonomous, Infinite-Horizon Problem:

• Objective:

max
u

E

{

∞
∑

t=1

β
t

π(xt, ut)

}

(12.1.1)

— X: set of states

— D: the set of controls

— D(x) ⊆ D: controls which are feasible in state x.

— π(x, u) payoff in period t if x ∈ X at the beginning of period t, and control u ∈ D is applied

in period t.

— F (A;x, u) : probability that x
+
∈ A ⊂ X conditional on current control u and current state

x.

• Value function definition: if U(x) is set of all feasible strategies starting at x.

V (x) ≡ sup

U(x)

E

{

∞
∑

t=0

β
t

π(xt, ut)

∣

∣

∣

∣

∣

x0 = x

}

, (12.1.8)

3

• Bellman equation for V (x)

V (x) = sup

u∈D(x)

π(x, u) + β E

{

V (x
+
)|x, u

}

≡ (TV)(x), (12.1.9)

• Optimal policy function, U(x), if it exists, is defined by

U(x) ∈ arg max

u∈D(x)

π(x, u) + β E

{

V (x
+
)|x, u

}

• Standard existence theorem:

Theorem 1 If X is compact, β < 1, and π is bounded above and below, then the map

TV = sup

u∈D(x)

π(x, u) + βE

{

V (x
+
) | x, u

}

(12.1.10)

is monotone in V , is a contraction mapping with modulus β in the space of bounded functions, and has

a unique fixed point.

4

Applications

• Economics

— Business investment

— Life-cycle decisions on labor, consumption, education

— Portfolio problems

— Economic policy

• Operations Research

— Scheduling, queueing

— Blood bank management

— See new book by Powell - “Approximate Dynamic Programming”

• Climate change

— Business response to climate policies

— Optimal policy response to global warming problems

5

Deterministic Growth Example

• Problem:

V (k0) = maxc

∑

∞

t=0
β
t

u(ct),

kt+1 = F (kt)− ct

k0 given

(12.1.12)

— Bellman equation

V (k) = max
c

u(c) + βV (F (k)− c). (12.1.13)

— First-order condition

0 = u
′
(c)− βV

′
(F (k)− c)

— Envelope theorem implies

V
′
(k) = βV

′
(F (k)− c)F

′
(k)

— Solution to (12.1.12) is a policy function C(k) and a value function V (k) satisfying

u
′
(C(k))=β V

′
(F (k)− C (k)) (12.1.15)

V (k)=u(C(k)) + βV (F (k)−C(k)) (12.1.16)

• (12.1.16) defines the value of an arbitrary policy function C(k), not just for the optimal C(k).

• (12.1.15) expresses the policy function in terms of the value function.

6

Stochastic Growth Accumulation

• Problem:

V (k, θ) = max
c ,!

E

{

∞
∑

t=0

β
t

u(ct)

}

kt+1 = F (kt, θt)− ct

θt+1 = g(θt, εt)

εt : i.i.d. random variable

k0 = k, θ0 = θ.

• State variables:

— k: productive capital stock, endogenous

— θ: productivity state, exogenous

• The dynamic programming formulation is

V (k, θ) = max
c

u(c) + βE{V (F (k, θ)− c, θ
+
)|θ} (12.1.21)

θ
+
= g(θ, ε)

• The control law c = C(k, θ) satisfies the first-order conditions

0 = uc (C(k, θ))− β E {uc(C(k
+
, θ

+
))Fk(k

+
, θ

+
) | θ}, (12.1.23)

where

k
+
≡ F (k, L(k, θ), θ)−C(k, θ),

7

General Stochastic Accumulation

• Problem:

V (k, θ) = max
c , !

E

{

∞
∑

t=0

β
t

u(ct, %t)

}

kt+1 = F (kt, %t, θt)− ct

θt+1 = g(θt, εt)

k0 = k, θ0 = θ.

• State variables:

— k: productive capital stock, endogenous

— θ: productivity state, exogenous

• The dynamic programming formulation is

V (k, θ) = max
c, !

u(c, %) + βE{V (F (k, %, θ)− c, θ
+
)|θ}, (12.1.21)

where θ
+
is next period’s θ realization.

8

• Control laws c = C(k, θ) and % = L(k, θ) satisfy foc’s

0= uc(C(k, θ), L(k, θ))Fk(k, L(k, θ), θ)− Vk(k, θ),

0= u!(C(k, θ), L(k, θ)) + F!(k, θ)uc(C(k, θ), L(k, θ)).

• Euler equation implies

0 = uc (C(k, θ), L(k, θ))− β E {uc(C(k
+
, θ

+
), %

+
)Fk(k

+
, %

+
, θ

+
) | θ}, (12.1.23)

where next period’s capital stock and labor supply are

k
+
≡ F (k, L(k, θ), θ)−C(k, θ),

%
+
≡ L(k

+
, θ

+
),

9

Discrete State Space Problems

• State space X = {xi, i = 1, · · · , n}

• Controls D = {ui|i = 1, ...,m}

• q
t

ij
(u) = Pr (xt+1 = xj|xt = xi, ut = u)

• Q
t
(u) =

(

q
t

ij
(u)

)

i,j

: Markov transition matrix at t if ut = u.

10

Value Function iteration

• Terminal value:

V
T+1

i
= W (xi), i = 1, · · · , n.

• Bellman equation: time t value function is

V
t

i
= max

u

[π(xi, u, t) + β

n
∑

j=1

q
t

ij
(u)V

t+1

j
], i = 1, · · · , n

• Bellman equation can be directly implemented.

— Called value function iteration

— It is only choice for finite-horizon problems because each period has a different value function.

11

• Infinite-horizon problems

— Bellman equation is now a simultaneous set of equations for Vi values:

Vi = max
u



π(xi, u) + β

n
∑

j=1

qij(u)Vj



 , i = 1, · · · , n

— Value function iteration is now

V
k+1

i
= max

u



π(xi, u) + β

n
∑

j=1

qij(u)V
k

j



 , i = 1, · · · , n

— Can use value function iteration with arbitrary V
0

i
and iterate k → ∞.

— Error is given by contraction mapping property:

∥

∥

V
k

− V
∗

∥

∥ ≤

1

1− β

∥

∥

V
k+1

− V
k

∥

∥

12

Algorithm 12.1: Value Function Iteration Algorithm

Objective: Solve the Bellman equation, (12.3.4).

Step 0: Make initial guess V
0
; choose stopping criterion ε > 0.

Step 1: For i = 1, ..., n, compute

V
!+1

i
= maxu∈D π(xi, u) + β

∑

n

j=1
qij(u)V

!

j
.

Step 2: If ‖ V
!+1

− V
!
‖< ε, then go to step 3; else go to step 1.

Step 3: Compute the final solution, setting

U
∗
= UV

!+1
,

P
∗

i
= π(xi, U

∗

i
), i = 1, · · · , n,

V
∗
= (I − βQ

U
)
−1
P

∗
,

and STOP.

Output:

13

Policy Iteration (a.k.a. Howard improvement)

• Value function iteration is a slow process

— Linear convergence at rate β

— Convergence is particularly slow if β is close to 1.

• Policy iteration is faster

— Current guess:

V
k

i
, i = 1, · · · , n.

— Iteration: compute optimal policy today if V
k
is value tomorrow:

U
k+1

i
= argmax

u



π(xi, u) + β

n
∑

j=1

qij(u)V
k

j



 , i = 1, · · · , n,

— Compute the value function if the policy U
k+1

is used forever, which is solution to the linear

system

V
k+1

i
= π

(

xi, U
k+1

i

)

+ β

n
∑

j=1

qij(U
k+1

i
)V

k+1

j
, i = 1, · · · , n,

14

• Comments:

— Policy iteration depends on only monotonicity

— Policy iteration is faster than value function iteration

∗ If initial guess is above or below solution then policy iteration is between truth and value

function iterate

∗ Works well even for β close to 1.

15

Algorithm 12.2: Policy Function Algorithm

Objective: Solve the Bellman equation, (12.3.4).

Step 0: Choose stopping criterion ε > 0.

EITHER make initial guess, V
0
, for the

value function and go to step 1,

OR make initial guess, U
1
, for the

policy function and go to step 2.

Step 1: U
!+1

= UV
!

Step 2: P
!+1

i
= π

(

xi, U
!+1

i

)

, i = 1, · · · , n

Step 3: V
!+1

=

(

I − βQ
U

)

−1

P
!+1

Step 4: If ‖ V
!+1

− V
!
‖< ε, STOP; else go to step 1.

16

• Modified policy iteration

— If n is large, difficult to solve policy iteration step

— Alternative approximation: Assume policy U
!+1

is used for k periods:

V
!+1

=

k
∑

t=0

β
t

(

Q
U

)

t

P
!+1

+ β
k+1

(

Q
U

)

k+1

V
!
. (12.4.1)

— Theorem 4.1 points out that as the policy function gets close to U
∗
, the linear rate of conver-

gence approaches β
k+1

. Hence convergence accelerates as the iterates converge.

Theorem 2 (Putterman and Shin) The successive iterates of modified policy iteration with k steps,

(12.4.1), satisfy the error bound

∥

∥

V
∗
− V

!+1

∥

∥

‖V
∗
− V

!
‖

≤ min

[

β,

β(1− β
k

)

1− β

‖ U
!
− U

∗
‖ +β

k+1

]

(12.4.3)

17

Gaussian acceleration methods for infinite-horizon models

• Key observation: Bellman equation is a simultaneous set of equations

Vi = max
u



π(xi, u) + β

n
∑

j=1

qij(u)Vj



 , i = 1, · · · , n

• Idea: Treat problem as a large system of nonlinear equations

• Value function iteration is the pre-Gauss-Jacobi iteration

V
k+1

i
= max

u



π(xi, u) + β

n
∑

j=1

qij(u)V
k

j



 , i = 1, · · · , n

• True Gauss-Jacobi is

V
k+1

i
= max

u

[

π(xi, u) + β

∑

j &=i
qij(u)V

k

j

1− βqii (u)

]

, i = 1, · · · , n

• pre-Gauss-Seidel iteration

— Value function iteration is a pre-Gauss-Jacobi scheme.

— Gauss-Seidel alternatives use new information immediately

∗ Suppose we have V
!

i

∗ At each xi, given V
!+1

j
for j < i, compute V

!+1

i
in a pre-Gauss-Seidel fashion

V
!+1

i
= max

u

π(xi, u) + β

∑

j<i

qij(u)V
!+1

j
+ β

∑

j≥i

qij(u)V
!

j
(12.4.7)

∗ Iterate (12.4.7) for i = 1, .., n

18

• Gauss-Seidel iteration

— Suppose we have V
!

i

— If optimal control at state i is u, then Gauss-Seidel iterate would be

V
!+1

i
= π(xi, u) + β

∑

j<i
qij(u)V

!+1

j
+

∑

j>i
qij(u)V

!

j

1− βqii(u)

— Gauss-Seidel: At each xi, given V
!+1

j
for j < i, compute V

!+1

i

V
!+1

i
= max

u

π(xi, u) + β

∑

j<i
qij(u)V

!+1

j
+ β

∑

j>i
qij(u)V

!

j

1− βqii(u)

— Iterate this for i = 1, .., n

• Gauss-Seidel iteration: better notation

— No reason to keep track of %, number of iterations

— At each xi,

Vi ←− max
u

π(xi, u) + β

∑

j<i
qij(u)Vj + β

∑

j>i
qij(u)Vj

1− βqij(u)

— Iterate this for i = 1, .., n, 1,, etc.

19

Linear Programming Approach

• If D is finite, we can reformulate dynamic programming as a linear programming problem.

• (12.3.4) is equivalent to the linear program

minV

∑

n

i=1
Vi

s.t. Vi ≥ π(xi, u) + β

∑

n

j=1
qij(u)Vj, ∀i, u ∈ D,

(12.4.10)

• Computational considerations

— (12.4.10) may be a large problem

— Trick and Zin (1997) pursued an acceleration approach with success.

— OR literature did not favor this approach, but recent work by Daniela Pucci de Farias and Ben

van Roy has revived interest.

20

Continuous states: discretization

• Method:

— “Replace” continuous X with a finite

X
∗
= {xi, i = 1, · · · , n} ⊂ X

— Proceed with a finite-state method.

• Problems:

— Sometimes need to alter space of controls to assure landing on an x in X.

— A fine discretization often necessary to get accurate approximations

21

Continuous States: Linear-Quadratic Dynamic Programming

• Problem:

max
u

T
∑

t=0

β
t

(

1

2

x
(

t
Qtxt + u

(

t
Rtxt +

1

2

u
(

t
Stut

)

+

1

2

x
(

T+1
WT+1xT+1 (12.6.1)

xt+1 = Atxt +Btut,

• Bellman equation:

V (x, t) = max
u

1

2

x
(
Qtx+ u

(

t
Rtx+

1

2

u
(

t
Stut + βV (Atx+Btut, t + 1). (12.6.2)

Finite horizon

• Key fact: We know solution is quadratic, solve for the unknown coefficients

• The guess V (x, t) =
1

2
x
(
Wt+1x implies f.o.c.

0 = Stut +Rtx+ βB
(

t
Wt+1(Atx+Btut),

— F.o.c. implies the time t control law

ut=−(St + βB
(

t
Wt+1Bt)

−1
(Rt + βB

(

t
Wt+1At)x (12.6.3)

≡Utx.

— Substitution into Bellman implies Riccati equation for Wt:

Wt = Qt + βA
(

t
Wt+1At + (βB

(

t
Wt+1At +R

(

t
)Ut. (12.6.4)

— Value function method iterates (12.6.4) beginning with known WT+1 matrix of coefficients.

22

Autonomous, Infinite-horizon case.

• Assume Rt = R, Qt = Q, St = S, At = A, and Bt = B

• The guess V (x) ≡
1

2
x
(
Wx implies the algebraic Riccati equation

W =Q+ βA
(
WA− (βB

(
WA+R

(
) (12.6.5)

×(S + βB
(
WB)

−1
(βB

(
WB +R

(
).

• Two convergent procedures:

— Value function iteration:

W0 : a negative definite initial guess

Wk+1=Q+ βA
(
WkA− (βB

(
WkA+R

(
)

×(S + βB
(
WkB)

−1
(βB

(
WkB +R

(
). (12.6.6)

— Policy function iteration:

W0 : initial guess

Ui+1=−(S + βB
(
WiB)

−1
(R + βB

(
WiA) : optimal policy for Wi

Wi+1=

1

2
Q+

1

2
U

(

i+1
SUi+1 + U

(

i+1
R

1− β

: value of Ui

23

Lessons

• We used a functional form to solve the dynamic programming problem

• We solve for unknown coefficients

• We did not restrict either the state or control set

• Can we do this in general?

24

Continuous Methods for Continuous-State Problems

• Basic Bellman equation:

V (x) = max

u∈D(x)

π(u, x) + β E{V (x
+
)|x, u)} ≡ (TV)(x). (12.7.1)

— Discretization essentially approximates V with a step function

— Approximation theory provides better methods to approximate continuous functions.

• General Task

— Find good approximation for V

— Identify parameters

25

General Parametric Approach: Approximating V (x)

• Choose a finite-dimensional parameterization

V (x)
.
= V̂ (x; a), a ∈ R

m

(12.7.2)

and a finite number of states

X = {x1, x2, · · · , xn}, (12.7.3)

— polynomials with coefficients a and collocation points X

— splines with coefficients a with uniform nodes X

— rational function with parameters a and nodes X

— neural network

— specially designed functional forms

• Objective: find coefficients a ∈ R
m
such that V̂ (x; a) “approximately” satisfies the Bellman equa-

tion.

26

General Parametric Approach: Approximating T

• For each xj, (TV)(xj) is defined by

vj = (TV)(xj) = max

u∈D(x)

π(u, xj) + β

∫

V̂ (x
+
; a)dF (x

+
|xj, u) (12.7.5)

• In practice, we compute the approximation T̂

vj = (T̂V)(xj)
.
= (TV)(xj)

— Integration step: for ωj and xj for some numerical quadrature formula

E{V (x
+
; a)|xj, u)}=

∫

V̂ (x
+
; a)dF (x

+
|xj, u)

=

∫

V̂ (g(xj, u, ε); a)dF (ε)

.
=

∑

!

ω!V̂ (g(xj, u, ε!); a)

— Maximization step: for xi ∈ X, evaluate

vi = (T V̂)(xi)

— Fitting step:

∗ Data: (vi, xi), i = 1, · · · , n

∗ Objective: find an a ∈ R
m
such that V̂ (x; a) best fits the data

∗ Methods: determined by V̂ (x; a)

27

Approximating T with Hermite Data

• Conventional methods just generate data on V (xj):

vj = max

u∈D(x)

π(u, xj) + β

∫

V̂ (x
+
; a)dF (x

+
|xj, u) (12.7.5)

• Envelope theorem:

— If solution u is interior,

v
′

j
= πx(u, xj) + β

∫

V̂ (x
+
; a)dFx(x

+
|xj, u)

— If solution u is on boundary

v
′

j
= µ+ πx(u, xj) + β

∫

V̂ (x
+
; a)dFx(x

+
|xj, u)

where µ is a Kuhn-Tucker multiplier

• Since computing v
′

j
is cheap, we should include it in data:

— Data: (vi, v
′

i
, xi), i = 1, · · · , n

— Objective: find an a ∈ R
m
such that V̂ (x; a) best fits Hermite data

— Methods: determined by V̂ (x; a)

28

General Parametric Approach: Value Function Iteration

guess a−→ V̂ (x; a)

−→(vi, xi), i = 1, · · · , n

−→new a

• Comparison with discretization

— This procedure examines only a finite number of states, xi:

∗ But does not assume that the state is always in this finite set.

∗ Choices for the xi are guided by approximation methods

— Procedure examines only a finite number of ε values for the innovation

∗ But does not assume that they are the only ones realized

∗ Choices for the εi come from quadrature methods

• Synergies

— Smooth interpolation allows us to use Newton’s method for max step.

— Smooth interpolation allows more efficient quadrature in (12.7.5).

— Efficient quadrature reduces cost of computing objective in max problem

• Finite-horizon problems

— Must use value function iteration since V (x, t) depends on time t.

29

— Begin with terminal value function, V (x, T)

— Compute approximations for each V (x, t), t = T − 1, T − 2, etc.

30

Algorithm 12.5: Parametric Dynamic Programming

with Value Function Iteration

Objective: Solve the Bellman equation, (12.7.1).

Step 0: Choose functional form for V̂ (x; a), and choose

the approximation grid, X = {x1, ..., xn}.

Make initial guess V̂ (x; a
0
), and choose stopping

criterion ε > 0.

Step 1: Maximization step: Compute

vj = (T V̂ (·; a
i
))(xj) for all xj ∈ X.

Step 2: Fitting step: Using the appropriate approximation

method, compute the a
i+1

∈ R
m
such that

V̂ (x; a
i+1

) approximates the (vi, xi) data.

Step 3: If ‖ V̂ (x; a
i
)− V̂ (x; a

i+1
) ‖< ε, STOP; else go to step 1.

31

• Convergence

— T is a contraction mapping

— T̂ may be neither monotonic nor a contraction

• Shape problems

— An instructive example

Figure 1:

— Shape problems may become worse with value function iteration

32

• Solution to shape problems

— Use shape-preserving approximations

∗ Piecewise linear preserves shape in one dimension.

∗ Multilinear approximation does not preserve shape

∗ Shape preserving splines are available for dimensions one and two.

— Impose shape restrictions in fitting

∗ Use least squares, not interpolation

∗ Add shape constraints to least squares problem

· Demand correct slopes at some points

· Demand correct curvature at some points.

∗ These methods work well in one dimension, but slow algorithm down considerably for higher

dimensions

— Open research question: What is the best combination of smooth functional form and fitting

procedure that preserves shape?

33

Summary:

• Discretization methods

— Easy to implement

— Numerically stable

— Amenable to many accelerations

— Poor approximation to continuous problems

• Continuous approximation methods

— Can exploit smoothness in problems

— Must work to avoid numerical instabilities

34

