Numerical Methods in Economics
MIT Press, 1998

Chapter 12 Notes

Numerical Dynamic Programming

Kenneth L. Judd
Hoover Institution

November 10, 2010

Discrete-Time Dynamic Programming

e Objective:
T
E {Z (T, U, t) + W(a?TH)} : (12.1.1)
t=1
— X: set of states
— D: the set of controls

— 7(x, u, t) payoffs in period t, for x € X at the beginning of period ¢, and control v € D is
applied in period ¢.
— D(x,t) C D: controls which are feasible in state x at time t.

— F(A; z,u,t) : probability that x;,1 € A C X conditional on time ¢ control and state

e Value function

T
V(x,t) = sup F {Z m(zs, Us, S) + W(xpyr)|a: = x} : (12.1.2)
U(z,t)

s=t

e Bellman equation

V(z,t)= sup 7(x, u, t)+ E{V (x4, t+ 1|2 = x,up = u} (12.1.3)
ueD(z,t)

e Existence: boundedness of 7 is sufficient

Autonomous, Infinite-Horizon Problem:

e Objective:

max 7 {Z Bir(x, ut)} (12.1.1)
t=1

— X: set of states
— D: the set of controls
— D(x) C D: controls which are feasible in state x.

— 7(x, u) payoff in period ¢ if € X at the beginning of period ¢, and control u € D is applied
in period .

— F(A;z,u) : probability that 2 € A C X conditional on current control u and current state
T.

e Value function definition: if U(x) is set of all feasible strategies starting at x.

V(z)=sup E {Z Bl (s, uy)

U(x) =0

Ty = x} : (12.1.8)

e Bellman equation for V' (x)

Viz) = 21D11()) m(x, u)+ B E {V(z")|z,u} = (TV)(x), (12.1.9)

e Optimal policy function, U(z), if it exists, is defined by

U(z) € arg max (z, u)+ S E{V(z")|z, u}

ueD(x)
e Standard existence theorem:

Theorem 1 If X s compact, B < 1, and 7 18 bounded above and below, then the map

TV = sup w(z,u)+LE{V(z") |z, u} (12.1.10)
ueD(x)

15 monotone i V', is a contraction mapping with modulus 3 in the space of bounded functions, and has
a unique fixed point.

Applications
e Fconomics

— Business investment
— Life-cycle decisions on labor, consumption, education
— Portfolio problems

— Economic policy
e Operations Research

— Scheduling, queueing
— Blood bank management

— See new book by Powell - “Approximate Dynamic Programming”
e Climate change

— Business response to climate policies

— Optimal policy response to global warming problems

Deterministic Growth Example

e Problem:
V (ko) = max, 35,5 Bu(cy),
ki1 = F(kt) — ¢ (12.1.12)
ko given
— Bellman equation
V(k) = max u(c) + BV (F(k) — c). (12.1.13)

— First-order condition
0=u'(c)— BV'(F(k)—c)

— Envelope theorem implies
V'(k) = BV'(F(k) — c)F'(k)

— Solution to (12.1.12) is a policy function C(k) and a value function V' (k) satisfying
u' (C(k)=B V'(F(k)— C(k)) (12.1.15)
V(k)=u(C(k))+ BV(F(k) — C(k)) (12.1.16)
e (12.1.16) defines the value of an arbitrary policy function C(k), not just for the optimal C(k).

e (12.1.15) expresses the policy function in terms of the value function.

Stochastic Growth Accumulation

e Problem:

V(k,0) = max E {Z g u<ct>}

ki1 = F(/ft, 91&) — G
Orv1 = g0, 1)

g; - 11.d. random variable
ko =k, 0y=20.

e State variables:

— k: productive capital stock, endogenous

— 0: productivity state, exogenous

e The dynamic programming formulation is
V(k,0) =max u(c)+ BE{V(F(k,0) —c,07)|0} (12.1.21)
C 0" =g(0,¢)
e The control law ¢ = C(k, 6) satisfies the first-order conditions
0=u.(C(k,0)) — BE{u(C(k™,07))E.(k™,07) | 6}, (12.1.23)

where

kt= F(k, L(k,0),0) — C(k,0),

General Stochastic Accumulation

e Problem:

V(k,0) = max E {Z B (e, 0) }

ct, Ut
kiy1 = (kt, ly, 9t) — Gt
011 = 9<9t, <‘5t>

ko=k, 6,=20.
e State variables:
— k: productive capital stock, endogenous
— 0: productivity state, exogenous
e The dynamic programming formulation is
V(k,0) = max u(c,l) + BE{V (F(k,£,0) — c,07)|0}, (12.1.21)

c,

where 07 is next period’s realization.

e Control laws ¢ = C'(k,0) and ¢ = L(k, 0) satisfy foc’s

0= u (C(k,0), L(k, 0)) Ex(k, L(k,0),0) — Vi(k, 0),
0:U€<C(k7‘9)7L<k7‘9)) +F€(k7‘9)uc(c(9) (k (9))

e Huler equation implies
0=u.(C(k,0),L(k,0)) — BE{u(C(k™,0"), () E(kT, 07,07 | 63, (12.1.23)

where next period’s capital stock and labor supply are

kt= F(k, L(k,0),0) — C(k,0),
0+ = L(k*,0),

Discrete State Space Problems

e State space X ={z;,i=1,--- ,n}

e Controls D = {u|i =1,...,m}

* qu(u) = Pr(zi11 = x|z = 2, w = u)

e Q'(u) = (qu(u))w . Markov transition matrix at ¢ if u; = u.

Value Function iteration

e Terminal value:
VIt = W(x), i=1,--- ,n.

e Bellman equation: time ¢ value function is
t t+17
V;'t :ml?‘x [ﬂ-(aji;u?t) —I_ﬁz qzj(u)V7+]7 L= 17 y T
j=1

e Bellman equation can be directly implemented.

— Called value function iteration

— It is only choice for finite-horizon problems because each period has a different value function.

e Infinite-horizon problems

— Bellman equation is now a simultaneous set of equations for V; values:

— Value function iteration is now

‘/;k+1:m3X -77@7 —|—6qu ”izl’--.

— Can use value function iteration with arbitrary V" and iterate & — oo.

— Error is given by contraction mapping property:

k *
|VF—Vv T

Algorithm 12.1: Value Function Iteration Algorithm

Objective: Solve the Bellman equation, (12.3.4).
Step O: Make initial guess V; choose stopping criterion € > 0.
Step 1: For i =1, ...,n, compute

Vit = maxyep m(wi,u) + B30 4ij(w)Vy
Step 2: If || V& — V¢ ||< €, then go to step 3; else go to step 1.
Step 3: Compute the final solution, setting

Us = UV

P =m(x;, U?), i=1---,n,

Ve = (I - QU P,

and STOP.
Output:

Policy Iteration (a.k.a. Howard improvement)
e Value function iteration is a slow process

— Linear convergence at rate (3

— Convergence is particularly slow if 3 is close to 1.
e Policy iteration is faster

— Current guess:

— Tteration: compute optimal policy today if V* is value tomorrow:
Uitl = arg max m(x;, u) +5Z qii(u) V]k ,i=1,---,n,
j=1

— Compute the value function if the policy U**! is used forever, which is solution to the linear
system

Vit =1 (i, Uf“) + 52 g, (UI) ijH, 1=1-,n,

J=1

e Comments:

— Policy iteration depends on only monotonicity
— Policy iteration is faster than value function iteration

« If initial guess is above or below solution then policy iteration is between truth and value
function iterate

« Works well even for 3 close to 1.

Algorithm 12.2: Policy Function Algorithm
Objective: Solve the Bellman equation, (12.3.4).
Step O: Choose stopping criterion ¢ > 0.

EITHER make initial guess, V?, for the
value function and go to step 1,
OR make initial guess, U*, for the
policy function and go to step 2.
Step 1: Ut =yvt
Step 2: P =1 (z;, UM, i=1,---.n
Step 3 V= (1- Q") ~pre
Step 4: If || VI — V' ||< €, STOP; else go to step 1.

e Modified policy iteration

— If n is large, difficult to solve policy iteration step

— Alternative approximation: Assume policy U is used for & periods:
i (+1 t / k41 (+1 k+1 /
T] (QU) piHl 4 ght (QU) Ve (12.4.1)
t=0

— Theorem 4.1 points out that as the policy function gets close to U*, the linear rate of conver-
gence approaches 85!, Hence convergence accelerates as the iterates converge.

Theorem 2 (Putterman and Shin) The successive iterates of modified policy iteration with k steps,
(12.4.1), satisfy the error bound

v v
V== v

B(1— %)

T3 | U —U* || +p"! (12.4.3)

< min |5,

(Gaussian acceleration methods for infinite-horizon models

e Key observation: Bellman equation is a simultaneous set of equations
Vizmgx 7T(SUZ',U>—|—ﬂZ Gi(w)Vil,i=1,---,n
j=1

e Idea: Treat problem as a large system of nonlinear equations

e Value function iteration is the pre-Gauss-Jacobi iteration
n
k+1 k .
Vi = max w(xi,u)—I—BZ Gij(w) Vi, i=1,---,n
j=1

e True Gauss-Jacobi is
V. — (i, u) + Zj;éz’ gij(u) ij
' u 1 — Bgii (u)

,t=1,---mn

e pre-Gauss-Seidel iteration

— Value function iteration is a pre-Gauss-Jacobi scheme.
— Gauss-Seidel alternatives use new information immediately

* Suppose we have V!
* At each z;, given V}”l for j < i, compute V™! in a pre-Gauss-Seidel fashion
‘/Z-E—H = mgldX 7T<33‘Z', u) + 6 Z qij(u)‘/fﬂ + 5 Z C]Z'j<u)‘/f (1247)
J<t J=i

* Iterate (12.4.7) fori =1, ..,n

e (Gauss-Seidel iteration

— Suppose we have V'

— If optimal control at state i is u, then Gauss-Seidel iterate would be

>)V 3 g (w)V]
1 — Bgii(u)
— Gauss-Seidel: At each x;, given \/}”1 for j < 1, compute Vf“
VAL — max (332,) +0 Z]<Z q@]()Vjﬂl + [Zj>z’ qU(“)ng
Z u — Bqii(u)
— Iterate this for i =1,..,n

VIt = m(ai,u) + B

e (Gauss-Seidel iteration: better notation

— No reason to keep track of ¢, number of iterations

— At each z;,

Vo Tl >+62j<z Gii(WVi + B35 4(w)V]
Z u — Bqij(u)
— Iterate this for i =1, ..,n,1,, etc.

Linear Programming Approach

e If D is finite, we can reformulate dynamic programming as a linear programming problem.

e (12.3.4) is equivalent to the linear program

. n
miny; » ;. Vi

12.4.10
st Vizm(zi,u) + 855 ¢i(w)Vj, Vi,u €D, ()

e Computational considerations

— (12.4.10) may be a large problem
— Trick and Zin (1997) pursued an acceleration approach with success.

— OR literature did not favor this approach, but recent work by Daniela Pucci de Farias and Ben
van Roy has revived interest.

Continuous states: discretization
e Method:
— “Replace” continuous X with a finite
X' ={x;,i=1,--- ,n}CX
— Proceed with a finite-state method.
e Problems:

— Sometimes need to alter space of controls to assure landing on an = in X.

— A fine discretization often necessary to get accurate approximations

Continuous States: Linear-Quadratic Dynamic Programming

e Problem:

T
1 1 1
H}EX Z ﬁt (ix;tht + U;Rtﬂft + 51&25{%) + §$;+1WT+1ZUT+1
t=0

Tpy1 = Az + By,

e Bellman equation:

1 1
V(z,t) = max ixTQta: +u, Ryx + §utTStut + BV (Asx + Byug, t + 1).
ug

Finite horizon
e Key fact: We know solution is quadratic, solve for the unknown coefficients
e The guess V(z,t) = 12" Wy 2 implies fo.c.
0 = Sy + Ry + ﬁBtTVVtH(Atﬂ? + Byuy),
— F.o.c. implies the time ¢ control law

up=—(S; + 5BtTVVt+1Bt)_1(Rt + ﬁBtTVVtJrlAt)ZU
EUtZU.

— Substitution into Bellman implies Riccati equation for Wi:

Wiy = Qi+ ﬁAtTVVtHAt + <5B;W/t+114t + RtT>Ut-

(12.6.1)

(12.6.2)

(12.6.3)

(12.6.4)

— Value function method iterates (12.6.4) beginning with known W7, ; matrix of coefficients.

Autonomous, Infinite-horizon case.

e Assume R, =R,y =Q, S, =S5, A =A,and B, =B

T

e The guess V(z) = %:U W implies the algebraic Riccati equation

W=0Q+BA'"WA—- (BB'"WA+R")
x(S+BB'WB) HBB'WB+R").
e T'wo convergent procedures:
— Value function iteration:

Wy : a negative definite initial guess
Wi1=Q + BATW,A— (BBTW,, A+ R")
x(S+ BB'W,B) Y (BB'WB+ R").

— Policy function iteration:

Wy : initial guess
Uis1=—(S + BB'"W;B) (R + 8B'W;A) : optimal policy for WV}
3Q + 35U SU + UL R
1-p5

Wis1= - value of Uj

(12.6.5)

(12.6.6)

Lessons

e We used a functional form to solve the dynamic programming problem
e We solve for unknown coefficients
e We did not restrict either the state or control set

e Can we do this in general?

Continuous Methods for Continuous-State Problems

e Basic Bellman equation:

Viz) = nax, m(u,z) + B E{V(z")|z,u)} = (TV)(x). (12.7.1)

— Discretization essentially approximates V' with a step function
— Approximation theory provides better methods to approximate continuous functions.

e General Task

— Find good approximation for V'

— Identify parameters

General Parametric Approach: Approximating V' (x)

e Choose a finite-dimensional parameterization

A

V(z)=V(z;a), a € R™ (12.7.2)

and a finite number of states
X ={x,x9,- -+ ,x,}, (12.7.3)
— polynomials with coefficients a and collocation points X
— splines with coefficients a with uniform nodes X
— rational function with parameters a and nodes X
— neural network

— specially designed functional forms

e Objective: find coefficients a € R™ such that V(as, a) “approximately” satisfies the Bellman equa-
tion.

General Parametric Approach: Approximating 7T’

e For each x;, (TV)(x;) is defined by

= (TV)(z;) = max 7(u,z; +B/ *;a)dF (" |z;,) (12.7.5)

u€D(z;)
e In practice, we compute the approximation T
vj = (TV)(x;) = (TV)(x;)

— Integration step: for w; and x; for some numerical quadrature formula
~ [Viglas.u2) e
¢

— Maximization step: for x; € X, evaluate

— Fitting step:
« Data: (v;,x;), i=1,---.,n
« Objective: find an @ € R™ such that V (z; a) best fits the data
+« Methods: determined by V(z; a)

Approximating 1" with Hermite Data

e Conventional methods just generate data on V' (z;):

v; = max 7(u,x; —I—B/ " a)dF (x| 2z, u) (12.7.5)

u€D(z;)
e Envelope theorem:

— If solution w is interior,
v = mulu)+ 8 [Via*sa)dBla a0
— If solution wu is on boundary
vi =+ 7w (u, ;) + 3 / V(zt a)dF, ()2, u)
where 1 is a Kuhn-Tucker multiplier

e Since computing v} is cheap, we should include it in data:

— Data: (v, v}, x;), i=1,---,n
— Objective: find an a € R™ such that V (z; a) best fits Hermite data
— Methods: determined by V(z; a)

General Parametric Approach: Value Function Iteration

guess a — V (z; a)
—>(,Ui7xi>7 1= 17 y T
——new a

e Comparison with discretization

— This procedure examines only a finite number of states, x;:

x But does not assume that the state is always in this finite set.

« Choices for the x; are guided by approximation methods
— Procedure examines only a finite number of ¢ values for the innovation

* But does not assume that they are the only ones realized

« Choices for the ¢; come from quadrature methods
e Synergies

— Smooth interpolation allows us to use Newton’s method for max step.
— Smooth interpolation allows more efficient quadrature in (12.7.5).

— Efficient quadrature reduces cost of computing objective in max problem
e Finite-horizon problems

— Must use value function iteration since V' (x,t) depends on time t.

— Begin with terminal value function, V' (x,T)

— Compute approximations for each V' (x,t), t =T — 1,T — 2, etc.

Algorithm 12.5: Parametric Dynamic Programming
with Value Function Iteration
Objective: Solve the Bellman equation, (12.7.1).
Step 0: Choose functional form for V(az, a), and choose
the approximation grid, X = {xy, ..., x,}.
Make initial guess V(:U, a”), and choose stopping
criterion € > 0.
Step 1: Maximization step: Compute
v; = (TV (- a"))(z;) for all z; € X.
Step 2: Fitting step: Using the appropriate approximation
method, compute the ¢! € R™ such that
V(z; a™™) approximates the (v;, z;) data.
Step 3: If || V(z;a') — V(x;a™™) ||< €, STOP; else go to step 1.

e Convergence

— T 18 a contraction mapping

~T may be neither monotonic nor a contraction
e Shape problems

— An instructive example

Figure 1:

— Shape problems may become worse with value function iteration

e Solution to shape problems

— Use shape-preserving approximations
* Plecewise linear preserves shape in one dimension.
x Multilinear approximation does not preserve shape
* Shape preserving splines are available for dimensions one and two.

— Impose shape restrictions in fitting

x Use least squares, not interpolation
*x Add shape constraints to least squares problem
- Demand correct slopes at some points
- Demand correct curvature at some points.
* These methods work well in one dimension, but slow algorithm down considerably for higher

dimensions

— Open research question: What is the best combination of smooth functional form and fitting
procedure that preserves shape?

Summary:
e Discretization methods

— Easy to implement
— Numerically stable
— Amenable to many accelerations

— Poor approximation to continuous problems
e Continuous approximation methods

— Can exploit smoothness in problems

— Must work to avoid numerical instabilities

