Discrete Dynamic Programming - Stochastic Growth

x = 0; Remove["Global™ %"]
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Outline of notebook

This notebook consists of two basic parts. First, I specify a particular problem, a simple stochastic optimal growth problem.
Second, I wrote some general dynamic programming code.

The DP code is set up for an arbitrary general DP, and the example problem shows how to set up a specific application. The
general DP code refers only to points on the grids. This means that the setup includes defining functions of those grid points. So,
payoff[ix, if, xnext] is the payoff in the current period if the current state is (ix, i#) and xnext is the next grid point where ix, i6,
and xnext are indices of the state space, and payoff is a function defined in the setup for a particular problem.
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Initializations

The first thing to do in a DP problem is to specify the grid of states, the payoff function, and the transition rules.
In this notebook we will have the endogenous states evolve deterministically but have exogenous states evolve stochastically.

= Inputs to Bellman

The initialization phase creates the primitives for the dynamic programming problem and is the basic data for the Bellman code.
The basic inputs are

(1) the geometry of the grids for the states,

(2) the Markov transition matrix,

(3) the payoff function, and

(4) an initial guess for the value function. We spell these out in more detail here.
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States:
X: The endogenous state; that is, the state that that can be affected by decisions
o: The exogenous state

The states, x and 6, are often continuous in the real world. However, we will use finite sets of points to represent the states. We
will assume that these points are simple grids.

Grids:

xgrid: The vector of grid points for the endogenous state.
nx: Length of xgrid

Ogrid: The vector of grid points for the exogenous state
né: Length of fgrid

Terminology shorthand: Sometimes we will refer to a state by its index. For example, when we say that "the state is ix", we mean
that the state is xgrid[ix]. Similarly when we say the state is (ix, i6).
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Markov transition matrix:
Prbl[i6, jO1: The probability of the exogenous state being j@ in the next period if the current exogenous state is i6.

Payoff function:
payoff[ik, i6, ikp]: the payoff in a period if the current state is (ik, i) and ikp is the next period's endogenous state.
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Program flow for setup:

Here is a table describing the dependencies of the program elements created in the setup phase.

Create valinit,
an nk x n6ématrix

—

—

-

Bellman

Choose nk

Bellman

¢

Define kgrid

L

Define kgridf

¢

Define payoff

Bellman

7

Define 6gridf

7

Define 6grid

Define Prb

Bellman

7

Choose nb

Bellman
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= Grid of states

We use a simple growth model as an example.
= Endogenous states

The amount of capital in the economy is controlled by the planner, and output is a function of the endogenous capital and an
exogenous productivity factor.

k: capital stock - the endogenous state variable

kmin (kmax): the minimum (max) permissible capital stock. [Note: these bounds are made for mathematical convenience. They
should be chosen so that they do not bind in the solution.]

kgrid: the vector of permissible capital stocks, a subset of [kmin, kmax]

nk: length of kgrid

Construct kgrid: We will construct a uniform grid. « is the uniform difference between successive states. The possible choices of
net investment will be integer multiples of «.
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kmax - kmin
K= —
nk -1
kgrid := Table[kmin+ (i-1) x, {i, 1, nk}];

Nonuniform grids can also be used. The key requirements is that kgrid contain the list of endogenous states and kgridf is a
function mapping indices to values for the state.

kgrid is passed to Bellman. kgridf is used to define the payoff function below; it is contained in the code passed to Bellman
computing the payoff function.

xgrid := kgrid; nx := nk;

We define a function that takes the index of a grid point, ik, and computes the capital stock it represents

kgridf[ik_] := kmin + (ik-1) x
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= Exogenous states

The productivity states move exogenously.

o: productivity state - the exogenous state variable

fmin (fmax): the minimum (maximum) value for 6.

Ogrid: the vector of possible 6 values, a subset of [#min, fmax]
no: length of fgrid

Construct fgrid: We will construct a uniform grid. 66 is the uniform difference between successive states.

émax - émin
66 1tz —m8M
née -1

oégrid := Table[6min+ (i-1) 66, {i, 1, n6}];

Here again the index i6 is the index in the € grid that contains the value for fgrid[if].
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We define a function that takes the index of a theta grid point, i6, and computes the  value it represents

o6gridf[i6_] := Omin + 66 (i6-1)

Nonuniform grids can also be used. The key requirements is that fgrid contain the list of exogenous states and fgridf is a function
mapping indices to values for the exogenous state.

Ogrid is passed to Bellman. fgridf is used to define the payoff function below; it is contained in the code passed to Bellman for
computing the payoff function.
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= Construct grid inputs for Bellman

Choose parameters for kgrid.

kmin =0.1; kmax=1.2; nk = 221;
Output kgrid and kgridf.

kgrid

{0.1, 0.105, 0.11, 0.115, 0.12, 0.125, 0.13, 0.135, 0.14, 0.145, 0.15, 0.155, 0.16, 0.165, 0.17, 0.175,
0.18, 0.185, 0.19, 0.195, 0.2, 0.205, 0.21, 0.215, 0.22, 0.225, 0.23, 0.235, 0.24, 0.245, 0.25, 0.255,
0.26, 0.265, 0.27, 0.275, 0.28, 0.285, 0.29, 0.295, 0.3, 0.305, 0.31, 0.315, 0.32, 0.325, 0.33, 0.335,
0.34, 0.345, 0.35, 0.355, 0.36, 0.365, 0.37, 0.375, 0.38, 0.385, 0.39, 0.395, 0.4, 0.405, 0.41, 0.415,
0.42, 0.425, 0.43, 0.435, 0.44, 0.445, 0.45, 0.455, 0.46, 0.465, 0.47, 0.475, 0.48, 0.485, 0.49,
0.495, 0.5, 0.505, 0.51, 0.515, 0.52, 0.525, 0.53, 0.535, 0.54, 0.545, 0.55, 0.555, 0.56, 0.565, 0.57,
0.575, 0.58, 0.585, 0.59, 0.595, 0.6, 0.605, 0.61, 0.615, 0.62, 0.625, 0.63, 0.635, 0.64, 0.645, 0.65,
0.655, 0.66, 0.665, 0.67, 0.675, 0.68, 0.685, 0.69, 0.695, 0.7, 0.705, 0.71, 0.715, 0.72, 0.725, 0.73,
0.735, 0.74, 0.745, 0.75, 0.755, 0.76, 0.765, 0.77, 0.775, 0.78, 0.785, 0.79, 0.795, 0.8, 0.805,

0.81, 0.815, 0.82, 0.825, 0.83, 0.835, 0.84, 0.845, 0.85, 0.855, 0.86, 0.865, 0.87, 0.875, 0.88,
0.885, 0.89, 0.895, 0.9, 0.905, 0.91, 0.915, 0.92, 0.925, 0.93, 0.935, 0.94, 0.945, 0.95, 0.955, 0.96,
0.965, 0.97, 0.975, 0.98, 0.985, 0.99, 0.995, 1., 1.005, 1.01, 1.015, 1.02, 1.025, 1.03, 1.035, 1.04,
1.045, 1.05, 1.055, 1.06, 1.065, 1.07, 1.075, 1.08, 1.085, 1.09, 1.095, 1.1, 1.105, 1.11, 1.115, 1.12,
1.125, 1.13, 1.135, 1.14, 1.145, 1.15, 1.155, 1.16, 1.165, 1.17, 1.175, 1.18, 1.185, 1.19, 1.195, 1.2}

kgridf[ik]
0.1+0.005 (-1+1ik)
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Choose parameters for 6 grid.

émin = 0.95; 6max = 1.05; n6 = 2;
Output fgrid and gridf.

egrid

{0.95, 1.05}

egridf[io]

0.95+0.1 (-1+1i0)
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= Transition rule for 6 values
We next choose the probabilities of the transition matrix for 6.
Prb[i,j] is the probability that # moves from 6grid[i] value to 6grid[j].

Prb[1, 1]
Prb[1, 2]

Prb[2, 2] =2/ 3;
Prb[2, 1] =1/ 3;
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= Construct payoff function

We next build up the payoff function from the primitives of the production function and the utility function.
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m  Production function

The net-of-depreciation production function is

(1-pB) k"
Ba

f[k_,6_]:=6

We have defined the production function, f[k,d], in terms of capital and productivity, the natural state variables. However, the
Bellman code understands only indices. Hence, in order to use the Bellman code, we need to define the production function in
terms of the state indices. More specifically, if k=kgrid[ik] and 6=6grid[if], then fgrid[ik,if] = {[k,0].

fgrid[ik_, i6_] := f[kgridf[ik], 6gridf[i6]]

In this case, the kgrid and 6grid grids are not sent to Bellman since we we have simple formulas for the grid points in terms of the
indices.
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= The dynamic equation for capital stock
The capital stock evolves according to

kip1 =k + flki, 0] — ¢,

At time t, k,and 6, are the state variables. k,,; is chosen. Therefore, consumption is

¢ =flki, O] + k; — ki
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m  The utility function

1-y
c
ufc_] = ; (* y>0 in order for u[c] to be concave. *)
-Y
util[cc_] = If[cc > .001, u[cec], -10'] ;
(*» this is needed in order to avoid evaluating u[c] for negative c. *)
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We need to define the payoff function in terms of the current state, with index ik, and the choice of tomorrow's capital stock, with
index ikp. We use the law of motion.

The initial level of capital has index ik, and equals kgridf[ik].

Net output is fgrid[ik, i4].

Tomorrow's capital stock has index ikp, and equals kgridf[ikp].

Recall that consumption is ¢; =f[k;, 6,] + k; — ki1

Investment net of depreciation equals k., — k, = « (ikp - ik).

Therefore, the payoff at state (ik, i) and choice ikp is utility of the resulting consumption, which is

payoff[ik_, i6_, ikp ] := util[fgrid[ik, i6] - x (ikp - ik)]
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Parameter Values

payoff[ik, i6, ikp]

If[-0.005 (-ik + ikp) + 0.444444 (0.1+0.005 (-1 +1ik))%?® (0.95+0.1 (-1+i6)) > 0.001,
u[-0.005 (-ik + ikp) + 0.444444 (0.1+0.005 (-1 +ik))%? (0.95+0.1 (-1+1e))], -10'?]
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= Initial value function

We create valinit, the initial value function. The default is a matrix of zeros.

valinit = Table[O0, {i, 1, nx}, {j, 1, n6}];

In many cases, one has a much better initial guess for the value function. This is the point where valinit should be set to that
alternative. Otherwise, valinit will be the matrix of zeros.
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Value function iteration

The value function is really a two-dimensional array, val, where val[i,j] is the value function if the endogenous state is xgrid[i]
and the current exogenous state 6 is fgrid[j]

We create two matrices, valold and valnew, to represent the old and new value functions in value function iteration. We initially
make them equal to zero matrices.

valold Table[O0,{i,1,nx},{j,1,n6}];
valnew = Table[0,{i,1,nx},{j,1,n6}];

errmax is an expression that computes the maximum difference between old and new value functions.

errmax := Max[Abs[valnew-valold]]
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m Code that looks like basic C or Fortran

The following defines the routine for one iteration of value function iteration. It takes the old value function,
valold, and produces the new value function, valnew.

Bellman : =
(Do[valGuess = -10'%; maxNext =nx; minNext =1;

(* The following steps through the choices for xnext,
evaluating the value of each choice, and picking the max. =*)
Do [
valtry = payoff[ix, i6, xnext] +
B Sum[ Prb[i6, iop] valold[xnext, iop], {i6p, 1, n6}];
If[valtry > valGuess, valGuess = valtry],
{xnext, minNext, maxNext}];
(* Record the maximum value in the new value function. x)
valnew[ix, i6] = valGuess,
(# Cycle through all the endogenous and exogenous states. *)
{ix, 1, nx}, {ie, 1, n6}];
(* Output is new value function plus
difference between the old and new value functions. x)
{valnew, Max[Abs[valnew-—valold]]})

Mathematica note: the symbol := means that Bellman is defined to be the sequence of operations on the right-
hand side. Each time you invoke Bellman, Mathematica will take the current choices for valit, util, etc., and

execute the commands on the right hand side. If you want to change the payoff function, all you need to do is
redefine util above.
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The first iteration takes the initial guess as the old value function

valold = valinit; Bellman;
errmax

8.86927
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Later iterations sets the old value function to be the last calculated valnew.

valold = valnew; Bellman;
errmax

7.40848
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valold = valnew; Bellman;
errmax

6.29323
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Let's graph the new value function, one curve for each 6.

ListPlot [Transpose[valnew]]

50 100 150 200

Let's graph the differences between valold and valnew.
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ListPlot [Transpose[valnew - valold]]

1.
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= Code for Matlab - vectorized code
We now vectorize our code. The vectorized versions should be faster since they take advantage of the Max operator on vectors.

Bellman2 :=
(Do[
maxNext = nx; minNext = 1;
(# In this version, we create the vectors
corresponding to the possible current payoffs and
the current possible discounted future values. =*)
tabl = 8 Table[valold[xnext, if],
{xnext, minNext, maxNext}];
tab2 = Table[payoff[ix, 16, xnext],
{xnext, minNext, maxNext}];
(# We use the max command for vectors
to get the new value. *)
valGuess = tabl + tab2;
valnew[ix, i6] = Max[valGuess],
{ix, 1, nx}, {ie, 1, n6}];
{valnew, Max[Abs|[valnew - valold]]})
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Let's compare the time difference. Vectorization cuts time down by a third. The decomposition helps only a little bit but likely
larger in other languages.

valold = valnew;
Bellman; // Timing
Bellman2; // Timing

(7.93863, Null}

{5.44901, Null}
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m Restricted search

In most problems we have some rough bounds on what xnext is. We now incorporate that into
the value function iteration

The parameter span tells Bellman to consider values of xnext between ix-span and ix+span. span
is specified by user.

span =5;

Bellman3 :=
(Do [
maxNext = Min[nx, ix + span]; minNext = Max[1l, ix - span];
(# In this version, we create the vectors
corresponding to the possible current payoffs and
the current possible discounted future values. =*)
tabl = 8 Table[valold[xnext, if],
{xnext, minNext, maxNext}];
tab2 = Table[payoff[ix, 16, xnext],
{xnext, minNext, maxNext}];
(* We use the max command for vectors
to get the new value. =*)
valGuess = tabl + tab2;
valnew[ix, i6] = Max[valGuess],
{ix, 1, nx}, {ie, 1, ne}];
{valnew, Max[Abs|[valnew - valold]]})
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Let's compare the time difference. Vectorization cuts time down by a third. Limiting the span of the search results in another one-
third reduction.

valold = valnew;

Bellman; // Timing
Bellman2; // Timing
Bellman3; // Timing

{7.65037, Null}
{5.45601, Null}

{0.399849, Null}



32 | DpdiscGenDet VFI Stochastic Growth Big.nb

= Value function iteration

The following defines a complete cycle of the basic iteration

VallIter :=
(valold = valnew; {valnew, errmax} = Bellman3;)

The following defines a complete value function iteration where we reset valold, evalu-
ate Bellman, and compute the maximum difference, which is proportional to the error.

ValueIterPrint:= (valold = valnew; {valnew,errmax}=Bell
Print[{errmax,ListPlot[Transpose[valnew]]}])

ValuelIterPrint

—10 L
—15¢L
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Let's do a lot of iterations and watch the error decline in a table

ValuelterErr:= (valold = valnew; {valnew,errMax}=Bellman3; errMax)
valold=valinit; tab=Table[ValueIterErr, {50}];
ListPlot[tab]

ale

.
..
cee,
®eoo
. . 9®%¢c0rc0ecc0nncscscss .

10 20 30 40 50




34 | DpdiscGenDet VFI Stochastic Growth Big.nb

A log plot will reveal the loglinear nature of the decline

ListPlot[Log[10, tab]]
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