Numerical Methods in Economics MIT Press, 1998

Notes for Chapter 4: Constrained Optimization

October 13, 2010

Optimization Problems

• Canonical problem:

$$\min_{x} f(x)$$

$$s.t. \ g(x) = 0,$$

$$h(x) \le 0,$$

- $-f: \mathbb{R}^n \to \mathbb{R}$ is the objective function
- $-g: \mathbb{R}^n \to \mathbb{R}^m$ is the vector of *m* equality constraints
- $-h: \mathbb{R}^n \to \mathbb{R}^\ell$ is the vector of ℓ inequality constraints.
- Examples:
 - Maximization of consumer utility subject to a budget constraint
 - Optimal incentive contracts
 - Portfolio optimization
 - Life-cycle consumption
- Assumptions
 - Always assume f, g, and h are continuous
 - Usually assume f, g, and h are C^1
 - Often assume f, g, and h are C^3

Linear Programming

• Canonical linear programming problem is

$$\min_{x} a^{\top} x s.t. Cx = b,$$
(1)
 $x \ge 0.$

- $-Dx \leq f$: use *slack variables*, *s*, and constraints $Dx + s = f, s \geq 0$.
- $-Dx \ge f$: use $Dx s = f, s \ge 0, s$ is vector of surplus variables.
- $-x \ge d$: define y = x d and min over y
- $-x_i$ free: define $x_i = y_i z_i$, add constraints $y_i, z_i \ge 0$, and min over (y_i, z_i) .

• Basic method is the *simplex method*. Figure 4.4 shows example:

$$\min_{x,y} -2x - y s.t. \ x + y \le 4, \quad x, y \ge 0, x \le 3, \quad y \le 2.$$

- Find some point on boundary of constraints, such as A.
- Step 1: Note which constraints are active at A and points nearby.
- Find feasible directions and choose steepest descent direction.
- Figure 4.4 has two directions: from A: to B and to O, with B better.
- Follow that direction to next vertex on boundary, and go back to step 1.
- Continue until no direction reduces the objective: point H.
- Stops in finite time since there are only a finite set of vertices.

- General History
 - Goes back to Dantzig (1951).
 - Fast on average.
 - Worst case time is exponential in number of variables and constraints
 - Software implementations vary in numerical stability
- Interior point methods
 - Developed in 1980's
 - Better on large problems

Constrained Nonlinear Optimization

• General problem:

$$\min_{x} f(x)$$

$$s.t. \ g(x) = 0$$

$$h(x) \le 0$$

$$(4.7.1)$$

- $-f: X \subseteq \mathbb{R}^n \to \mathbb{R}: n$ choices
- $\ g: X \subseteq \mathbb{R}^n \to \mathbb{R}^m \text{: } m$ equality constraints
- $-h: X \subseteq \mathbb{R}^n \to \mathbb{R}^\ell$: ℓ inequality constraints
- -f, g, and h are C^2 on X
- Linear Independence Constraint Qualification (LICQ): The binding constraints at the solution are linearly independent
- Kuhn-Tucker theorem: if there is a local minimum at x^* then there are multipliers $\lambda^* \in \mathbb{R}^m$ and $\mu^* \in \mathbb{R}^\ell$ such that x^* is a *stationary*, or *critical* point of \mathcal{L} , the *Lagrangian*,

$$\mathcal{L}(x,\lambda,\mu) = f(x) + \lambda^{\top} g(x) + \mu^{\top} h(x)$$
(4.7.2)

If LICQ holds then the multipliers are unique; otherwise, they are called "unbounded".

• First-order conditions, $\mathcal{L}_x(x^*, \lambda^*, \mu^*) = 0$, imply that (λ^*, μ^*, x^*) solves

~

$$f_{x} + \lambda^{\top} g_{x} + \mu^{\top} h_{x} = 0$$

$$\mu_{i} h^{i}(x) = 0, \quad i = 1, \cdots, \ell$$

$$g(x) = 0$$

$$h(x) \leq 0$$

$$\mu \geq 0$$

$$(4.7.3)$$

A Kuhn-Tucker Approach

- Idea: try all possible Kuhn-Tucker systems and pick best
 - Let \mathcal{J} be the set $\{1, 2, \cdots, \ell\}$.
 - For a subset $\mathcal{P} \subset \mathcal{J}$, define the \mathcal{P} problem, corresponding to a combination of binding and nonbinding inequality constraints

$$g(x) = 0$$

$$h^{i}(x) = 0, \quad i \in \mathcal{P},$$

$$\mu^{i} = 0, \quad i \in \mathcal{J} - \mathcal{P},$$

$$f_{x} + \lambda^{\top} g_{x} + \mu^{\top} h_{x} = 0.$$

$$(4.7.4)$$

- Solve (or attempt to do so) each $\mathcal P\text{-problem}$
- Choose the best solution among those \mathcal{P} -problems with solutions consistent with all constraints.
- We can do better in general.

Penalty Function Approach

- Many constrained optimization methods use a *penalty function* approach:
 - Replace constrained problem with related unconstrained problem.
 - Permit anything, but make it "painful" to violate constraints.
- Penalty function: for canonical problem

$$\begin{aligned}
\min_{x} & f(x) \\
s.t. & g(x) = a, \\
& h(x) \le b.
\end{aligned}$$
(4.7.5)

construct the penalty function problem

$$\min_{x} f(x) + \frac{1}{2} P\left(\sum_{i} \left(g^{i}(x) - a_{i}\right)^{2} + \sum_{j} \left(\max\left[0, h^{j}(x) - b_{j}\right]\right)^{2}\right)$$
(4.7.6)

where P > 0 is the penalty parameter.

- Denote the penalized objective in (4.7.6) F(x; P, a, b).
- Include a and b as parameters of F(x; P, a, b).
- If P is "infinite," then (4.7.5) and (4.7.6) are identical.
- Hopefully, for large P, their solutions will be close.

- Problem: for large P, the Hessian of F, F_{xx} , is ill-conditioned at x away from the solution.
- Solution: solve a sequence of problems.
 - Solve $\min_x F(x; P_1, a, b)$ with a small choice of P_1 to get x^1 .
 - Then execute the iteration

$$x^{k+1} \in \arg\min_{x} F(x; P_{k+1}, a, b)$$
 (4.7.7)

where we use x^k as initial guess in iteration k+1, and $F_{xx}(x^k; P_{k+1}, a, b)$ as the initial Hessian guess (which is hopefully not too ill-conditioned)

- Shadow prices in (4.7.5) and (4.7.7):
 - Shadow price of a_i in (4.7.6) is $F_{a_i} = P(g^i(x) a_i)$.
 - Shadow price of b_j in (4.7.6) is F_{b_j} ; $P(h^j(x) b_j)$ if binding, 0 otherwise.
- Theorem: Penalty method works with convergence of x and shadow prices as P_k diverges (under mild conditions)

- Simple example
 - Consumer buys good y (price is 1) and good z (price is 2) with income 5.
 - Utility is $u(y, z) = \sqrt{yz}$.
 - Optimal consumption problem is

$$\max_{y,z} \sqrt{yz}$$
s.t. $y + 2z \le 5$. (4.7.8)

with solution $(y^*, z^*) = (5/2, 5/4), \lambda^* = 8^{-1/2}.$

– Penalty function is

$$u(y,z) - \frac{1}{2}P(\max[0, y + 2z - 5])^2$$

- Iterates are in Table 4.7 (stagnation due to finite precision)

Table 4.7

		v	11 \	/
k	P_k	$(y,z)-(y^{\ast},z^{\ast})$	Constraint violation	$\lambda \ { m error}$
0	10	(8.8(-3), .015)	1.0(-1)	-5.9(-3)
1	10^{2}	(8.8(-4), 1.5(-3))	1.0(-2)	-5.5(-4)
2	10^{3}	(5.5(-5), 1.7(-4))	1.0(-3)	2.1(-2)
3	10^{4}	(-2.5(-4), 1.7(-4))	1.0(-4)	1.7(-4)
4	10^{5}	(-2.8(-4), 1.7(-4))	1.0(-5)	2.3(-4)

Penalty function method applied to (4.7.8)

Sequential Quadratic Method

• Special methods are available when we have a quadratic objective and linear constraints

$$\min_{x} (x-a)^{\top} A (x-a)$$

s.t. $b (x-s) = 0$
 $c (x-q) \le 0$

- Sequential Quadratic Method
 - Solution is stationary point of Lagrangian

$$\mathcal{L}(x,\lambda,\mu) = f(x) + \lambda^{\top}g(x) + \mu^{\top}h(x)$$

- Suppose that the current guesses are (x^k, λ^k, μ^k) .
- Let step size s^{k+1} solve approximating quadratic problem

$$\min_{s} \mathcal{L}_{x}(x^{k}, \lambda^{k}, \mu^{k})(x^{k} - s) + (x^{k} - s)^{\top} \mathcal{L}_{xx}(x^{k}, \lambda^{k}, \mu^{k})(x^{k} - s)$$

s.t. $g(x^{k}) + g_{x}(x^{k})(x^{k} - s) = 0$
 $h(x^{k}) + h_{x}(x^{k})(x^{k} - s) \leq 0$

- The next iterate is $x^{k+1} = x^k + \phi s^{k+1}$ for some ϕ
 - * Could use linesearch to choose ϕ , or must take $\phi = 1$.
 - * λ^k and μ^k are also updated but we do not describe the detail here.
- Proceed through a sequence of quadratic problems.
- S.Q. method inherits many properties of Newton's method
 - \ast rapid local convergence
 - * can use quasi-Newton to approximate Hessian.

Domain Problems

- Suppose $f: X \subseteq \mathbb{R}^n \to \mathbb{R}, g: X \subseteq \mathbb{R}^n \to \mathbb{R}^m, h: X \subseteq \mathbb{R}^n \to \mathbb{R}^\ell$, and we want to solve $\min_x f(x)$ $s.t. \ g(x) = 0$ $h(x) \le 0$ (4.7.1)
- The penalty function approach produces an unconstrained problem

$$\max_{x \in \mathbb{R}^n} F(x; P, a, b)$$

- Problem: F(x; P, a, b) may not be defined for all x.
- Example: Consumer demand problem

 $\max_{y,z} u(y, z)$ s.t. $p \ y + q \ z \le I.$

– Penalty method

$$\max_{y,z} u(y,z) - \frac{1}{2}P(\max[0, p \ y + q \ z - I])^2$$

– Problem: u(y, z) will not be defined for all y and z, such as

$$u(y, z) = \log y + \log z$$

$$u(y, z) = y^{1/3} z^{1/4}$$

$$u(y, z) = \left(y^{1/6} + z^{1/6}\right)^{7/2}$$

– Penalty method may crash when computer tries to evaluate u(y, z)!

- Solutions
 - Strategy 1: Transform variables
 - * If functions are defined only for $x_i > 0$, then reformulate in terms of $z_i = \log x_i$
 - * For example, let $\tilde{y} = \log y$, $\tilde{z} = \log z$, and solve

$$\max_{\widetilde{y},\widetilde{z}} \ u(e^{\widetilde{y}}, e^{\widetilde{z}}) - \frac{1}{2} P(\max[0, \ p \ e^{\widetilde{y}} + q \ e^{\widetilde{z}} - I])^2$$

- * Problem: log transformation may not preserve shape; e.g., concave function of x may not be concave in $\log x$
- Strategy 2: Alter objective and constraint functions so that they are defined everywhere (see discussion above)
- Strategy 3: Express the domain where functions are defined in terms of inequality constraints that are enforced by the algorithm at every step.
 - * E.g., if utility function is $\log (x) + \log (y)$, then add constraints $x \ge \delta, y \ge \delta$ for some very small $\delta > 0$ (use, for example, $\delta \approx 10^{-6}$; don't use $\delta = 0$ since roundoff error may still allow negative x or y)
 - * In general, you can avoid domain problems if you express the domain in terms of linear constraints.
 - * If the domain is defined by nonlinear functions, then create new variables that can describe the domain in linear terms.

Active Set Approach

- Problems:
 - Kuhn-Tucker approach has too many combinations to check
 - \ast some choices of ${\cal P}$ may have no solution
 - \ast there may be multiple local solutions to others.
 - Penalty function methods are costly since all constraints are in (4.7.5), even if only a few bind at solution.
- Solution: refine K-T with a *good sequence* of subproblems.
 - Let \mathcal{J} be the set $\{1, 2, \cdots, \ell\}$
 - for $\mathcal{P}\subset\mathcal{J}$, define the \mathcal{P} problem

$$\min_{x} f(x)$$

$$s.t. \ g(x) = 0, \qquad (\mathcal{P})$$

$$h^{i}(x) \le 0, \quad i \in \mathcal{P}.$$

$$(4.7.10)$$

- Choose an initial set of constraints, \mathcal{P} , and start to solve (4.7.10- \mathcal{P}).
- Periodically drop constraints in ${\mathcal P}$ which fail to bind
- Periodically add constraints which are violated.
- Increase penalty parameters
- The simplex method for linear programing is really an active set method.