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Optimization Problems

• Canonical problem:

minxf(x)

s.t. g(x) = 0,

h(x) ≤ 0,

— f : R
n
→ R is the objective function

— g : R
n
→ R

m
is the vector of m equality constraints

— h : R
n
→ R

!
is the vector of ! inequality constraints.

• Examples:

— Maximization of consumer utility subject to a budget constraint

— Optimal incentive contracts

— Portfolio optimization

— Life-cycle consumption

• Assumptions

— Always assume f, g, and h are continuous

— Usually assume f , g, and h are C
1

— Often assume f , g, and h are C
3
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Linear Programming

• Canonical linear programming problem is

minxa
!

x

s.t.Cx = b,

x ≥ 0.

(1)

— Dx ≤ f : use slack variables, s, and constraints Dx+ s = f, s ≥ 0.

— Dx ≥ f : use Dx− s = f, s ≥ 0, s is vector of surplus variables.

— x ≥ d : define y = x− d and min over y

— xi free: define xi = yi − zi, add constraints yi, zi ≥ 0, and min over (yi, zi).
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• Basic method is the simplex method. Figure 4.4 shows example:

minx,y −2x− y

s.t. x+ y ≤ 4, x, y ≥ 0,

x ≤ 3, y ≤ 2.

— Find some point on boundary of constraints, such as A.

— Step 1: Note which constraints are active at A and points nearby.

— Find feasible directions and choose steepest descent direction.

— Figure 4.4 has two directions: from A: to B and to O, with B better.

— Follow that direction to next vertex on boundary, and go back to step 1.

— Continue until no direction reduces the objective: point H.

— Stops in finite time since there are only a finite set of vertices.
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• General History

— Goes back to Dantzig (1951).

— Fast on average.

— Worst case time is exponential in number of variables and constraints

— Software implementations vary in numerical stability

• Interior point methods

— Developed in 1980’s

— Better on large problems
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Constrained Nonlinear Optimization

• General problem:

minxf(x)

s.t. g(x) = 0

h(x) ≤ 0

(4.7.1)

— f : X ⊆ R
n
→ R: n choices

— g : X ⊆ R
n
→ R

m
: m equality constraints

— h : X ⊆ R
n
→ R

!
: ! inequality constraints

— f, g, and h are C
2

on X

• Linear Independence Constraint Qualification (LICQ): The binding constraints at the solution are

linearly independent

• Kuhn-Tucker theorem: if there is a local minimum at x
∗

then there are multipliers λ
∗

∈ R
m
and

µ
∗

∈ R
!
such that x

∗

is a stationary, or critical point of L, the Lagrangian,

L(x,λ, µ) = f(x) + λ
!

g(x) + µ
!

h(x) (4.7.2)

If LICQ holds then the multipliers are unique; otherwise, they are called “unbounded”.
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• First-order conditions, Lx(x
∗

,λ
∗

, µ
∗

) = 0, imply that (λ
∗

, µ
∗

, x
∗

) solves

fx + λ
!

gx+µ
!

hx = 0

µ
i
h
i
(x)= 0 , i = 1, · · · , !

g(x)= 0

h(x)≤ 0

µ≥ 0

(4.7.3)
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A Kuhn-Tucker Approach

• Idea: try all possible Kuhn-Tucker systems and pick best

— Let J be the set {1, 2, · · · , !}.

— For a subset P ⊂ J , define the P problem, corresponding to a combination of binding and

nonbinding inequality constraints

g(x)= 0

h
i
(x)= 0 , i ∈ P,

µ
i
= 0 , i ∈ J −P ,

fx + λ
!

gx + µ
!

hx= 0.

(4.7.4)

— Solve (or attempt to do so) each P-problem

— Choose the best solution among thoseP-problems with solutions consistent with all constraints.

• We can do better in general.

9



Penalty Function Approach

• Many constrained optimization methods use a penalty function approach:

— Replace constrained problem with related unconstrained problem.

— Permit anything, but make it “painful” to violate constraints.

• Penalty function: for canonical problem

minx f(x)

s.t. g(x) = a,

h(x) ≤ b.

(4.7.5)

construct the penalty function problem

min
x

f(x) +

1

2

P




∑

i

(

g
i
(x)− ai

)
2

+

∑

j

(

max

[

0, h
j
(x)− bj

])
2



 (4.7.6)

where P > 0 is the penalty parameter.

— Denote the penalized objective in (4.7.6) F (x;P, a, b).

— Include a and b as parameters of F (x;P, a, b).

— If P is “infinite,” then (4.7.5) and (4.7.6) are identical.

— Hopefully, for large P , their solutions will be close.
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• Problem: for large P , the Hessian of F , Fxx, is ill-conditioned at x away from the solution.

• Solution: solve a sequence of problems.

— Solve minx F (x;P
1
, a, b) with a small choice of P

1
to get x

1

.

— Then execute the iteration

x
k+1

∈ argmin
x

F (x;Pk+1
, a, b) (4.7.7)

where we use x
k
as initial guess in iteration k+ 1, and Fxx(x

k
;Pk+1

, a, b) as the initial Hessian

guess (which is hopefully not too ill-conditioned)

• Shadow prices in (4.7.5) and (4.7.7):

— Shadow price of ai in (4.7.6) is Fa = P (g
i
(x)− ai).

— Shadow price of bj in (4.7.6) is Fb ; P (h
j
(x)− bj) if binding, 0 otherwise.

• Theorem: Penalty method works with convergence of x and shadow prices as Pk diverges (under

mild conditions)
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• Simple example

— Consumer buys good y (price is 1) and good z (price is 2) with income 5.

— Utility is u(y, z) =
√
yz.

— Optimal consumption problem is

maxy,z

√
yz

s.t. y + 2z ≤ 5.

(4.7.8)

with solution (y
∗

, z
∗

) = (5/2, 5/4), λ
∗

= 8
−1/2

.

— Penalty function is

u(y, z)−
1

2

P (max[0, y + 2z − 5])
2

— Iterates are in Table 4.7 (stagnation due to finite precision)

Table 4.7

Penalty function method applied to (4.7.8)

k Pk (y, z)− (y
∗

, z
∗

) Constraint violation λ error

0 10 (8.8(-3), .015) 1.0(−1) −5.9(−3)

1 10
2

(8.8(−4), 1.5(−3)) 1.0(−2) −5.5(−4)

2 10
3

(5.5(−5), 1.7(−4)) 1.0(−3) 2.1(−2)

3 10
4

(−2.5(−4), 1.7(−4)) 1.0(−4) 1.7(−4)

4 10
5

(−2.8(−4), 1.7(−4)) 1.0(−5) 2.3(−4)
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Sequential Quadratic Method

• Special methods are available when we have a quadratic objective and linear constraints

minx (x− a)
!

A (x− a)

s.t. b (x− s) = 0

c (x− q) ≤ 0

• Sequential Quadratic Method

— Solution is stationary point of Lagrangian

L(x,λ, µ) = f(x) + λ
!

g(x) + µ
!

h(x)

— Suppose that the current guesses are (x ,λ , µ ).

— Let step size s
k+1

solve approximating quadratic problem

minsLx(x
k
,λ

k
, µ

k
)(x

k
− s) + (x

k
− s)

!

Lxx(x
k
,λ

k
, µ

k
)(x

k
− s)

s.t. g(x
k
) + gx(x

k
)(x

k
− s) = 0

h(x
k
) + hx(x

k
)(x

k
− s) ≤ 0

— The next iterate is x
k+1

= x
k
+ φs

k+1

for some φ

∗ Could use linesearch to choose φ, or must take φ = 1.

∗ λ
k
and µ

k
are also updated but we do not describe the detail here.

— Proceed through a sequence of quadratic problems.

— S.Q. method inherits many properties of Newton’s method

∗ rapid local convergence

∗ can use quasi-Newton to approximate Hessian.
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Domain Problems

• Suppose f : X ⊆ R
n
→ R, g : X ⊆ R

n
→ R

m
, h : X ⊆ R

n
→ R

!
, and we want to solve

minxf(x)

s.t. g(x) = 0

h(x) ≤ 0

(4.7.1)

• The penalty function approach produces an unconstrained problem

max
x∈R

F (x;P, a, b)

• Problem: F (x;P, a, b) may not be defined for all x.

• Example: Consumer demand problem

maxy,z u(y, z)

s.t. p y + q z ≤ I.

— Penalty method

max
y,z

u(y, z)−
1

2

P (max[0, p y + q z − I])
2

— Problem: u (y, z) will not be defined for all y and z, such as

u(y, z)=log y + log z

u(y, z)=y
1/3

z
1/4

u(y, z)=

(

y
1/6

+ z
1/6

)
7/2

— Penalty method may crash when computer tries to evaluate u (y, z)!
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• Solutions

— Strategy 1: Transform variables

∗ If functions are defined only for xi > 0, then reformulate in terms of zi = log xi

∗ For example, let ỹ = log y, z̃ = log z, and solve

max

ỹ,z̃

u(e
ỹ
, e

z̃
)−

1

2

P (max[0, p e
ỹ
+ q e

z̃
− I])

2

∗ Problem: log transformation may not preserve shape; e.g., concave function of x may not

be concave in log x

— Strategy 2: Alter objective and constraint functions so that they are defined everywhere (see

discussion above)

— Strategy 3: Express the domain where functions are defined in terms of inequality constraints

that are enforced by the algorithm at every step.

∗ E.g., if utility function is log (x) + log (y), then add constraints x ≥ δ, y ≥ δ for some very

small δ > 0 (use, for example, δ ≈ 10
−6

; don’t use δ = 0 since roundoff error may still allow

negative x or y)

∗ In general, you can avoid domain problems if you express the domain in terms of linear

constraints.

∗ If the domain is defined by nonlinear functions, then create new variables that can describe

the domain in linear terms.
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Active Set Approach

• Problems:

— Kuhn-Tucker approach has too many combinations to check

∗ some choices of P may have no solution

∗ there may be multiple local solutions to others.

— Penalty function methods are costly since all constraints are in (4.7.5), even if only a few bind

at solution.

• Solution: refine K-T with a good sequence of subproblems.

— Let J be the set {1, 2, · · · , !}

— for P ⊂ J , define the P problem

minxf(x)

s.t. g(x) = 0,

h
i
(x) ≤ 0, i ∈ P.

(P) (4.7.10)

— Choose an initial set of constraints, P, and start to solve (4.7.10-P).

— Periodically drop constraints in P which fail to bind

— Periodically add constraints which are violated.

— Increase penalty parameters

• The simplex method for linear programing is really an active set method.
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