Numerical Methods in Economics
MIT Press, 1998

Notes for Chapter 4: Constrained Optimization

October 13, 2010

Optimization Problems

e Canonical problem:

— f: R" — R is the objective function
— g : R" — R™ is the vector of m equality constraints

— h : R" — R is the vector of ¢ inequality constraints.
e Eixamples:

— Maximization of consumer utility subject to a budget constraint
— Optimal incentive contracts
— Portfolio optimization

— Life-cycle consumption
e Assumptions

— Always assume f, g, and h are continuous
— Usually assume f, g, and h are C"

— Often assume f, g, and h are C?

Linear Programming

e Canonical linear programming problem is
min, a ' x
s.t.Cx = b,
x > 0.
— Dx < f : use slack variables, s, and constraints Dx + s = f,s > 0.
—Dx > f:use Dxr —s = f,s >0, sis vector of surplus variables.

—x > d : define y = r — d and min over y

— x; free: define z; = y; — z;, add constraints y;, z; > 0, and min over (y;, ;).

e Basic method is the stmplex method. Figure 4.4 shows example:
ming, , —2r —y
st.x+y<4, x,y=>0,
r<3 y<2

— Find some point on boundary of constraints, such as A.

— Step 1: Note which constraints are active at A and points nearby.

— Find feasible directions and choose steepest descent direction.

— Figure 4.4 has two directions: from A: to B and to O, with B better.

— Follow that direction to next vertex on boundary, and go back to step 1.

— Continue until no direction reduces the objective: point H.

— Stops in finite time since there are only a finite set of vertices.

= 4

e General History

— Goes back to Dantzig (1951).
— Fast on average.
— Worst case time is exponential in number of variables and constraints

— Software implementations vary in numerical stability
e Interior point methods

— Developed in 1980’s

— Better on large problems

Constrained Nonlinear Optimization

e General problem:
min,, f(x)
s.t. g(x) =
h(x)

(4.7.1)

VA

— f: X CR" — R: n choices

—g: X CR" — R"™ m equality constraints
—h: X CR" — R" / inequality constraints
— f,g,and h are C? on X

e Linear Independence Constraint Qualification (LICQ): The binding constraints at the solution are
linearly independent

e Kuhn-Tucker theorem: if there is a local minimum at z* then there are multipliers * € R™ and
w* € RY such that z* is a stationary, or critical point of £, the Lagrangian,

Lz, \p) = f(@)+ X g(z)+p h(x) (4.7.2)

If LICQ holds then the multipliers are unique; otherwise, they are called “unbounded”.

e First-order conditions, £, (z*, *, u*) = 0, imply that (*, u*, 2*) solves

fx +)\Tgx +MThx =0
pih'(2)=0, i=1,--- ¢

g(x)=0 (4.7.3)
h(z)<0
>0

A Kuhn-Tucker Approach

e Idea: try all possible Kuhn-Tucker systems and pick best

— Let J be the set {1,2,--- ,/}.

— For a subset P C J, define the P problem, corresponding to a combination of binding and
nonbinding inequality constraints

g(x)=0
W(x)=0, i
(x)i_ . LeP, (4.7.4)
H=Vu, (S j _P 3
fot Mg +p"h,=0.

— Solve (or attempt to do so) each P-problem

— Choose the best solution among those PP-problems with solutions consistent with all constraints.

e We can do better in general.

Penalty Function Approach
e Many constrained optimization methods use a penalty function approach:

— Replace constrained problem with related unconstrained problem.

— Permit anything, but make it “painful” to violate constraints.

e Penalty function: for canonical problem

min, f(x)
st. g(x)=a, (4.7.5)
h(z) <b.
construct the penalty function problem
. 1 i 2 ; 2
min f(x) + §P Z (9'(x) —ai)” + Z (max [0,/ (z) — b;]) (4.7.6)
i j

where P > (is the penalty parameter.

— Denote the penalized objective in (4.7.6) F(x; P, a,b).
— Include a and b as parameters of F'(x; P, a,b).
— If P is “infinite,” then (4.7.5) and (4.7.6) are identical.

— Hopetully, for large P, their solutions will be close.

e Problem: for large P, the Hessian of F', F).,, is ill-conditioned at x away from the solution.

e Solution: solve a sequence of problems.

— Solve min, F (x; Py, a,b) with a small choice of P; to get z!.

— Then execute the iteration
"1 ¢ argmin F (2; Ppy1,a,b) (4.7.7)

k

where we use 2" as initial guess in iteration k + 1, and F,,.(z*; P11, a, b) as the initial Hessian

guess (which is hopefully not too ill-conditioned)
e Shadow prices in (4.7.5) and (4.7.7):
— Shadow price of a; in (4.7.6) is F,, = P(¢'(x) — a;).
— Shadow price of b; in (4.7.6) is Fy;; P(h/(x) — b;) if binding, 0 otherwise.

e Theorem: Penalty method works with convergence of x and shadow prices as P diverges (under
mild conditions)

e Simple example

— Consumer buys good y (price is 1) and good z (price is 2) with income 5.

— Utility is u(y, z) = \/yz.

— Optimal consumption problem is

with solution (y*, z*)

— Penalty function is

— Tterates are in Table 4.7 (stagnation due to finite precision)

Penalty function method applied to (4.7.8)

= (5/2,5/4), A

maxy, , /Y

st. y+2z<5.

|
u(y, z) — 5 P(max[0,y +2z — 5])°

f =872

Table 4.7

k B (y,2) — (y*,2*) Constraint violation \ error
0 10 (8.8(-3),.015) 1.0(—1) T5.9(—3)
1 10> (8.8(—4), 1L.5(—3)) 1.0(—2) —5.5(—4)
2 10° (5.5(=5), 1.7(—4)) 1.0(—3) 2.1(—2)
3 10" (—2.5(—4), 1.7(—4)) 1.0(—4) 1.7(—4)
4 100 (—2.8(—4), 1.7(—4)) 1.0(—5) 2.3(—4)

(4.7.8)

Sequential Quadratic Method

e Special methods are available when we have a quadratic objective and linear constraints
: T
min, (z —a) Az —a)
st. b(x—s)=0
c(x—q) <0
e Sequential Quadratic Method

— Solution is stationary point of Lagrangian
Lz, A\ 1) = f(z) + A g(x) + p h(z)

— Suppose that the current guesses are (z+, A, 1i+).

1 solve approximating quadratic problem

ming £, (x%, \¥) 1#) (2F — s) + (2% — 5)T Lo0(@F, N, 1F) (28 — 5)
s.it. g(z®) + g (2¥) (2% — 5) =0
h(z®) + h(2¥)(zF — s) <0

— The next iterate is 2"+ = z* + ¢s**! for some ¢

— Let step size s

* Could use linesearch to choose ¢, or must take ¢ = 1.

+ N and p* are also updated but we do not describe the detail here.
— Proceed through a sequence of quadratic problems.
— S.Q. method inherits many properties of Newton’s method

« rapid local convergence

x can use quasi-Newton to approximate Hessian.

Domain Problems
e Suppose f : X CR" =R, g: X CR*" - R™ h: X CR" — R, and we want to solve

min,, f(x)
s.t. g(x)
h(z) <

0
0
e The penalty function approach produces an unconstrained problem

max F'(x; P, a,b)

TeR?

e Problem: F'(x; P, a,b) may not be defined for all z.

e Example: Consumer demand problem
max, , u(y, 2)
st.py+qz<1.
— Penalty method

1
max u(y, z) — §P(ma><[0, py+qz—1I)

Y,z
— Problem: u (y, z) will not be defined for all y and z, such as

u(y, z)=logy + log z
uly, z)=y"*z"!

7/2
u(y, 2)= (yl/ 642V 6)

— Penalty method may crash when computer tries to evaluate u (y, z)!

(4.7.1)

e Solutions

— Strategy 1: Transform variables

« If functions are defined only for x; > 0, then reformulate in terms of z; = log z;
x For example, let y = logy, 2 = log z, and solve

| _ _
max u(e!,) — S P(max[0, p e’ +q e* — 1))’
Y,z

+x Problem: log transformation may not preserve shape; e.g., concave function of x may not
be concave in log x

— Strategy 2: Alter objective and constraint functions so that they are defined everywhere (see
discussion above)

— Strategy 3: Express the domain where functions are defined in terms of inequality constraints
that are enforced by the algorithm at every step.

x F.g., if utility function is log (z) + log (y), then add constraints x > 0,y > 0 for some very
small 6 > 0 (use, for example, 6 ~ 1075 don’t use 6 = 0 since roundoff error may still allow
negative x or y)

* In general, you can avoid domain problems if you express the domain in terms of linear
constraints.

« If the domain is defined by nonlinear functions, then create new variables that can describe
the domain in linear terms.

Active Set Approach
e Problems:

— Kuhn-Tucker approach has too many combinations to check

* some choices of P may have no solution

* there may be multiple local solutions to others.

— Penalty function methods are costly since all constraints are in (4.7.5), even if only a few bind
at solution.

e Solution: refine K-T with a good sequence of subproblems.

— Let J be the set {1,2,--- ¢}
— for P C J , define the P problem

min, f(z)
s.t. g(x) =0, (P) (4.7.10)
hi(x) <0, i€eP.

— Choose an initial set of constraints, P, and start to solve (4.7.10-P).
— Periodically drop constraints in P which fail to bind
— Periodically add constraints which are violated.

— Increase penalty parameters

e The simplex method for linear programing is really an active set method.

