Numerical Methods in Economics MIT Press, 1998

Notes for Chapter 4: Constrained Optimization

October 13, 2010

Optimization Problems

• Canonical problem:

$$
\min_{x} f(x)
$$

s.t. $g(x) = 0$,
 $h(x) \le 0$,

 $\ddot{}$

- $-f : \mathbb{R}^n \to \mathbb{R}$ is the objective function
- $-g: \mathbb{R}^n \to \mathbb{R}^m$ is the vector of m equality constraints
- $h : \mathbb{R}^n \to \mathbb{R}^\ell$ is the vector of ℓ inequality constraints.
- Examples:
	- Maximization of consumer utility subject to a budget constraint
	- Optimal incentive contracts
	- Portfolio optimization
	- Life-cycle consumption
- Assumptions
	- Always assume f, g , and h are continuous
	- Usually assume f, g, and h are C^1
	- Often assume f, g, and h are C^3

Linear Programming

• Canonical linear programming problem is

$$
\min_{x} a^{\top} x
$$

s.t. $Cx = b$,
 $x \ge 0$. (1)

 $-Dx \le f$: use *slack variables*, *s*, and constraints $Dx + s = f, s \ge 0$.

- $-Dx \ge f$: use $Dx s = f, s \ge 0$, s is vector of surplus variables.
- $-x \geq d$: define $y = x d$ and min over y
- x_i free: define $x_i = y_i z_i$, add constraints $y_i, z_i \ge 0$, and min over (y_i, z_i) .

• Basic method is the *simplex method*. Figure 4.4 shows example:

$$
\min_{x,y} -2x - y
$$

s.t. $x + y \le 4$, $x, y \ge 0$,
 $x \le 3$, $y \le 2$.

 $\ddot{}$

- Find some point on boundary of constraints, such as A.
- Step 1: Note which constraints are active at A and points nearby.
- Find feasible directions and choose steepest descent direction.
- Figure 4.4 has two directions: from A: to B and to O, with B better.
- Follow that direction to next vertex on boundary, and go back to step 1.
- $-$ Continue until no direction reduces the objective: point H .
- Stops in finite time since there are only a finite set of vertices.

- \bullet General History
	- Goes back to Dantzig (1951).
	- Fast on average.
	- Worst case time is exponential in number of variables and constraints

 $\overline{}$

- Software implementations vary in numerical stability
- Interior point methods
	- Developed in 1980's
	- Better on large problems

Constrained Nonlinear Optimization

• General problem:

$$
\min_{x} f(x)
$$

s.t. $g(x) = 0$
 $h(x) \le 0$ (4.7.1)

- $-f: X \subseteq \mathbb{R}^n \to \mathbb{R}: n$ choices
- $-g: X \subseteq \mathbb{R}^n \to \mathbb{R}^m$: m equality constraints
- $h : X \subseteq \mathbb{R}^n \to \mathbb{R}^\ell$: ℓ inequality constraints
- f, g, and h are C^2 on X
- Linear Independence Constraint Qualification (LICQ): The binding constraints at the solution are linearly independent
- Kuhn-Tucker theorem: if there is a local minimum at x^* then there are multipliers $\lambda^* \in \mathbb{R}^m$ and $\mu^* \in \mathbb{R}^{\ell}$ such that x^* is a *stationary*, or *critical* point of \mathcal{L} , the *Lagrangian*,

$$
\mathcal{L}(x,\lambda,\mu) = f(x) + \lambda^{\top} g(x) + \mu^{\top} h(x) \tag{4.7.2}
$$

If LICQ holds then the multipliers are unique; otherwise, they are called "unbounded".

 \overline{a}

• First-order conditions, $\mathcal{L}_x(x^*, \lambda^*, \mu^*) = 0$, imply that (λ^*, μ^*, x^*) solves

$$
f_x + \lambda^\top g_x + \mu^\top h_x = 0
$$

\n
$$
\mu_i h^i(x) = 0, \quad i = 1, \dots, \ell
$$

\n
$$
g(x) = 0
$$

\n
$$
h(x) \le 0
$$

\n
$$
\mu \ge 0
$$
\n(4.7.3)

A Kuhn-Tucker Approach

- Idea: try all possible Kuhn-Tucker systems and pick best
	- Let $\mathcal J$ be the set $\{1, 2, \cdots, \ell\}.$
	- For a subset $\mathcal{P} \subset \mathcal{J}$, define the \mathcal{P} problem, corresponding to a combination of binding and nonbinding inequality constraints

$$
g(x) = 0
$$

\n
$$
h^{i}(x) = 0, \quad i \in \mathcal{P},
$$

\n
$$
\mu^{i} = 0, \quad i \in \mathcal{J} - \mathcal{P},
$$

\n
$$
f_{x} + \lambda^{\top} g_{x} + \mu^{\top} h_{x} = 0.
$$
\n(4.7.4)

- $-$ Solve (or attempt to do so) each P -problem
- Choose the best solution among those P -problems with solutions consistent with all constraints.

 $\ddot{}$

• We can do better in general.

Penalty Function Approach

- Many constrained optimization methods use a *penalty function* approach:
	- Replace constrained problem with related unconstrained problem.
	- Permit anything, but make it "painful" to violate constraints.
- Penalty function: for canonical problem

$$
\min_{x} f(x)
$$

s.t. $g(x) = a$,
 $h(x) \le b$.
(4.7.5)

construct the penalty function problem

$$
\min_{x} f(x) + \frac{1}{2} P\left(\sum_{i} (g^{i}(x) - a_{i})^{2} + \sum_{j} (\max\left[0, h^{j}(x) - b_{j}\right])^{2}\right)
$$
(4.7.6)

10

where $P > 0$ is the penalty parameter.

- Denote the penalized objective in $(4.7.6)$ $F(x; P, a, b)$.
- Include a and b as parameters of $F(x; P, a, b)$.
- If P is "infinite," then $(4.7.5)$ and $(4.7.6)$ are identical.
- $-$ Hopefully, for large P , their solutions will be close.
- Problem: for large P, the Hessian of F, F_{xx} , is ill-conditioned at x away from the solution.
- Solution: solve a sequence of problems.
	- Solve min_x $F(x; P_1, a, b)$ with a small choice of P_1 to get x^1 .
	- Then execute the iteration

$$
x^{k+1} \in \arg\min_{x} \ F(x; P_{k+1}, a, b) \tag{4.7.7}
$$

where we use x^k as initial guess in iteration $k + 1$, and $F_{xx}(x^k; P_{k+1}, a, b)$ as the initial Hessian guess (which is hopefully not too ill-conditioned)

- Shadow prices in $(4.7.5)$ and $(4.7.7)$:
	- Shadow price of a_i in (4.7.6) is $F_{a_i} = P(g^i(x) a_i)$.
	- Shadow price of b_j in (4.7.6) is F_{b_j} ; $P(h^j(x) b_j)$ if binding, 0 otherwise.
- Theorem: Penalty method works with convergence of x and shadow prices as P_k diverges (under mild conditions)
- Simple example
	- Consumer buys good y (price is 1) and good z (price is 2) with income 5.
	- Utility is $u(y, z) = \sqrt{yz}$.
	- Optimal consumption problem is

$$
\max_{y,z} \sqrt{yz}
$$

s.t. $y + 2z \le 5$. (4.7.8)

with solution $(y^*, z^*) = (5/2, 5/4), \lambda^* = 8^{-1/2}.$

— Penalty function is

$$
u(y, z) - \frac{1}{2}P(\max[0, y + 2z - 5])^{2}
$$

— Iterates are in Table 4.7 (stagnation due to finite precision)

Table 4.7

 $\frac{1}{2}$

Penalty function method applied to (4.7.8)

Sequential Quadratic Method

• Special methods are available when we have a quadratic objective and linear constraints

$$
\min_{x} (x - a)^{\top} A (x - a)
$$

s.t. $b (x - s) = 0$
 $c (x - q) \le 0$

- Sequential Quadratic Method
	- Solution is stationary point of Lagrangian

$$
\mathcal{L}(x,\lambda,\mu) = f(x) + \lambda^{\top} g(x) + \mu^{\top} h(x)
$$

- Suppose that the current guesses are (x^k, λ^k, μ^k) .
- Let step size s^{k+1} solve approximating quadratic problem

$$
\min_{s} \mathcal{L}_x(x^k, \lambda^k, \mu^k)(x^k - s) + (x^k - s)^{\top} \mathcal{L}_{xx}(x^k, \lambda^k, \mu^k)(x^k - s)
$$

s.t. $g(x^k) + g_x(x^k)(x^k - s) = 0$
 $h(x^k) + h_x(x^k)(x^k - s) \le 0$

13

- The next iterate is $x^{k+1} = x^k + \phi s^{k+1}$ for some ϕ
	- ∗ Could use linesearch to choose φ, or must take φ = 1.
	- ∗ λ^k and μ^k are also updated but we do not describe the detail here.
- Proceed through a sequence of quadratic problems.
- S.Q. method inherits many properties of Newton's method
	- ∗ rapid local convergence
	- ∗ can use quasi-Newton to approximate Hessian.

Domain Problems

- Suppose $f: X \subseteq \mathbb{R}^n \to \mathbb{R}, g: X \subseteq \mathbb{R}^n \to \mathbb{R}^m, h: X \subseteq \mathbb{R}^n \to \mathbb{R}^{\ell}$, and we want to solve $\min_x f(x)$ s.t. $g(x)=0$ $h(x) \leq 0$ (4.7.1)
- The penalty function approach produces an unconstrained problem

$$
\max_{x \in \mathbb{R}^n} F(x; P, a, b)
$$

- Problem: $F(x; P, a, b)$ may not be defined for all x.
- Example: Consumer demand problem

 $\max_{y,z} u(y,z)$ s.t. $p \, y + q \, z \leq I$.

— Penalty method

$$
\max_{y,z} u(y,z) - \frac{1}{2}P(\max[0, p \ y + q \ z - I])^{2}
$$

- Problem: $u(y, z)$ will not be defined for all y and z, such as

$$
u(y, z) = \log y + \log z
$$

\n
$$
u(y, z) = y^{1/3} z^{1/4}
$$

\n
$$
u(y, z) = (y^{1/6} + z^{1/6})^{7/2}
$$

 \sim 14

– Penalty method may crash when computer tries to evaluate $u(y, z)$!

- Solutions
	- Strategy 1: Transform variables
		- $∗$ If functions are defined only for $x_i > 0$, then reformulate in terms of $z_i = \log x_i$
		- ∗ For example, let $\widetilde{y} = \log y$, $\widetilde{z} = \log z$, and solve

$$
\max_{\tilde{y}, \tilde{z}} u(e^{\tilde{y}}, e^{\tilde{z}}) - \frac{1}{2} P(\max[0, p \ e^{\tilde{y}} + q \ e^{\tilde{z}} - I])^{2}
$$

- ∗ Problem: log transformation may not preserve shape; e.g., concave function of x may not be concave in $\log x$
- Strategy 2: Alter objective and constraint functions so that they are defined everywhere (see discussion above)
- Strategy 3: Express the domain where functions are defined in terms of inequality constraints that are enforced by the algorithm at every step.
	- ∗ E.g., if utility function is log (x) + log (y), then add constraints x ≥ δ, y ≥ δ for some very small $\delta > 0$ (use, for example, $\delta \approx 10^{-6}$; don't use $\delta = 0$ since roundoff error may still allow negative x or y)
	- ∗ In general, you can avoid domain problems if you express the domain in terms of linear constraints.
	- ∗ If the domain is defined by nonlinear functions, then create new variables that can describe the domain in linear terms.

15

Active Set Approach

- Problems:
	- Kuhn-Tucker approach has too many combinations to check
		- ∗ some choices of P may have no solution
		- ∗ there may be multiple local solutions to others.
	- Penalty function methods are costly since all constraints are in (4.7.5), even if only a few bind at solution.
- Solution: refine K-T with a *good sequence* of subproblems.
	- Let $\mathcal J$ be the set $\{1, 2, \cdots, \ell\}$
	- for $\mathcal{P} \subset \mathcal{J}$, define the \mathcal{P} problem

$$
\min_{x} f(x)
$$

s.t. $g(x) = 0$, (P)
 $h^{i}(x) \le 0$, $i \in P$. $(4.7.10)$

- Choose an initial set of constraints, P , and start to solve $(4.7.10\text{-}P)$.
- Periodically drop constraints in P which fail to bind
- Periodically add constraints which are violated.
- Increase penalty parameters
- The simplex method for linear programing is really an active set method.

16