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ABSTRACT
The asymptotic results pertaining to the distribution of the log-likelihood ratio allow for the creation of a
confidence region, which is a general extension of the confidence interval. Two- and three-dimensional
regions can be displayed visually to describe the plausible region of the parameters of interest simultane-
ously. Whilemost advanced statistical textbooks on inference discuss these asymptotic confidence regions,
there is no exploration of how to numerically compute these regions for graphical purposes. This arti-
cle demonstrates the application of a simple trigonometric transformation to compute two- and three-
dimensional confidence regions; we transform the Cartesian coordinates of the parameters to create what
we call the radial profile log-likelihood. The method is applicable to any distribution with a defined likeli-
hood function, so it is not limited to specific data distributions ormodel paradigms.Wedescribe themethod
along with the algorithm, follow with an example of our method, and end with an examination of compu-
tation time. Supplementary materials for this article are available online.

1. Introduction

A confidence region is a high-dimensional generalization of a
confidence interval; it describes the 100(1 − α)% confidence
area of a multi-dimensional parameter. Unlike familywise error
corrections of simultaneous confidence intervals, confidence
regions account for the probabilistic relationship between the
variables, resulting in a more precise description of the confi-
dence bounds for the parameters simultaneously.

The limiting distribution of the log-likelihood ratio statis-
tic, which can be used to create asymptotic confidence regions,
is discussed in textbooks commonly used in a mathemati-
cal statistics class (such as Casella and Berger 2002; Wackerly,
Mendenhall, and Scheaffer 2008). One method to graphically
display a desired region is to compute the log-likelihood ratio
over a grid of parameter values, and then estimate the bound
from these values. This approach is sufficient for most cases, but
there are two major drawbacks. First, if the data are highly vari-
able the number of values to compute becomes very large, having
a significant impact on computation time. Second, if the range of
parameter values is not properly selected the confidence region
may not be captured.

The topic of graphically displaying higher dimensional data
has been explored in the literature, but the focus is not on general
computational efficiency. These articles focus on creating more
exact bounds for the confidence regions (Box and Hunter 1954;
Lane and Dumouchel 1994), computation for specific models
(Castillo andCahya 2001; Donaldson and Schnabel 1987; Carter
et al. 1984), or creation of different approaches to graphically dis-
play the data (Hyndman 1996; Venzon and Moolgavkar 1988).
Our goal is to develop a general algorithm to efficiently and
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quickly compute a two-or three-dimensional confidence region
for any distribution or model.

We demonstrate a method for computing two- and three-
dimensional confidence regions that is applicable to any case
where the likelihood function can be expressed. Our method
uses a trigonometric transformation of the parameters of inter-
est allowing us to greatly simplify the computation of the con-
fidence bound and eliminate the issue of specifying a range of
parameter values.

2. Confidence Regions Using Likelihood Ratio Test

We start with a brief summary of likelihood functions and the
likelihood ratio. For the remainder, we will denote random vari-
ables with upper case letters. Sample values will be denoted with
lower case letters.

Let Xi be a random variable from some distribution fX
with p× 1 parameter vector θ . Given a simple random sample
x1, . . . , xn the likelihood function for θ is

L(θ ) = L(θ; x) =
n∏
i=1

fX (xi; θ ).

The value θ̂ = θ̂ (x1, . . . , xn) that maximizes L(θ ) is called the
maximum likelihood estimator (MLE) of the true parameter
vector θ0; specifically, for a sample x1, . . . , xn themaximum like-
lihood estimator is

θ̂ = sup
θ

n∏
i=1

fX (xi; θ ).
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It should be noted that MLEs do not always exist and may not
be unique. We will assume for the remainder that unique MLEs
exists, and as a consequence

L(θ̂ ) > L(θ ) for all θ �= θ̂ .

In most cases, it is computationally advantageous to work with
the natural log of the likelihood function,

�(θ ) = �(θ; x) = logL(θ ) =
n∑

i=1

log fX (xi; θ )

which is referred to as the log-likelihood. The log-likelihood
ratio

T (θ ) = −2 log
(L(θ )

L(θ̂ )

)
= −2[�(θ ) − �(θ̂ )] (1)

is approximately χ2(p) when n is large (Wilks 1938). This gives
rise to the likelihood ratio test, which we can use to compute the
100(1 − α)% confidence bounds.

Inmany cases, we havewhat are commonly referred to as nui-
sance parameters. These are parameters that must be estimated
to compute the likelihood function but are not of interest for
the analysis. Let θ denote the p× 1 subset of parameters we are
interested in, and ν denote the q × 1 set of nuisance parameters.
The profile log-likelihood function is

�̂(θ ) = sup
ν

�(θ, ν) = �(θ, ν̂(θ )),

where ν̂(θ ) is the value that maximizes the log-likelihood func-
tion given the value of θ (Pawitan 2013, pp. 61–62). Since ν̂(θ )

adds additional computation a common approach is to replace
ν̂(θ ) with ν̂(θ̂ ) = ν̂, which is simply the MLE of the nuisance
parameters. This substitution is theoretically justified when
the maximum likelihood estimator is consistent (Barndorff-
Nielsen and Cox 1994, pp. 90–92). We now have the profile
log-likelihood

�̂(θ ) = �(θ, ν̂),

and the profile log-likelihood ratio

T (θ ) = −2[�̂(θ ) − �̂(θ̂ )] (2)

is approximately χ2(p)when n is large. For the remainder of the
article, we will work with profile log likelihoods, but when there
are no nuisance parameters Equation (1) replaces Equation (2).

We now give a formal definition for the asymptotic
p-dimensional confidence bound. The boundary of a 100
(1 − α)% confidence region is the set

Bθ = {∀θ ∈ R
p ∣∣T (θ ) = χ2

(1−α)(p)
}
,

whereχ2
(1−α)(p) is the (1 − α) quantile of a chi-squared random

variable with p degrees of freedom.

3. The Radial Profile Log-Likelihood Ratio

3.1. Two-Parameter Confidence Region

The radial profile log-likelihood ratio is based on recogniz-
ing that any pair of Cartesian coordinates (x, y) on R

2 can be

Figure . Visual example of defining a pair (θx, θy ) in terms of (φ, r).

expressed in terms of an angle φ and a distance r from some
origin point. Let the two parameters of interest be the scalars
θx and θy, with the subscripts denoting the axis the parameter
is displayed. Let φ ∈ [0, 2π) denote the angular coordinate and
r ∈ [0,∞) denote the radial coordinate. Setting the MLEs θ̂x

and θ̂y as the origin, for a fixed φ and r there exists a (θx, θy)

pair

θx = θ̂x + r cos(φ),

and
θy = θ̂y + r sin(φ). (3)

Figure 1 shows a visual representation of Equation (3).
The profile log-likelihood for a fixed φ is

�̂φ (r) = �̂(θ̂x + r cos(φ), θ̂y + r sin(φ)),

which leads to the radial profile log-likelihood ratio

Tφ(r) = −2(�̂φ (r) − �̂φ (0)), (4)

and the distance from theMLEs to the boundary of a two param-
eter 100(1 − α)% confidence region for a given φ (which is the
radial coordinate) is

min
r

{
r ∈ R

1 ∣∣Tφ(r) = χ2
1−α(2)

}
. (5)

There may be cases where there is no solution to Equation (5),
indicating that the boundary edge extends beyond the parame-
ter space. In these instances, r is the maximum value such that
the solutions to Equation (3) are on the parameter space.

A set of points defining the edge of the confidence region is
computed by choosing a set of φ, then for each φ find the dis-
tance r from theMLEs to the boundary edge using Equation (5),
which is then back transformed to the original Cartesian coor-
dinates using Equation (3).

The most obvious advantage to this method is at each step
the points defining the boundary edge are found, so there are
not any “wasted” computations. Furthermore, the user does not
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have to specify any lower or upper bounds for the parameters of
interest since each step finds the edge points; instead of having
to define a grid of values we simply need to choose how many
points we want to use to create the confidence bound. Determi-
nation of r for each φ can be accomplished using a numerical
single root solution or a constrained optimization function.

3.2. Three-Parameter Confidence Region

Extension of the radial profile log-likelihood to a three-
parameter region is done using the spherical coordinate conver-
sion.Define the azimuthφ ∈ [0, 2π), the inclination τ ∈ [0, π],
and radial coordinate r ∈ [0,∞). Using the MLEs as the origin
the spherical coordinates are

θx = θ̂x + r cos(φ) sin(τ ),

θy = θ̂y + r sin(φ) sin(τ ),

θz = θ̂z + r cos(τ ),

the resultant radial profile log-likelihood is

�̂φ,τ (r) = �̂(θ̂x + r cos(φ) sin(τ ),

× θ̂y + r sin(φ) sin(τ ), θ̂z + r cos(τ )),

the radial profile log-likelihood ratio is

Tφ,τ (r) = −2(�̂φ,τ (r) − �̂φ,τ (0)),

and finally the distance to the boundary is

min
r

{
r ∈ R

1 ∣∣Tφ,τ (r) = χ2
1−α(3)

}
.

The steps to compute the region would be the same approach
shown using polar coordinates except each r is based on a pair
(φ, τ ). Like the polar coordinate conversion this also guarantees
that all computations define a boundary edge of the region.

3.3. Example

We demonstrate how to compute a 90% confidence region for
bivariate normal data using the radial profile log-likelihood
ratio. Let x1, . . . , xn be a sample from a bivariate normal dis-
tribution. If we are interested in inference on the mean vector
μ = (μx, μy)

T the profile log-likelihood ratio is

T (μx, μy) = n
1 − ρ̂2

[(
μ̂x − μx

σ̂x

)2

+
(

μ̂y − μy

σ̂y

)2

− 2ρ̂
(

μ̂x − μx

σ̂x

) (
μ̂y − μy

σ̂y

)]
, (6)

where μ̂x, μ̂y, σ̂ 2
x , σ̂ 2

y , and ρ̂ are the MLEs. We then rewrite the
log-likelihood ratio statistic in terms of r and φ as shown in
Equation (4). With some simple algebra, we have the radial pro-
file log-likelihood ratio is

Tφ(r) = n
1 − ρ̂2

[(
r cos(φ)

σ̂x

)2

+
(
r sin(φ)

σ̂y

)2

− −2ρ̂
(
r cos(φ)

σ̂x

) (
r sin(φ)

σ̂y

)]
,

and the distance from center to the edge of the confidence region
is

min
r

{
r ∈ R

1 ∣∣Tφ(r) = 4.6055
}
.

Onequick note is since this is normally distributed datawe could
replace χ2

1−α(2) with 2(n−1)
n−2 F1−α(2, n − 2) (Härdle and Simar

2007, p. 155), but we use the chi squared distribution in keep-
ing with the asymptotic result shown in Wilks (1938).

The algorithm is as follows: let φ1, . . . , φN be a set of angles
defined on [0, 2π). For j = 1, . . . ,N

1. Determine r j such that Tφ j (r j) = 4.6055; and
2. set μ( j)

x = μ̂x + r j cos(φ) and μ
( j)
y = μ̂y + r j sin(φ),

which will result in N pairs of μx and μy corresponding to the
edge of the confidence region.

To examine the computational time we generate 10 ran-
dom values from a bivariate normal with μx = μy = 0, σ 2

x =
σ 2
y = 10, and ρ = 0.5. We use the radial profile log-likelihood

with 180 equally spaced angles in [0, 2π), and for each φ use
the uniroot function in R to solve Tφ(r) = 4.6055. This is
compared to the time necessary to compute 14,641 values of
Equation (6) over an evenly spaced set of parameter values in
[−3, 3] × [−3, 3].

Figure 2 shows that the twomethods create graphically indis-
tinguishable regions, but the computational timeusing the radial
profile log-likelihood ratio is less. To demonstrate an even more
extreme example we multiply the same data by 10 and com-
pute the 90% region again, except this time to fully capture the
domain of the confidence region the parameter values are evenly
spaced over [−30, 30] × [−30, 30] (total of 1,442,401 compu-
tations). The time needed to compute the boundary using the
radial profile log-likelihood method is 0.031 seconds, while the
grid method now requires 142 seconds. Our approach shows
a clear computational advantage, being 4577 times faster. The
computation time for the grid method could be reduced by lim-
iting the range of grid values, but that requires a priori knowl-
edge of where the regionwill fall. Alternatively, fewer values over
the grid could be used, but this may result in a less precise iden-
tification of the region.

4. Discussion

The efficiency of the radial profile log-likelihood is dependent
on the method for determining r along with the choice of how
many φ to examine. From our experience, the uniroot func-
tion in R results in the fastest computation time, while use of
the constrained optimization function fmincon in MatLab
requires more time to complete. In regards to the number of
angles to use, we have found for graphical purposes 180 is a good
lower value.

Although there are cases where using the grid approach
would be more efficient than the radial profile log-likelihood,
the grid method still requires a large number of computations
that do not factor into defining the region andmay not cover the
area defining the boundary of the confidence region.Given these
properties the radial profile log-likelihood is especially useful for
simulation studies involving confidence regions. Given the com-
putation times seen from the second example, if we had created
100 replicates it would take less than 4 seconds to compute the
boundary of the confidence region for all 100 replications. In
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Figure . % confidence regions generated from  normally distributed observations. (a) % confidence region using radial profile log-likelihood ratio. Computation
time . seconds. (b) % confidence region using grid method. Computation time . seconds.

contrast the grid method would take several hours to accom-
plish the same task, and there is still no guarantee that all 100
sets would completely capture the region.

Supplemental Material

We provide the R code used for both examples from Section 3.3 along with
code to run 100 replications from the second example.
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