
Numerical Methods in Economics
MIT Press, 1998

Chapter 12 Notes
Numerical Dynamic Programming

Kenneth L. Judd
Hoover Institution

November 5, 2007

1

Discrete-Time Dynamic Programming

• Objective:

E

!
T"

t=1

!(xt, ut, t) +W (xT+1)

#
, (12.1.1)

— X: set of states

— D: the set of controls

— !(x, u, t) payo!s in period t, for x ! X at the beginning of period t, and control u ! D is
applied in period t.

— D(x, t) " D: controls which are feasible in state x at time t.

— F (A;x, u, t) : probability that xt+1 ! A # X conditional on time t control and state

• Value function

V (x, t) $ sup
U(x,t)

E

!
T"

s=t

!(xs, us, s) +W (xT+1)|xt = x

#
. (12.1.2)

• Bellman equation

V (x, t) = sup
u!D(x,t)

!(x, u, t) + E {V (xt+1, t + 1)|xt = x, ut = u} (12.1.3)

• Existence: boundedness of ! is su"cient

2

Autonomous, Innite-Horizon Problem:

• Objective:

max
ut
E

!
%"

t=1

"t!(xt, ut)

#
(12.1.1)

— X: set of states

— D: the set of controls

— D(x) " D: controls which are feasible in state x.

— !(x, u) payo! in period t if x ! X at the beginning of period t, and control u ! D is applied
in period t.

— F (A;x, u) : probability that x+ ! A # X conditional on current control u and current state
x.

• Value function denition: if U(x) is set of all feasible strategies starting at x.

V (x) $ sup
U(x)

E

!
%"

t=0

"t!(xt, ut)

$$$$$x0 = x
#
, (12.1.8)

3

• Bellman equation for V (x)

V (x) = sup
u!D(x)

!(x, u) + "E
%
V (x+)|x, u

&
$ (TV)(x), (12.1.9)

• Optimal policy function, U(x), if it exists, is dened by

U(x) ! arg max
u!D(x)

!(x, u) + "E
%
V (x+)|x, u

&

• Standard existence theorem:

Theorem 1 If X is compact, " < 1, and ! is bounded above and below, then the map

TV = sup
u!D(x)

!(x, u) + "E
%
V (x+) | x, u

&
(12.1.10)

is monotone in V , is a contraction mapping with modulus " in the space of bounded functions, and has
a unique xed point.

4

Applications

• Economics

— Business investment

— Life-cycle decisions on labor, consumption, education

— Portfolio problems

— Economic policy

• Operations Research

— Scheduling, queueing

— Blood bank

— See new book by Powell - “Approximate Dynamic Programming”

• Climate change

— Business response to climate policies

— Optimal policy response to global warming problems

5

Deterministic Growth Example

• Problem:
V (k0) = maxct

'%
t=0 "

tu(ct),

kt+1 = F (kt)& ct
k0 given

(12.1.12)

— Euler equation:
u'(ct) = "u

'(ct+1)F
'(kt+1)

— Bellman equation
V (k) = max

c
u(c) + "V (F (k)& c). (12.1.13)

— Solution to (12.1.12) is a policy function C(k) and a value function V (k) satisfying

0=u'(C(k))F '(k)& V '(k) (12.1.15)

V (k)=u(C(k)) + "V (F (k)& C(k)) (12.1.16)

• (12.1.16) denes the value of an arbitrary policy function C(k), not just for the optimal C(k).

• The pair (12.1.15) and (12.1.16)

— expresses the value function given a policy, and

— a rst-order condition for optimality.

6

Stochastic Growth Accumulation

• Problem:

V (k, #) = max
ct,$t

E

!
%"

t=0

"t u(ct)

#

kt+1 = F (kt, #t)& ct
#t+1 = g(#t, %t)

%t : i.i.d. random variable

k0 = k, #0 = #.

• State variables:

— k: productive capital stock, endogenous

— #: productivity state, exogenous

• The dynamic programming formulation is

V (k, #) = max
c

u(c) + "E{V (F (k, #)& c, #+)|#} (12.1.21)

#+ = g(#, %)

• The control law c = C(k, #) satises the rst-order conditions

0 = uc (C(k, #))& "E {uc(C(k+, #+))Fk(k+, #+) | #}, (12.1.23)

where
k+$ F (k, L(k, #), #)&C(k, #),

7

General Stochastic Accumulation

• Problem:

V (k, #) = max
ct,$t

E

!
%"

t=0

"t u(ct, $t)

#

kt+1 = F (kt, $t, #t)& ct
#t+1 = g(#t, %t)

k0 = k, #0 = #.

• State variables:

— k: productive capital stock, endogenous

— #: productivity state, exogenous

• The dynamic programming formulation is

V (k, #) = max
c,$

u(c, $) + "E{V (F (k, $, #)& c, #+)|#}, (12.1.21)

where #+ is next period’s # realization.

8

• Control laws c = C(k, #) and $ = L(k, #) satisfy foc’s

0= uc(C(k, #), L(k, #))Fk(k, L(k, #), #)& Vk(k, #),
0= u$(C(k, #), L(k, #)) + F$(k, #)uc(C(k, #), L(k, #)).

• Euler equation implies

0 = uc (C(k, #), L(k, #))& "E {uc(C(k+, #+), $+)Fk(k+, $+, #+) | #}, (12.1.23)

where next period’s capital stock and labor supply are

k+$ F (k, L(k, #), #)&C(k, #),
$+ $ L(k+, #+),

9

Discrete State Space Problems

• State space X = {xi, i = 1, · · · , n}

• Controls D = {ui|i = 1, ...,m}

• qtij(u) = Pr (xt+1 = xj|xt = xi, ut = u)

• Qt(u) =
(
qtij(u)

)
i,j
: Markov transition matrix at t if ut = u.

10

Value Function iteration

• Terminal value:
V T+1i =W (xi), i = 1, · · · , n.

• Bellman equation: time t value function is

V ti = maxu
[!(xi, u, t) + "

n"

j=1

qtij(u)V
t+1
j], i = 1, · · · , n

• Bellman equation can be directly implemented.

— Called value function iteration

— It is only choice for nite-horizon problems because each period has a di!erent value function.

11

• Innite-horizon problems

— Bellman equation is now a simultaneous set of equations for Vi values:

Vi = max
u

*

+!(xi, u) + "
n"

j=1

qij(u)Vj

,

- , i = 1, · · · , n

— Value function iteration is now

V k+1i = max
u

*

+!(xi, u) + "
n"

j=1

qij(u)V
k
j

,

- , i = 1, · · · , n

— Can use value function iteration with arbitrary V 0i and iterate k (%.

— Error is given by contraction mapping property:
..V k & V)

.. * 1

1& "
..V k+1 & V k

..

12

Algorithm 12.1: Value Function Iteration Algorithm
Objective: Solve the Bellman equation, (12.3.4).
Step 0: Make initial guess V 0; choose stopping criterion & > 0.
Step 1: For i = 1, ..., n, compute

V $+1i = maxu!D !(xi, u) + "
'n

j=1 qij(u)V
$
j .

Step 2: If + V $+1 & V $ +< &, then go to step 3; else go to step 1.
Step 3: Compute the nal solution, setting

U) = UV $+1,
P)i = !(xi, U

)
i), i = 1, · · · , n,

V) = (I & "QU))&1P),
and STOP.

Output:

13

Policy Iteration (a.k.a. Howard improvement)

• Value function iteration is a slow process

— Linear convergence at rate "

— Convergence is particularly slow if " is close to 1.

• Policy iteration is faster

— Current guess:
V ki , i = 1, · · · , n.

— Iteration: compute optimal policy today if V k is value tomorrow:

Uk+1i = argmax
u

*

+!(xi, u) + "
n"

j=1

qij(u)V
k
j

,

- , i = 1, · · · , n,

— Compute the value function if the policy Uk+1 is used forever, which is solution to the linear
system

V k+1i = !
(
xi, U

k+1
i

)
+ "

n"

j=1

qij(U
k+1
i)V k+1j , i = 1, · · · , n,

14

• Comments:

— Policy iteration depends on only monotonicity

— Policy iteration is faster than value function iteration

) If initial guess is above or below solution then policy iteration is between truth and value
function iterate

) Works well even for " close to 1.

15

Algorithm 12.2: Policy Function Algorithm
Objective: Solve the Bellman equation, (12.3.4).
Step 0: Choose stopping criterion & > 0.

EITHER make initial guess, V 0, for the
value function and go to step 1,

OR make initial guess, U1, for the
policy function and go to step 2.

Step 1: U $+1 = UV $

Step 2: P $+1i = !
(
xi, U

$+1
i

)
, i = 1, · · · , n

Step 3: V $+1 =
/
I & "QU!+1

0&1
P $+1

Step 4: If + V $+1 & V $ +< &, STOP; else go to step 1.

16

• Modied policy iteration

— If n is large, di"cult to solve policy iteration step

— Alternative approximation: Assume policy U $+1 is used for k periods:

V $+1 =
k"

t=0

"t
/
QU

!+1
0t
P $+1 + "k+1

/
QU

!+1
0k+1

V $. (12.4.1)

— Theorem 4.1 points out that as the policy function gets close to U), the linear rate of conver-
gence approaches "k+1. Hence convergence accelerates as the iterates converge.

Theorem 2 (Putterman and Shin) The successive iterates of modied policy iteration with k steps,
(12.4.1), satisfy the error bound

..V) & V $+1
..

+V) & V $+
* min

1
",
"(1& "k)
1& "

+ U $ & U) + +"k+1
2

(12.4.3)

17

Gaussian acceleration methods for innite-horizon models

• Key observation: Bellman equation is a simultaneous set of equations

Vi = max
u

*

+!(xi, u) + "
n"

j=1

qij(u)Vj

,

- , i = 1, · · · , n

• Idea: Treat problem as a large system of nonlinear equations

• Value function iteration is the pre-Gauss-Jacobi iteration

V k+1i = max
u

*

+!(xi, u) + "
n"

j=1

qij(u)V
k
j

,

- , i = 1, · · · , n

• True Gauss-Jacobi is

V k+1i = max
u

1
!(xi, u) + "

'
j ,=i qij(u)V

k
j

1& "qii (u)

2
, i = 1, · · · , n

• pre-Gauss-Seidel iteration

— Value function iteration is a pre-Gauss-Jacobi scheme.

— Gauss-Seidel alternatives use new information immediately

) Suppose we have V $i
) At each xi, given V $+1j for j < i, compute V $+1i in a pre-Gauss-Seidel fashion

V $+1i = max
u

!(xi, u) + "
"

j<i

qij(u)V
$+1
j + "

"

j-i

qij(u)V
$
j (12.4.7)

) Iterate (12.4.7) for i = 1, .., n

18

• Gauss-Seidel iteration

— Suppose we have V $i
— If optimal control at state i is u, then Gauss-Seidel iterate would be

V $+1i = !(xi, u) + "

'
j<i qij(u)V

$+1
j +

'
j>i qij(u)V

$
j

1& "qii(u)

— Gauss-Seidel: At each xi, given V $+1j for j < i, compute V $+1i

V $+1i = max
u

!(xi, u) + "
'

j<i qij(u)V
$+1
j + "

'
j>i qij(u)V

$
j

1& "qii(u)

— Iterate this for i = 1, .., n

• Gauss-Seidel iteration: better notation

— No reason to keep track of $, number of iterations

— At each xi,

Vi .& max
u

!(xi, u) + "
'

j<i qij(u)Vj + "
'

j>i qij(u)Vj

1& "qij(u)
— Iterate this for i = 1, .., n, 1,, etc.

19

Upwind Gauss-Seidel

• Gauss-Seidel methods in (12.4.7) and (12.4.8)

— Sensitive to ordering of the states.

— Need to nd good ordering schemes to enhance convergence.

• Example:

— Two states, x1 and x2, and two controls, u1 and u2

) ui causes state to move to xi, i = 1, 2
) Payo!s:

!(x1, u1)= &1, !(x1, u2) = 0,
!(x2, u1)= 0, !(x2, u2) = 1.

(12.4.9)

) " = 0.9.

— Solution:

) Optimal policy: always choose u2, moving to x2
) Value function:

V (x1) = 9, V (x2) = 10.

) x2 is the unique steady state, and is stable

20

— Value iteration with V 0(x1) = V 0(x2) = 0 converges linearly:

V 1(x1) = 0, V
1(x2) = 1, U

1(x1) = 2, U
1(x2) = 2,

V 2(x1) = 0.9, V
2(x2) = 1.9, U

2(x1) = 2, U
2(x2) = 2,

V 3(x1) = 1.71, V
3(x2) = 2.71, U

3(x1) = 2, U
3(x2) = 2,

— Policy iteration converges after two iterations

V 1(x1) = 0, V
1(x2) = 1, U

1(x1) = 2, U
1(x2) = 2,

V 2(x1) = 9, V
2(x2) = 10, U

2(x1) = 2, U
2(x2) = 2,

21

• Upwind Gauss-Seidel

— Value function at absorbing states is trivial to compute

) Suppose s is absorbing state with control u
) V (s) = !(s, u)/(1& ").

— With absorbing state V (s) we compute V (s') of any s' that sends system to s.

V (s') = ! (s', u) + "V (s)

— With V (s'), we can compute values of states s'' that send system to s'; etc.

22

• Alternating Sweep

— It may be di"cult to nd proper order.

— Idea: alternate between two approaches with di!erent directions.

W = V k,

Wi = maxu !(xi, u) + "
'n

j=1 qij(u)Wj, i = 1, 2, 3, ..., n

Wi = maxu !(xi, u) + "
'n

j=1 qij(u)Wj, i = n, n& 1, ..., 1
V k+1=W

— Will always work well in one-dimensional problems since state moves either right or left, and
alternating sweep will exploit this half of the time.

— In two dimensions, there may still be a natural ordering to be exploited.

• Simulated Upwind Gauss-Seidel

— It may be di"cult to nd proper order in higher dimensions

— Idea: simulate using latest policy function to nd downwind direction

) Simulate to get an example path, x1, x2, x3, x4, ..., xm
) Execute Gauss-Seidel with states xm, xm&1, xm&2,, x1

23

Linear Programming Approach

• If D is nite, we can reformulate dynamic programming as a linear programming problem.

• (12.3.4) is equivalent to the linear program

minVi
'n

i=1 Vi
s.t. Vi - !(xi, u) + "

'n
j=1 qij(u)Vj, /i, u ! D,

(12.4.10)

• Computational considerations

— (12.4.10) may be a large problem

— Trick and Zin (1997) pursued an acceleration approach with success.

— OR literature did not favor this approach, but recent work by Daniela Pucci de Farias and Ben
van Roy has revived interest.

24

Continuous states: discretization

• Method:

— “Replace” continuous X with a nite

X) = {xi, i = 1, · · · , n} # X

— Proceed with a nite-state method.

• Problems:

— Sometimes need to alter space of controls to assure landing on an x in X.

— A ne discretization often necessary to get accurate approximations

25

Continuous States: Linear-Quadratic Dynamic Programming

• Problem:

max
ut

T"

t=0

"t
3
1

2
x0t Qtxt + u

0
t Rtxt +

1

2
u0t Stut

4
+
1

2
x0T+1WT+1xT+1 (12.6.1)

xt+1 = Atxt +Btut,

• Bellman equation:

V (x, t) = max
ut

1

2
x0Qtx + u

0
t Rtx +

1

2
u0t Stut + "V (Atx +Btut, t + 1). (12.6.2)

Finite horizon

• Key fact: We know solution is quadratic, solve for the unknown coe"cients

• The guess V (x, t) = 1
2x
0Wt+1x implies f.o.c.

0 = Stut +Rtx+ "B
0
t Wt+1(Atx +Btut),

— F.o.c. implies the time t control law

ut=&(St + "B0t Wt+1Bt)
&1(Rt + "B

0
t Wt+1At)x (12.6.3)

$Utx.

— Substitution into Bellman implies Riccati equation forWt:

Wt = Qt + "A
0
t Wt+1At + ("B

0
t Wt+1At +R

0
t)Ut. (12.6.4)

— Value function method iterates (12.6.4) beginning with knownWT+1 matrix of coe"cients.

26

Autonomous, Innite-horizon case.

• Assume Rt = R, Qt = Q, St = S, At = A, and Bt = B

• The guess V (x) $ 1
2x
0Wx implies the algebraic Riccati equation

W =Q+ "A0WA& ("B0WA+R0) (12.6.5)

×(S + "B0WB)&1("B0WB +R0).

• Two convergent procedures:

— Value function iteration:

W0 : a negative denite initial guess

Wk+1=Q+ "A
0WkA& ("B0WkA+R

0)

×(S + "B0WkB)
&1("B0WkB +R

0). (12.6.6)

— Policy function iteration:

W0 : initial guess

Ui+1=&(S + "B0WiB)
&1(R + "B0WiA) : optimal policy forWi

Wi+1=
1
2Q+

1
2U

0
i+1SUi+1 + U

0
i+1R

1& "
: value of Ui

27

Lessons

• We used a functional form to solve the dynamic programming problem

• We solve for unknown coe"cients

• We did not restrict either the state or control set

• Can we do this in general?

28

Continuous Methods for Continuous-State Problems

• Basic Bellman equation:

V (x) = max
u!D(x)

!(u, x) + "E{V (x+)|x, u)} $ (TV)(x). (12.7.1)

— Discretization essentially approximates V with a step function

— Approximation theory provides better methods to approximate continuous functions.

• General Task

— Find good approximation for V

— Identify parameters

29

General Parametric Approach: Approximating V (x)

• Choose a nite-dimensional parameterization

V (x)
.
= V̂ (x; a), a ! Rm (12.7.2)

and a nite number of states
X = {x1, x2, · · · , xn}, (12.7.3)

— polynomials with coe"cients a and collocation points X

— splines with coe"cients a with uniform nodes X

— rational function with parameters a and nodes X

— neural network

— specially designed functional forms

• Objective: nd coe"cients a ! Rm such that V̂ (x; a) “approximately” satises the Bellman equa-
tion.

30

General Parametric Approach: Approximating T

• For each xj, (TV)(xj) is dened by

vj = (TV)(xj) = max
u!D(xj)

!(u, xj) + "

5
V̂ (x+; a)dF (x+|xj, u) (12.7.5)

• In practice, we compute the approximation T̂

vj = (T̂V)(xj)
.
= (TV)(xj)

— Integration step: for 'j and xj for some numerical quadrature formula

E{V (x+; a)|xj, u)}=
5
V̂ (x+; a)dF (x+|xj, u)

=

5
V̂ (g(xj, u, %); a)dF (%)

.
=
"

$

'$V̂ (g(xj, u, %$); a)

— Maximization step: for xi ! X, evaluate

vi = (T V̂)(xi)

) Hot starts
) Concave stopping rules

— Fitting step:

) Data: (vi, xi), i = 1, · · · , n
) Objective: nd an a ! Rm such that V̂ (x; a) best ts the data
) Methods: determined by V̂ (x; a)

31

Approximating T with Hermite Data

• Conventional methods just generate data on V (xj):

vj = max
u!D(xj)

!(u, xj) + "

5
V̂ (x+; a)dF (x+|xj, u) (12.7.5)

• Envelope theorem:

— If solution u is interior,

v'j = !x(u, xj) + "

5
V̂ (x+; a)dFx(x

+|xj, u)

— If solution u is on boundary

v'j = µ+ !x(u, xj) + "

5
V̂ (x+; a)dFx(x

+|xj, u)

where µ is a Kuhn-Tucker multiplier

• Since computing v'j is cheap, we should include it in data:

— Data: (vi, v'i, xi), i = 1, · · · , n

— Objective: nd an a ! Rm such that V̂ (x; a) best ts Hermite data

— Methods: determined by V̂ (x; a)

32

General Parametric Approach: Value Function Iteration

guess a&(V̂ (x; a)
&((vi, xi), i = 1, · · · , n
&(new a

• Comparison with discretization

— This procedure examines only a nite number of points, but does not assume that future points
lie in same nite set.

— Our choices for the xi are guided by systematic numerical considerations.

• Synergies

— Smooth interpolation schemes allow us to use Newton’s method in the maximization step.

— They also make it easier to evaluate the integral in (12.7.5).

• Finite-horizon problems

— Value function iteration is only possible procedure since V (x, t) depends on time t.

— Begin with terminal value function, V (x, T)

— Compute approximations for each V (x, t), t = T & 1, T & 2, etc.

33

Algorithm 12.5: Parametric Dynamic Programming
with Value Function Iteration

Objective: Solve the Bellman equation, (12.7.1).
Step 0: Choose functional form for V̂ (x; a), and choose

the approximation grid, X = {x1, ..., xn}.
Make initial guess V̂ (x; a0), and choose stopping
criterion & > 0.

Step 1: Maximization step: Compute
vj = (T V̂ (·; ai))(xj) for all xj ! X.

Step 2: Fitting step: Using the appropriate approximation
method, compute the ai+1 ! Rm such that
V̂ (x; ai+1) approximates the (vi, xi) data.

Step 3: If + V̂ (x; ai)& V̂ (x; ai+1) +< &, STOP; else go to step 1.

34

• Convergence

— T is a contraction mapping

— T̂ may be neither monotonic nor a contraction

• Shape problems

— An instructive example

Figure 1:

— Shape problems may become worse with value function iteration

35

• Solution to shape problems

— Use shape-preserving approximations

) Piecewise linear preserves shape in one dimension.
) Multilinear approximation does not preserve shape
) Shape preserving splines are available for dimensions one and two.

— Impose shape restrictions in tting

) Use least squares, not interpolation
) Add shape constraints to least squares problem

· Demand correct slopes at some points
· Demand correct curvature at some points.

) These methods work well in one dimension, but slow algorithm down considerably for higher
dimensions

— Open research question: What is the best combination of smooth functional form and tting
procedure that preserves shape?

36

General Parametric Approach: Policy Iteration

• Basic Bellman equation:

V (x) = max
u!D(x)

!(u, x) + "E{V (x+)|x, u)} $ (TV)(x).

• Policy iteration:

— Current guess: a nite-dimensional linear parameterization

V (x)
.
= V̂ (x; a), a ! Rm

— Iteration: compute optimal policy today if V̂ (x; a) is value tomorrow

U (x) = arg max
u!D(x)

!(xi, u, t) + "E
6
V̂
(
x+; a

)
|x, u)

7

— If solution is interior, then U (xi) solves

0 = !u(xi, U (xi) , t) + "
d

du

/
E
6
V̂
(
x+; a

)
|xi, U (xi))

70

— Take ui = U (xi) data for xi nodes, and use some approximation scheme Û(x; b)with parameters
b to approximate U (x)

— Compute the value function if the policy Û(x; b) is used forever. This is solution to the linear
integral equation

V̂ (x; a') = !(Û(x; b), x) + "E{V̂ (x+; a')|x, Û(x; b))}

that can be solved by a projection method

37

Summary:

• Discretization methods

— Easy to implement

— Numerically stable

— Amenable to many accelerations

— Poor approximation to continuous problems

• Continuous approximation methods

— Can exploit smoothness in problems

— Must work to avoid numerical instabilities

— Acceleration is less possible

38

