Numerical Methods in Economics
MIT Press, 1998

Chapter 12 Notes
Numerical Dynamic Programming

Kenneth L. Judd
Hoover Institution

November 5, 2007

Discrete-Time Dynamic Programming

e Objective:
T
E {Z (@, ue,) + W(CET+1)} , (12.1.1)
t=1
— X: set of states
— D: the set of controls

— 7(x, u, t) payoffs in period ¢, for x € X at the beginning of period ¢, and control u € D is
applied in period .
— D(x,t) C D: controls which are feasible in state z at time ¢.

— F(A; x,u,t) : probability that x;,1 € A C X conditional on time ¢ control and state

e Value function

T
V(z,t) = sup F {Z m(xs, Us, S) + W(xper)|a: = x} : (12.1.2)
U(x,t)

s=t

e Bellman equation

V(z,t)= sup 7(x,u, t)+ E{V(xiq, t+)2 = x,up = u} (12.1.3)
ueD(z,t)

e Existence: boundedness of 7 is sufficient

Autonomous, Infinite-Horizon Problem:

e Objective:

Hile {i B (4, ut)} (12.1.1)
t=1

— X set of states
— D: the set of controls
— D(x) C D: controls which are feasible in state x.

— 7(x, u) payoff in period t if z € X at the beginning of period ¢, and control u € D is applied
in period t.

— F(A;z,u) : probability that 2 € A C X conditional on current control u and current state
.

e Value function definition: if U(x) is set of all feasible strategies starting at x.

Viz)=supFE {Z B (s, uy)

U(x) =0

Ty = :1:} : (12.1.8)

e Bellman equation for V' (x)

V(z) = 211;1()) m(x, u)+ B E {V(z")|z,u} = (TV)(x), (12.1.9)

e Optimal policy function, U(z), if it exists, is defined by

U(z) € arg max n(x, u)+ S E{V(z")|z,u}

ueD(x)
e Standard existence theorem:

Theorem 1 If X is compact, B < 1, and 7 is bounded above and below, then the map

TV = sup w(z,u)+LE{V(z") |z, u} (12.1.10)
ueD(x)

1s monotone in'V, s a contraction mapping with modulus 5 in the space of bounded functions, and has
a unique fixed point.

Applications
e Fconomics

— Business investment
— Life-cycle decisions on labor, consumption, education
— Portfolio problems

— Economic policy
e Operations Research

— Scheduling, queueing
— Blood bank

— See new book by Powell - “Approximate Dynamic Programming”
e Climate change

— Business response to climate policies

— Optimal policy response to global warming problems

Deterministic Growth Example

e Problem:
V (ko) = maxq, 32,5 Bu(cy),
kt—i—l = F(k?t) — Ct (12112)

ko given

— Euler equation:
u'(er) = Bu'(ceen) FY (K1)

— Bellman equation

V(k) = max u(c) + BV (F (k) — c). (12.1.13)

— Solution to (12.1.12) is a policy function C'(k) and a value function V (k) satisfying
0=u'(C(k))F'(k) — V'(k) (12.1.15)
V(k)=u(C(k))+ BV (F(k) — C(k)) (12.1.16)

e (12.1.16) defines the value of an arbitrary policy function C'(k), not just for the optimal C'(k).
o The pair (12.1.15) and (12.1.16)

— expresses the value function given a policy, and

— a first-order condition for optimality.

Stochastic Growth Accumulation

e Problem:

Vi(k,0) = E t

(k. 0) = max {Z g u<ct>}
ki1 = F(k,0r) — ¢
Or11 = g(eta €t)

g; : 11.d. random variable
ko=Fk, 0y =20.

e State variables:

— k: productive capital stock, endogenous

— 6: productivity state, exogenous

e The dynamic programming formulation is
V(k,0) = max u(c)+ BE{V(F(k,0) —c,07)|0}
0" =g(0,¢)

e The control law ¢ = C(k, 0) satisfies the first-order conditions

0 = u. (C(k,0)) — B E {u(C(k+,07) FL(k*,67) | 0,

where

k= F(k, L(k, 0),0) — C(k, 6),

(12.1.21)

(12.1.23)

General Stochastic Accumulation

e Problem:

V(k,0) =max E {Z B (e, by) }

ct by
K1 = F(kta ly, 9t) — Gt

0141 = g(eta €t>
ko=k, 0p=20.

e State variables:

— k: productive capital stock, endogenous

— 6: productivity state, exogenous

e The dynamic programming formulation is

V(k,0) = max u(c,l) + BE{V (F(k,£,0) — c,07)|0},

c,l

where 07 is next period’s @ realization.

(12.1.21)

e Control laws ¢ = C'(k,0) and ¢ = L(k,) satisty foc’s

0= UC(O(k7 9)7 L(kv 9))Fk(k7 L(kv 0)7 9) - Vk(kv 9)7
0= w(C(k,), L(k, 0)) + Fy(k, 0)uc(C(k, 6), L(k, 0)).

e Fuler equation implies
0=u.(C(k,0),L(k,0)) — BE{u(C(k™,0"), () F(kT,07,07) | 63, (12.1.23)

where next period’s capital stock and labor supply are

k= F(k, L(k, 0),0) — C(k,6),
0+ = L(k*,07),

Discrete State Space Problems

e State space X = {z;,i=1,--- ,n}

e Controls D = {w;|i =1, ..., m}

o q;i(u) = Pr(21 =)2 = iy us = u)

e Q'(u) = (qu(u))w : Markov transition matrix at t if u; = w.

Value Function iteration

e Terminal value:
‘/iT+1 — W(xl)’ Z — 17 RN 0¥

e Bellman equation: time ¢ value function is

u

V;t = max [T‘-(xiauat) +BZ q@(U) ‘/jt+1]7 L= 17 N
j=1

e Bellman equation can be directly implemented.

— Called value function iteration

— It is only choice for finite-horizon problems because each period has a different value function.

e Infinite-horizon problems

— Bellman equation is now a simultaneous set of equations for V; values:
Vizméxx m(x;, u +BE i (u Li=1,---.,n
— Value function iteration is now

Vik+1:mgx CCZ, —|—ﬁ2qw =1,

— Can use value function iteration with arbitrary V; and iterate k — oo.

— Error is given by contraction mapping property:

Vi =Vl < g5 IV =V

Algorithm 12.1: Value Function Iteration Algorithm

Objective: Solve the Bellman equation, (12.3.4).
Step O: Make initial guess V; choose stopping criterion € > 0.
Step 1: For 1 =1, ...,n, compute

VA = maxyep m(a,w) + 637 gi(w)V}.
Step 2: If || Vi*1 — V! ||< e, then go to step 3; else go to step 1.
Step 3: Compute the final solution, setting

s = Z/{V£+1,

P = m(x;, UY), i=1---,n,

V= (I - BQU) P,

and STOP.
Output:

Policy Iteration (a.k.a. Howard improvement)
e Value function iteration is a slow process

— Linear convergence at rate (3

— Convergence is particularly slow if 3 is close to 1.
e Policy iteration is faster

— Current guess:

— Tteration: compute optimal policy today if V* is value tomorrow:
k+1 k -
U = argmax m(x;, u) +BZ qj(u) Vi =1, m,
j=1

— Compute the value function if the policy U**! is used forever, which is solution to the linear
system

‘//H-l =T (xi7 Uik—i_l) + 6 Z %](UZ]H—l) ‘/jk+17 1= 17 T, Ny

J=1

e Comments:

— Policy iteration depends on only monotonicity
— Policy iteration is faster than value function iteration

« If initial guess is above or below solution then policy iteration is between truth and value
function iterate

x Works well even for 3 close to 1.

Algorithm 12.2: Policy Function Algorithm
Objective: Solve the Bellman equation, (12.3.4).
Step O: Choose stopping criterion ¢ > 0.

EITHER make initial guess, V', for the
value function and go to step 1,
OR make initial guess, U', for the
policy function and go to step 2.
Step 1: Ut =yvt
Step 2: P =g (2, U i=1,---.n
Step 3 V= (1- Q") ' pre
Step 4: If || VA — V< ¢, STOP; else go to step 1.

e Modified policy iteration

— If n is large, difficult to solve policy iteration step

— Alternative approximation: Assume policy U‘*! is used for k periods:
i (+1 t / k1 {+1 k+1 /
v =3 g (QU) pil 4 gk (QU) Ve, (12.4.1)
t=0

— Theorem 4.1 points out that as the policy function gets close to U*, the linear rate of conver-
gence approaches 3. Hence convergence accelerates as the iterates converge.

Theorem 2 (Putterman and Shin) The successive iterates of modified policy iteration with k steps,
(12.4.1), satisfy the error bound

Hv* o Vf—i—lH
[V =V

k
< min |, Bq%g) | U= U || +85 (12.4.3)

(Gaussian acceleration methods for infinite-horizon models

e Key observation: Bellman equation is a simultaneous set of equations
%:mgx 7T<33¢,U)—|—BZ Gj(w)Vil,i=1,---,n
j=1

e Idea: Treat problem as a large system of nonlinear equations

e Value function iteration is the pre-Gauss-Jacobi iteration

e pre-Gauss-Seidel iteration

— Value function iteration is a pre-Gauss-Jacobi scheme.
— Gauss-Seidel alternatives use new information immediately

* Suppose we have V!
* At each z;, given Vf“ for j < 4, compute V! in a pre-Gauss-Seidel fashion
Vi = ma (o) + 63 D)V 4B gV (1247)
j<i j>i

* Iterate (12.4.7) fori =1,..,n

e Gauss-Seidel iteration

— Suppose we have V'

— If optimal control at state ¢ is u, then Gauss-Seidel iterate would be

ng Qij<u)‘/}£+l + Zj>z’ qz‘y‘(“)vf
1 — Bgii(u)

— Gauss-Seidel: At each z;, given Vf“ for j < i, compute Vf“

VAL — max <xl7) + 0 Z]<z qzj()Vjﬂl + Zj>z’ qij(u)Vf
Z u — Bqii(u)
— Iterate this forv =1,..,n

VA = m(ai,u) + 3

e (Gauss-Seidel iteration: better notation

— No reason to keep track of ¢, number of iterations

— At each z;,

V e max (SEZ,) +0 Z]<Z qw()VJ +p Zj>z‘ qw(u>vj
Z u 1 — Bagij(u)
— Iterate this for2 =1,..,n,1,, etc.

Upwind Gauss-Seidel
e Gauss-Seidel methods in (12.4.7) and (12.4.8)

— Sensitive to ordering of the states.

— Need to find good ordering schemes to enhance convergence.
e Example:

— Two states, 1 and x9, and two controls, u; and us

* u; causes state to move to x;, 1 = 1,2

+ Payoffs:
m(x1,ur)= —1, (w1, uz) =0, (12.4.9)
m(xe, u1)=0, w(xa, uz) = 1. a
* 3 =0.9.
— Solution:

+ Optimal policy: always choose u9, moving to
* Value function:
V(z1) =9, V(xg) = 10.

% To 18 the unique steady state, and is stable

— Value iteration with VY(z;) = V() = 0 converges linearly:

Viz)) =0, Vix) =1, Ulz1) =2, Ul(xy) =2,
V3(xz1) = 0.9, V3(z2) = 1.9, U*(z1) =2, U*(x9) = 2,
V() = 1.71, V3(xg) = 2.71, U3(21) = 2, U3(22) = 2,

— Policy iteration converges after two iterations

Vl(xl) — 07 V1<SC2) = 1, U1<£El) = 2, U1<332) = 2,
V3(a1) =9, V3(22) = 10, U?(21) =2, U*(2) =2,

e Upwind Gauss-Seidel

— Value function at absorbing states is trivial to compute

* Suppose s is absorbing state with control u
« V(s)=m(s,u)/(1—-0).
— With absorbing state V' (s) we compute V (') of any s’ that sends system to s.

V(s)=m(s",u)+ BV (s)

— With V (s"), we can compute values of states s” that send system to s'; etc.

e Alternating Sweep

— It may be difficult to find proper order.

— Idea: alternate between two approaches with different directions.
W =VvF
Wi =max, w(r,u)+ B8 qj(w)W;, i=1,2,3,...,n
Wi =max, m(z;u) + B qj(w)W;, i=nmn—1,.,1
Vk+1 — W

— Will always work well in one-dimensional problems since state moves either right or left, and
alternating sweep will exploit this half of the time.

— In two dimensions, there may still be a natural ordering to be exploited.
e Simulated Upwind Gauss-Seidel

— It may be difficult to find proper order in higher dimensions
— Idea: simulate using latest policy function to find downwind direction

x Simulate to get an example path, x1, xo, 3, 24, ..., Ty,

x Execute Gauss-Seidel with states z,,, -1, Tm_2,, 21

Linear Programming Approach

e If D is finite, we can reformulate dynamic programming as a linear programming problem.

e (12.3.4) is equivalent to the linear program

. n
miny; Y7, V,

12.4.10
st. Vi>m(xiu)+ 52?:1 %j(u)vj, Vi,u € D, ()

e Computational considerations

— (12.4.10) may be a large problem
— Trick and Zin (1997) pursued an acceleration approach with success.

— OR literature did not favor this approach, but recent work by Daniela Pucci de Farias and Ben
van Roy has revived interest.

Continuous states: discretization
e Method:
— “Replace” continuous X with a finite
X ={x;,i=1,--- ,n}CX
— Proceed with a finite-state method.
e Problems:

— Sometimes need to alter space of controls to assure landing on an x in X.

— A fine discretization often necessary to get accurate approximations

Continuous States: Linear-Quadratic Dynamic Programming

e Problem:

T
1 1 1
l’l’tatJX Z Bt (533'2—@1533} + U;Rtﬂft + §U2—St’ut) + 533}—+1WT+1ZET+1
t=0

Tp1 = Az + By,

e Bellman equation:

1 1
V(z,t) = max ixTth +u, Ry + iutTStut + BV (Awx + Byug, t + 1).
Ug

Finite horizon
e Key fact: We know solution is quadratic, solve for the unknown coefficients
e The guess V(z,t) = 1o Wi z implies f.o.c.
0 = Siur + Ry + BBtTVVtH(Ata? + Byuy),
— F.o.c. implies the time ¢ control law

up=—(S; + BBtTVVtHBt)_l(Rt + 5BtTVVt+1At)ZE
= Ut[E.

— Substitution into Bellman implies Riccati equation for Wi:

Wiy = Q¢+ ﬁAtTWtHAt -+ (5BtTWt+1At + RtT)Ut-

(12.6.1)

(12.6.2)

(12.6.3)

(12.6.4)

— Value function method iterates (12.6.4) beginning with known W, matrix of coefficients.

Autonomous, Infinite-horizon case.
e Assume R, =R, Q;=Q, S, =S5, A =A,and B, = B
e The guess V() = 32" Wz implies the algebraic Riccati equation
W=Q+BA'"WA—- (BB'"WA+R")
x(S+BB'WB) Y 3B'"WB+R").
e T'wo convergent procedures:
— Value function iteration:

Wy : a negative definite initial guess
Wiii=Q + BATWkA — (6BTWkA + RT)
x(S+ BB'W,B) ' (BB'W,B+ R").

— Policy function iteration:

Wy : initial guess
Uisy1=—(S + BB'"W;B) (R + B'W;A) : optimal policy for W;
3Q + 30U SUi + UL R
1-p

W= - value of U;

(12.6.5)

(12.6.6)

Lessons

e We used a functional form to solve the dynamic programming problem
e We solve for unknown coefficients
e We did not restrict either the state or control set

e Can we do this in general?

Continuous Methods for Continuous-State Problems

e Basic Bellman equation:

V() = urerlg(};) m(u,z) + B E{V(z")|z,u)} = (TV)(x). (12.7.1)

— Discretization essentially approximates V' with a step function
— Approximation theory provides better methods to approximate continuous functions.

e General Task

— Find good approximation for V'

— Identify parameters

General Parametric Approach: Approximating V (z)

e Choose a finite-dimensional parameterization

A

V(z)=V(x;a), a € R" (12.7.2)

and a finite number of states
X ={x1, 29, ,x,}, (12.7.3)
— polynomials with coefficients a and collocation points X
— splines with coefficients a with uniform nodes X
— rational function with parameters a and nodes X
— neural network

— specially designed functional forms

e Objective: find coefficients a € R™ such that V(x, a) “approximately” satisfies the Bellman equa-
tion.

General Parametric Approach: Approximating 7T’
e For each x;, (TV)(x;) is defined by

= (TV)as) = mex wluz) + 3 / (et a)dF(z* |z, u) (12.7.5)

e In practice, we compute the approximation T
vi = (TV)(x;) = (TV)(x;)
— Integration step: for w; and z; for some numerical quadrature formula

BV ey, uh= [Ve sa)dF (e

:/V<g(xj7u7€)7a)dF<€)
= Z wiV(g(xj,u,€0); a)
l

— Maximization step: for x; € X, evaluate
v; = (TV)(x;)
* Hot starts
+ Concave stopping rules
— Fitting step:
x Data: (v;,x;), i=1,-+-,n
« Objective: find an ¢ € R™ such that V(z;a) best fits the data

A

* Methods: determined by V' (z;a)

Approximating 1" with Hermite Data,

e Conventional methods just generate data on V' (x;):

v = I%E%X)W(u,xj) +B/V(:U+;a)dF(x+]xj,u) (12.7.5)
uc(x;

e Envelope theorem:

— If solution w is interior,
v; = T, (u, ;) + B/V(:ﬁ; a)dF,(z"|x;, u)
— If solution u is on boundary
v = p+ mo(u, ;) + 3 / V(" a)dFy(z" |z, u)
where p is a Kuhn-Tucker multiplier

e Since computing fU} is cheap, we should include it in data:

: / .
— Data: (v, v}, x;), i=1,---,n

— Objective: find an @ € R™ such that V (z; a) best fits Hermite data

A

— Methods: determined by V(zx; a)

General Parametric Approach: Value Function Iteration

guess a — V(x; a)
—>(Uiaaji>7 1= 17 y TV

—New a
e Comparison with discretization

— This procedure examines only a finite number of points, but does not assume that future points
lie in same finite set.

— Our choices for the z; are guided by systematic numerical considerations.

e Synergies
— Smooth interpolation schemes allow us to use Newton’s method in the maximization step.
— They also make it easier to evaluate the integral in (12.7.5).

e Finite-horizon problems

— Value function iteration is only possible procedure since V' (z,t) depends on time ¢.
— Begin with terminal value function, V' (x,T)

— Compute approximations for each V' (x,t), t =T — 1,T — 2, etc.

Algorithm 12.5: Parametric Dynamic Programming
with Value Function Iteration
Objective: Solve the Bellman equation, (12.7.1).
Step 0: Choose functional form for V (x; a), and choose
the approximation grid, X = {x1, ..., x,}.
Make initial guess V(az, a”), and choose stopping
criterion € > 0.
Step 1: Maximization step: Compute
v; = (TV(-;a"))(x;) for all 2; € X.
Step 2: Fitting step: Using the appropriate approximation
method, compute the a'™ € R™ such that
V(z; a"1) approximates the (v;, 2;) data.
Step 3: If | V(z:d') — V(x;a't) ||< €, STOP; else go to step 1.

e Convergence

— T is a contraction mapping

—T may be neither monotonic nor a contraction
e Shape problems

— An instructive example

Figure 1:

— Shape problems may become worse with value function iteration

e Solution to shape problems

— Use shape-preserving approximations
x Plecewise linear preserves shape in one dimension.
x Multilinear approximation does not preserve shape
* Shape preserving splines are available for dimensions one and two.

— Impose shape restrictions in fitting

« Use least squares, not interpolation
* Add shape constraints to least squares problem
- Demand correct slopes at some points
- Demand correct curvature at some points.
+ These methods work well in one dimension, but slow algorithm down considerably for higher

dimensions

— Open research question: What is the best combination of smooth functional form and fitting
procedure that preserves shape?

General Parametric Approach: Policy Iteration

e Basic Bellman equation:

Viz) = urengé) m(u,z) + S E{V(z")|z,u)} = (TV)(x).

e Policy iteration:

— Current guess: a finite-dimensional linear parameterization

A

V(z)=V(z;a), a € R
— Iteration: compute optimal policy today if V(az, a) is value tomorrow

U (x) =arg max mw(z;,u,t)+ OE {\7 ($+; a) |z, u)}
ueD(x)

— If solution is interior, then U (z;) solves
d .
0=mu(x;,U(z;),t) + B@ (E {V (a:+; a) lx;, U (:EZ))}>

— Take u; = U (z;) data for x; nodes, and use some approximation scheme U (x; b) with parameters
b to approximate U (x)

— Compute the value function if the policy U (x;) is used forever. This is solution to the linear
integral equation

A

V(z;d') = m(U(x;b),) + BE{V(z";d) |z, U(z; b))}

that can be solved by a projection method

Summary:
e Discretization methods

— Easy to implement
— Numerically stable
— Amenable to many accelerations

— Poor approximation to continuous problems
e Continuous approximation methods

— Can exploit smoothness in problems
— Must work to avoid numerical instabilities

— Acceleration is less possible

