# Numerical Methods in Economics MIT Press, 1998

# Chapter 11 Notes: Projection Methods for Functional Equations

November 5, 2008

# Functional Problems

- Many problems involve solving for some unknown function
  - Dynamic programming
  - Consumption and investment policy functions
  - Pricing functions in asset pricing models
  - Strategies in dynamic games
- The projection method is a robust method for solving such problems

\_

# An Ordinary Differential Equation Example

• Consider the differential equation

$$y' - y = 0, \quad y(0) = 1$$
 (11.1.1)

- Solution is  $y = e^x$ .
- We use projection methods to solve it for  $0 \le x \le 3$ .

### • Key Distinction:

- Finite difference methods solve a finite set of equations on a grid they replace the continuous domain for x with a discrete set of x values
- Projection methods find a function that approximately solves the functional equation (11.1.1)
  - they approximate the unknown function  $y\left(x\right)$  with a function from a finite-dimensional space of functions.

#### • Define L

$$Ly \equiv y' - y \ . \tag{11.1.2}$$

- -L is an operator mapping functions to functions; domain is  $C^1$  functions and range is  $C^0$ .
- Define  $Y = \{y(x)|y \in C^1, y(0) = 1\}$
- (11.1.1) wants to find a  $y \in Y$  such that Ly = 0.
- Approximate functions: consider family

$$\hat{y}(x;a) = 1 + \sum_{j=1}^{n} a_j x^j. \tag{11.1.3}$$

- An affine subset of the vector space of polynomials.
- Note that  $\hat{y}(0; a) = 1$  for any choice of a, so  $\hat{y}(0; a) \in Y$  for any a.

- Objective: find a s.t.  $\hat{y}(x;a)$  "nearly" solves differential equation (11.1.1).
- ullet Define residual function

$$R(x;a) \equiv L\hat{y} = -1 + \sum_{j=1}^{n} a_j (jx^{j-1} - x^j)$$
(11.1.4)

- -R(x;a) is deviation of  $L\hat{y}$  from zero, the target value.
- A projection method adjusts a until it finds a "good" a that makes R(x;a) "nearly" the zero function.
- Different projection methods use different notions of "good" and "nearly."

# Example:

• Consider

$$y' - y = 0, \quad y(0) = 1$$
 (11.1.1)

for  $x \in [0, 3]$  with

$$\hat{y}(x;a) = 1 + \sum_{j=1}^{3} a_j x^j$$

- Least Squares:
  - Find a that minimizes the total squared residual

$$\min_{a} \int_{0}^{3} R(x; a)^{2} dx. \tag{11.1.5}$$

- Objective is quadratic in the a's with f.o.c.'s

$$\begin{pmatrix}
6 & \frac{9}{2} & \frac{-54}{5} \\
\frac{9}{2} & \frac{36}{5} & 0 \\
\frac{54}{5} & 0 & 41 & \frac{23}{35}
\end{pmatrix}
\begin{pmatrix}
a_1 \\ a_2 \\ a_3
\end{pmatrix} = \begin{pmatrix}
-3 \\ 0 \\ \frac{27}{2}
\end{pmatrix}.$$
(11.1.6)

\_

### • Method of moments:

- Idea: If R(x; a) were zero, then  $\int_0^3 R(x; a) f(x) dx = 0$  for all f(x).
- Use low powers of x to identify a via projection conditions

$$0 = \int_0^3 R(x; a) x^j dx , \quad j = 0, 1, 2.$$
 (11.1.9)

- Conditions reduce to linear system in a:

$$\begin{pmatrix} -3/2 & 0 & 27/4 \\ -9/2 & -9/4 & 243/20 \\ -45/4 & 81/10 & 243/10 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} 3 \\ \frac{9}{2} \\ 6 \end{pmatrix}$$
(11.1.10)

\_

#### • Galerkin

- Idea: use basis elements, x,  $x^2$ , and  $x^3$  in projection conditions
- Form projections of R against the basis elements

$$0 = \int_0^3 R(x; a) x^j dx , \quad j = 1, 2, 3.$$

- Another linear equation

#### • Collocation

- Idea: If R(x; a) = 0 then it is zero at all x.
- Specify a finite set of X and choose a so that R(x; a) is zero  $x \in X$ . If  $X = \{0, 3/2, 3\}$ , the uniform grid, this reduces to linear equations

$$R(0; a) = 0 = -1 + a_1$$

$$R(1.5; a) = 0 = -1 - \frac{1}{2}a_1 + \frac{3}{4}a_2 + \frac{27}{8}a_3$$

$$R(3; a)0 = -1 - 2a_1 - 3a_2$$
(11.1.11)

### • Chebyshev Collocation

- Idea: interpolation at Chebyshev points is best
- Let

$$X = \left\{ \frac{3}{2} \left( \cos \frac{\pi}{6} + 1 \right), \frac{3}{2}, \frac{3}{2} \left( \cos \frac{5\pi}{6} + 1 \right) \right\}$$

the zeroes of  $T_3(x)$  adapted to [0,3]

- Reduces to linear equations  $R(x_i; a) = 0, x_i \in X$ .

Table 11.1: Solutions for Coefficients in (11.1.3)

Scheme:  $a_1$   $a_2$   $a_3$  Least Squares 1.290 -.806 .659 Galerkin 2.286 -1.429 .952 Chebyshev Collocation 1.692 -1.231 .821 Uniform Collocation 1.000 -1.000 .667 Optimal  $L_2$  1.754 -.838 .779

Table 11.2: Projection Methods Applied to (11.1.2):  $L_2$  errors of solutions

|    | Uniform     | Chebyshev   | Least   |          |            |  |
|----|-------------|-------------|---------|----------|------------|--|
| n  | Collocation | Collocation | Squares | Galerkin | Best poly. |  |
| 3  | 5.3(0)      | 2.2(0)      | 3.2(0)  | 5.3(-1)  | 1.7(-1)    |  |
| 4  | 1.3(0)      | 2.9(-1)     | 1.5(-1) | 3.6(-2)  | 2.4(-2)    |  |
| 5  | 1.5(-1)     | 2.5(-2)     | 4.9(-3) | 4.1(-3)  | 2.9(-3)    |  |
| 6  | 2.0(-2)     | 1.9(-3)     | 4.2(-4) | 4.2(-4)  | 3.0(-4)    |  |
| 7  | 2.2(-3)     | 1.4(-4)     | 3.8(-5) | 3.9(-5)  | 2.8(-5)    |  |
| 8  | 2.4(-4)     | 9.9(-6)     | 3.2(-6) | 3.2(-6)  | 2.3(-6)    |  |
| 9  | 2.2(-5)     | 6.6(-7)     | 2.3(-7) | 2.4(-7)  | 1.7(-7)    |  |
| 10 | 2.1(-6)     | 4.0(-8)     | 1.6(-8) | 1.6(-8)  | 1.2(-8)    |  |

# Continuous-Time Life-Cycle Consumption Models

• Consider life-cycle problem

$$\max_{c} \int_{0}^{T} e^{-\rho t} u(c) dt,$$

$$\dot{A} = rA + w(t) - c(t)$$

$$A(0) = A(T) = 0$$
(10.6.10)

• Parameters

$$-u(c) = c^{1+\gamma}/(1+\gamma)$$

$$-\rho = 0.05, r = 0.10, \gamma = -2$$

$$-w(t) = 0.5 + t/10 - 4(t/50)^2, \text{ and } T = 50.$$

• The functions c(t) and A(t) must approximately solve the two point BVP

$$\dot{c}(t) = -\frac{1}{2}c(t)(0.05 - 0.10), 
\dot{A}(t) = 0.1A(t) + w(t) - c(t), 
A(0) = A(T) = 0.$$
(11.4.7)

• Approximation: degree 10 Chebyshev polys for c(t) and A(T):

$$A(t) = \sum_{i=0}^{10} a_i T_i \left( \frac{t-25}{25} \right),$$

$$c(t) = \sum_{i=0}^{10} c_i T_i \left( \frac{t-25}{25} \right),$$
(11.4.6)

• Define the two residual functions

$$R_1(t) = \dot{c}(t) - 0.025c(t) R_2(t) = \dot{A}(t) - \left(.1A(t) + \left(.5 + \frac{t}{10} - 4(\frac{t}{50})^2\right) - c(t)\right).$$
 (11.4.8)

- Choose  $a_i$  and  $c_i$  so that  $R_1(t)$  and  $R_2(t)$  are nearly zero and A(0) = A(T) = 0 hold.
  - Boundary conditions impose two conditions
  - Need 20 more conditions to determine the 22 unknown coefficients.
  - Use 10 collocation points on [0, 50]: the 10 zeros of  $T_{10}(t 25/25)$

$$\mathcal{C} \equiv \{0.31, 2.72, 7.32, 13.65, 21.09, 28.91, 36.35, 42.68, 47.28, 49.69\}$$

- Choose the  $a_i$  and  $c_i$  coefficients, which solve

$$R_{1}(t_{i}) = 0, \ t_{i} \in \mathcal{C}, i = 1, ..., 10,$$

$$R_{2}(t_{i}) = 0, \ t_{i} \in \mathcal{C}, i = 1, ..., 10,$$

$$A(0) = \sum_{i=1}^{10} a_{i}(-1)^{i} = 0,$$

$$A(50) = \sum_{i=1}^{10} a_{i} = 0.$$

$$(11.4.9)$$

- -22 linear equations in 22 unknowns.
- The system is nonsingular; therefore there is a unique solution.
- The true solution to the system (11.4.7) can be solved since it is a linear problem.

• Residuals:



- Note:
  - Equioscillation in residuals
  - Small size of residuals

## • Errors



relative consumption errors



relative asset errors

## • Note:

- Lack of equioscillation in errors
- Small size of errors
- Errors are roughly same size as residuals

## Continuous-Time Growth Model

• Consider

$$\max_{c} \int_{0}^{\infty} e^{-\rho t} u(c) dt$$

$$\dot{k} = f(k) - c$$

• Optimal policy function, C(k), satisfies the ODE

$$0 = C'(k) (f(k) - C(k)) - \frac{u'(C(k))}{u''(C(k))} (\rho - f'(k)) \equiv \mathcal{N}(C)$$

$$\mathcal{N}: C^1 \to C^0$$

together with the boundary condition that  $C(k^*) = f(k^*), f'(k^*) = \rho$ 

• Example:

$$-f(k) = \rho k^{\alpha}/\alpha, \ u(c) = c^{1+\gamma}/(1+\gamma)$$
$$-\rho = 0.04, \ \alpha = 0.25, \ \gamma = -2$$
$$-k^* = 1.$$

• Use Chebyshev polynomials for  $k \in [0.25, 1.75]$ ,

$$\hat{C}(k;a) \equiv \sum_{i=0}^{n} a_i T_i \left(\frac{k-1}{0.75}\right)$$

• Define residual

$$0 = R(k; a) = \mathcal{N}(\hat{C}(\cdot; a))(k)$$

$$= \hat{C}'(k) \left( f(k) - \hat{C}(k) \right) - \frac{u'(\hat{C}(k))}{u''(\hat{C}(k))} (\rho - f'(k))$$

• Collocation: compute a by solving

$$R(k_i ; a) = 0, \quad i = 1, \dots, n+1,$$

where the  $k_i$  are the n+1 zeroes of  $T_{n+1}\left(\frac{k-1}{0.75}\right)$ .

• Results:  $\hat{E}^n(k)$  is error of degree n approximation

Table 11.3: Projection Methods Applied to (5.1)

 $1.4 \quad 4(-3) \quad -9(-5) \quad -2(-6) \quad 7(-9) \quad 0.233941$ 

# Simple Example: One-Sector Growth

• Consider

$$\max_{c_t} \sum_{t=1}^{\infty} \beta^t u(c_t)$$
$$k_{t+1} = f(k_t) - c_t$$

• Optimality implies that  $c_t$  satisfies

$$u'(c_t) = \beta u'(c_{t+1}) f'(k_{t+1})$$

- Problem: The number of unknowns  $c_t$ , t = 1, 2, ... is infinite.
- Step 0: Express solution in terms of an unknown function

$$c_t = C(k_t)$$
: consumption function

- Consumption function C(k) must satisfy the functional equation:

$$0 = u'(C(k)) - \beta u'(C(f(k) - C(k)))f'(f(k) - C(k))$$
  
$$\equiv (\mathcal{N}(C))(k)$$

- This defines the operator

$$\mathcal{N}: C^0_+ \to C^0_+$$

- Equilibrium solves the operator equation

$$0 = \mathcal{N}(C)$$

. .

- **Step 1:** Create approximation:
  - Find

$$\widehat{C} \equiv \sum_{i=0}^{n} a_i k^i$$

which "nearly" solves

$$\mathcal{N}(\widehat{C}) = 0$$

- Convert an infinite-dimensional problem to a finite-dimensional problem in  $\mathbb{R}^n$ 
  - \* No discretization of state space
  - \* A form of discretization, but in spectral domain
- Step 2: Compute Euler equation error function:

$$R(k; \vec{a}) = u'(\widehat{C}(k)) - \beta u'(\widehat{C}(f(k) - \widehat{C}(k)))f'(f(k) - \widehat{C}(k))$$

- Step 3: Choose  $\vec{a}$  to make  $R(\cdot; \vec{a})$  "small" in some sense:
  - Least-Squares: minimize sum of squared Euler equation errors

$$\min_{\vec{a}} \int R(\cdot; \vec{a})^2 dk$$

- Galerkin: zero out weighted averages of Euler equation errors

$$P_i(\vec{a}) \equiv \int R(k; \vec{a}) \psi_i(k) dk = 0, \ i = 1, \dots, n$$

for n weighting functions  $\psi_i(k)$ .

- Collocation: zero out Euler equation errors at  $k \in \{k_1, k_2, \dots, k_n\}$ :

$$P_i(\vec{a}) \equiv R(k_i; \vec{a}) = 0 , i = 1, \cdots, n$$

- Details of  $\int ...dk$  computation:
  - Exact integration seldom possible in nonlinear problems.
  - Use quadrature formulas they tell us what are *good* points.
  - Monte Carlo often mistakenly used for high-dimension integrals
  - Number Theoretic methods best for large dimension

### • Details of solving $\vec{a}$ :

- Jacobian,  $\vec{P}_{\vec{a}}(\vec{a})$ , should be well-conditioned
- Newton's method is quadratically convergent since it uses Jacobian
- Functional iteration and time iteration ignore Jacobian and are linearly convergent.
- Homotopy methods are almost surely globally convergent
- Least squares may be ill-conditioned (that is, be flat in some directions).

- -

## Bounded Rationality Accuracy Measure

Consider the one-period relative Euler equation error:

$$E(k) = 1 - \frac{(u')^{-1} (\beta u' (C (f(k) - C(k))) f' (f(k) - C(k)))}{C(k)}$$

- Equilibrium requires it to be zero.
- E(k) is measure of optimization error
  - -1 is unacceptably large
  - Values such as .00001 is a limit for people.
  - -E(k) is unit-free.
- Define the  $L^p$ ,  $1 \leq p < \infty$ , bounded rationality accuracy to be

$$\log_{10} \parallel E(k) \parallel_p$$

• The  $L^{\infty}$  error is the maximum value of E(k).

#### Numerical Results

- Machine: Compaq 386/20 w/ Weitek 1167
- Speed: Deterministic case: < 15 seconds
- Accuracy: Deterministic case: 8<sup>th</sup> order polynomial agrees with 250,000–point discretization to within 1/100,000.

~ .

# General Projection Method

• Step 0: Express solution in terms of unknown functions

$$0 = \mathcal{N}(h)$$

- The h(x) are decision and price rules expressing the dependence on the state x
  - consumption as a function of wealth
  - aggregate investment as a function of current capital stock and productivity
  - an individual's asset trading as a function of public and his private information
  - equilibrium price as a function of all information
  - firm investment as a function of his and rivals' current capital stock
- $\bullet$  The functions h express
  - agents on demand curve
  - firms on their product supply and factor demand curve
  - market clearing
  - value functions from dynamic programming problems
  - value functions in dynamic games
  - laws of motion
  - Bayesian updating and\or regression learning rules
- The collection of conditions  $0 = \mathcal{N}(h)$  express equilibrium.

- **Step 1:** Choose space for approximation:
  - Basis for approximation for h:

$$\{\varphi_i\}_{i=1}^{\infty} \equiv \Phi$$

- Norm:

$$\langle \cdot, \cdot \rangle : C^0_+ \times C^0_+ \to R$$

basis should be complete in space of  $C^0_+$  functions basis should be orthogonal w.r.t.  $\langle \cdot, \cdot \rangle$  norm and basis should be easy to compute norm and basis should be "appropriate" for problem norms are often of form  $\langle f, g \rangle = \int_D f(x)g(x)w(x)dx$  for some w(x) > 0

– Goal: Find  $\hat{h}$  which "nearly" solves  $\mathcal{N}\left(\hat{h}\right)=0$ 

$$\widehat{h} \equiv \sum_{i=1}^{n} a_i \, \varphi_i$$

- We have converted an infinite-dimensional problem to a problem in  $\mathbb{R}^n$ 
  - \* No discretization of state space.
  - \* Instead, discretize in a functional (spectral) domain.

### - Example Bases:

$$*\Phi = \{1, k, k^2, k^3, \cdots\}$$

\* 
$$\Phi = \{\sin k, \sin 2k, \cdots\}$$
: Fourier – (periodic problems)

- \*  $\varphi_n = T_n(x)$ : Chebyshev polynomials (for smooth, nonperiodic problems)
- \* Legendre polynomials
- \* Step functions
- \* Tent functions
- \* B-Splines (smooth generalizations of step and tent functions)
- \* Step functions are also finite element methods, but seldom used outside of economics.
- Nonlinear generalization
  - \* For some parametric form,  $\Phi(x; a)$

$$\widehat{h}(x;a) \equiv \Phi(x;a)$$

- \* Examples:
  - · Neural networks
  - · Rational functions
- \* Goal: Find an

$$\widehat{h} \equiv \Phi(x; a)$$

which "nearly" solves  $\mathcal{N}(\widehat{h}) = 0$ 

\* Promising direction but tools of linear functional analysis and approximation theory are not available.

• Step 2: Compute residual function:

$$R(\cdot, a) = \widehat{\mathcal{N}}(\widehat{h}) \doteq \mathcal{N}(\widehat{h}) \doteq \mathcal{N}(h)$$

- Step 3: Choose  $\vec{a}$  so that  $R(\cdot; \vec{a})$  is "small" in  $\langle \cdot, \cdot \rangle$ .
  - Alternative Criteria:
    - \* Least-Squares

$$\min_{\vec{a}} \langle R(\cdot; \vec{a}), R(\cdot; \vec{a}) \rangle$$

\* Galerkin

$$P_i(\vec{a}) \equiv \langle R(\cdot; \vec{a}), \varphi_i \rangle = 0, i = 1, \cdots, n$$

\* Method of Moments

$$P_i(\vec{a}) \equiv \langle R(\cdot; \vec{a}), k^{i-1} \rangle = 0 , i = 1, \dots, n$$

\* Collocation

$$P_i(\vec{a}) \equiv R(k_i; \vec{a}) = 0 , i = 1, \dots, n, k_i \in \{k_1, k_2, \dots, k_n\}$$

\* Orthogonal Collocation (a.k.a. Pseudospectral)

$$P_i(\vec{a}) \equiv R(k_i; \vec{a}) = 0 , i = 1, \dots, n, k_i \in \{k : \varphi_n(k) = 0\}$$

- Details of  $\langle \cdot, \cdot \rangle$  computation:
  - Exact integration seldom possible in nonlinear problems.
  - Use quadrature formulas they tell us what are *good* points.
  - Monte Carlo often mistakenly used for high-dimension integrals
  - Number Theoretic methods best for large dimension
- Details of solving  $\vec{a}$ :
  - Jacobian,  $\vec{P}_{\vec{a}}(\vec{a})$ , should be well-conditioned.
  - Newton's method is quadratically convergent since it uses Jacobian; functional iteration (e.g., parameterized expectations) and time iteration ignore Jacobian and are linearly convergent.
  - If  $\Phi$  is orthogonal w.r.t.  $\langle \cdot, \cdot \rangle$ , then Galerkin method uses orthogonal projections, helping with conditioning.
  - Least squares uses

$$\left\langle R, \frac{\partial R}{\partial a_i} \right\rangle = 0$$

projection conditions, which may lead to ill-conditioning.

- -

# Convergence Properties of Galerkin Methods

- Zeidler (1989): If the nonlinear operator  $\mathcal{N}$  is monotone, coercive, and satisfies a growth condition then Galerkin method proves existence and works numerically.
- Krasnosel'skii and Zabreiko (1984): If  $\mathcal{N}$  satisfies certain degree conditions, then a large set of projection methods (e.g., Galerkin methods with numerical quadrature) converge.
- Convergence is neither sufficient nor necessary
  - Usually only locally valid
  - Convergence theorems don't tell you when to stop.
  - Non-convergent methods are no worse if they satisfy stopping rules

\_ \_

# A Partial Differential Equation Example

• Consider the simple heat equation

$$\theta_t - \theta_{xx} = 0$$

- $\text{ Domain } 0 \le x \le 1, \quad 0 \le t \le 1.$
- Initial condition  $\theta(x,0) = \sin \pi x$
- Boundary conditions  $\theta(0,t)=0$  ,  $\theta(1,t)=0, 0 \le t \le 1$ .
- Unique solution is  $\theta(x,t) = e^{-\pi^2 t} \sin \pi x$ .

- ~

- Projection approach.
  - Form polynomial approximation

$$\hat{\theta}(x,t) = \theta_0(x) + \sum_{i=1}^n \sum_{j=1}^m a_{ij} (x - x^i) t^j.$$

\* Initial condition is absorbed in

$$\theta_0(x) = \sin \pi x$$

- \* Boundary condition is automatically true since approximation is weighted sum of  $x x^j$  terms, which is zero at x = 0, 1.
- \* A better choice may be to use orthogonal polynomials  $\phi$  and  $\psi$  in  $\sum_{i=1}^{n} \sum_{j=1}^{m} a_{ij} \phi_i(x) \psi_j(t)$  in x and t e.g., Legendre polynomials adapted to [0,1].
- Residual is a function of both space and time

$$R(x,t) = -\theta_{0xx}(x) + \sum_{i=1}^{n} \sum_{j=1}^{m} (a_{ij}(x-x^{i})jt^{j-1} - a_{ij}(-i)(i-1)x^{i-2}t^{j}).$$
 (1)

- The nm unknown coefficients,  $a_{ij}$ , are fixed by the nm projection conditions

$$\langle R(x,t), \psi_{ij}(x,t) \rangle = 0, \qquad i = 1, \dots, n, \ j = 1, \dots, m,$$
 (2)

where  $\psi_{ij}(x,t) = (x-x^i)t^j$  is a collection of nm basis functions.

- Equations (2 form a system of linear algebraic equations in the unknown coefficients  $a_{ij}$ . System is better conditioned if we use orthogonal polynomials.

# Computing Conditional Expectations

- Many economics problems need to compute conditional expectation functions.
- The conditional expectation of Y given X, denoted  $E\{Y|X\}$ , is a function of X,  $\psi(X)$ , such that

$$E\{(Y - \psi(X)) \ g(X)\} = 0 \tag{11.6.1}$$

for all continuous functions g.

- Prediction error  $Y \psi(X)$  is uncorrelated with all functions of X.
- We seek a function  $\widehat{\psi}(X)$  which approximates  $E\{Y|X\}$ .
- Use projection method to approximate  $\widehat{\psi}(X)$ 
  - Construct approximation scheme

$$\widehat{\psi}(X;a) = \sum_{i=0}^{n} a_i \varphi_i(X), \qquad (11.6.2)$$

- We now need to find the a coefficients in  $\widehat{\psi}$ .
- Assume (WLOG) there is a r. v. Z such that Y = g(Z) and X = h(Z).
- The least squares coefficients a solve

$$\min_{a} E\left\{ (\psi(h(Z); a) - g(Z))^{2} \right\}.$$
 (11.6.3)

### • Monte Carlo approach

- Generate a sample of (Y, X) pairs,  $\{(y_i, x_i) \mid i = 1, \dots, N\}$
- Regress the values of Y on X, solving the least squares problem

$$\min_{a} \sum_{i} (\psi(x_i; a) - y_i)^2.$$
 (11.6.4)

### • Projection method

- For all i, the projection condition  $E\{(g(Z) \psi(h(Z)))\varphi_i(h(Z))\} = 0.$
- Fix coefficients a by imposing n+1 projection conditions

$$E\left\{ (g(Z) - \widehat{\psi}(h(Z); a)) \varphi_i(h(Z)) \right\} = 0, \ i = 0, ..., n.$$
 (11.6.5)

- (11.6.5) is a linear equation in the a coefficients.
- Use deterministic methods to compute each integral

~ .

### • Example:

- Let  $Y, W \sim U[0, 1], X = \varphi(Y, W) = (Y + W + 1)^2$
- $-E\{Y|X\} = (X^{1/2} 1)/2.$
- Monte Carlo
  - \* Produce 1,000 (y, w) pairs, and compute  $x_i = \varphi(y_i, w_i)$ .
  - \* Regress y on  $1, x, x^2, x^3$ , and  $x^4$ , producing

$$\widehat{\psi}_{MC}(x) = -0.1760 + 0.2114x - 0.0075x^2 - 0.0012x^3 + 0.0001x^4.$$

- \* The  $L^2$  norm of  $\widehat{\psi}_{MC} \psi$  is 0.0431.
- Projection method
  - \* Project prediction error  $\widehat{\psi}(\varphi(y,w);a)-y$  against moments of x:

$$\int_0^1 \int_0^1 (\widehat{\psi}(\varphi(y, w); a) - y) \varphi(y, w)^k dw dy = 0, k = 0, 1, 2, 3, 4$$

- \* Linear system of equations in the unknown coefficients a.
- \* Use quadrature for integrals; don't need 1000 points.
- \* The solution implies

$$\widehat{\psi}_P = -0.2471 + 0.2878x - 0.0370x^2 + 0.0035x^3 - 0.0001x^4.$$

\* The  $L^2$  norm of  $\widehat{\psi}_P - \psi$  is 0.0039

- Comparison:
  - \*  $\widehat{\psi}_P$  error is ten times less than the  $L^2$  error of the  $\widehat{\psi}_{MC}$
  - \*  $\widehat{\psi}_P$  is faster to compute than  $\widehat{\psi}_{MC}$



- Conditional expectations are linear operators
  - Projection method reduces conditional expectations to linear problems combined with quadrature
  - No need to resort to Monte Carlo