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Functional Problems
e Many problems involve solving for some unknown function

— Dynamic programming
— Consumption and investment policy functions
— Pricing functions in asset pricing models

— Strategies in dynamic games

e The projection method is a robust method for solving such problems



An Ordinary Differential Equation Example
e Consider the differential equation
y —y=0, y(0)=1 (11.1.1)
— Solution is y = e”.

— We use projection methods to solve it for 0 < x < 3.

e Key Distinction:

— Finite difference methods solve a finite set of equations on a grid - they replace the continuous

domain for 2 with a discrete set of x values

— Projection methods find a function that approximately solves the functional equation (11.1.1)
- they approximate the unknown function y (x) with a function from a finite-dimensional space

of functions.

e Define L
Ly=vy —vy. (11.1.2)

— L is an operator mapping functions to functions; domain is C' functions and range is CV.

— Define Y = {y(z)ly € C*, y(0) =1}
— (11.1.1) wants to find a y € Y such that Ly = 0.

e Approximate functions: consider family

Jlx;a) =1+ al. (11.1.3)
j=1



— An affine subset of the vector space of polynomials.

— Note that 5(0;a) = 1 for any choice of a, so 9(0;a) € Y for any a.



e Objective: find a s.t. y(x;a) “nearly” solves differential equation (11.1.1).

e Define residual function

R(zia)=Lj=—1+)Y a;(ja/™" —a) (11.1.4)

j=1
— R(x;a) is deviation of Ly from zero, the target value.

— A projection method adjusts a until it finds a “good” a that makes R(z;a) “nearly” the zero

function.

— Different projection methods use different notions of “good” and “nearly.”



Example:

e Consider

y —y=0, y(0)=1 (11.1.1)
for = € [0, 3] with

3
y(xr;a) =1+ Zaja:j
j=1
e Least Squares:

— Find a that minimizes the total squared residual

a

3
min/ R(z;a)* dx. (11.1.5)
0

— Objective is quadratic in the a’s with f.o.c.’s
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e Method of moments:

— Idea: If R(x;a) were zero, then f03 R(z;a) f(x)dxr =0 for all f(x).

— Use low powers of x to identify a via projection conditions
3
0= / R(z;a)x’dx, j=0,1,2. (11.1.9)
0

— Conditions reduce to linear system in a:
—3/2 0 27/4 aq
—9/2 —9/4243/20 | | as | =
—45/481/10243/10 ] \ a3

(11.1.10)
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e Galerkin

— Idea: use basis elements, z, 22, and z® in projection conditions

— Form projections of R against the basis elements
3
0 =/ R(z;a)x’dx, j=1,2,3.
0
— Another linear equation

e Collocation

— Idea: If R(x;a) =0 then it is zero at all x.

— Specify a finite set of X and choose a so that R(z;a) is zero z € X. If X = {0,3/2,3}, the
uniform grid, this reduces to linear equations

R(0;a)=0 =—-14a
R(1.5;a) =0=—1—1a1 + 3as+ Z as (11.1.11)
R(S, a)O =—-1—- 2@1 — 3@2

e Chebyshev Collocation

— Idea: interpolation at Chebyshev points is best
et 3 33 5
X = {5 (cos% + 1), 35 (cos% + 1)}
the zeroes of T3(x) adapted to [0,3]

— Reduces to linear equations R(x;;a) =0, z; € X.



Table 11.1: Solutions for Coefficients in (11.1.3)
Scheme: a1 as  as
Least Squares 1.290 -.806 .659
Galerkin 2.286 -1.429 .952
Chebyshev Collocation 1.692 -1.231 .821
Uniform Collocation 1.000 -1.000 .667
Optimal Ly 1.754 -.838 .779

Table 11.2: Projection Methods Applied to (11.1.2): Ly errors of solutions
Uniform Chebyshev  Least

n Collocation Collocation Squares Galerkin Best poly.
3 5.3(0) 2.2(0)  3.2(0) 5.3(-1) 1.7(-1)
4 1.3(0) 29(-1) 1.5(-1)  3.6(-2) 2.4(-2)
5 1.5(-1) 2.5(-2) 4.9(-3) 4.1(-3) 2.9(-3)
6 2.0(-2) 1.9(-3) 4.2(-4) 4.2(-4) 3.0(-4)
7 2.2(-3) 1.4(-4) 3.8(-5)  3.9(-5) 2.8(-5)
8 2.4(-4) 9.9(-6) 3.2(-6)  3.2(-6) 2.3(-6)
9 2.2(-5) 6.6(-7) 2.3(-7) 2.4(-7) 1.7(-7)
10 2.1(-6) 4.0(-8) 1.6(-8) 1.6(-8) 1.2(-8)



Continuous-Time Life-Cycle Consumption Models

e Consider life-cycle problem
max,. fOT e "u(c)dt,
A =rA+w(t)—ct)
A(0) = A(T)=0

e Parameters
—ulc) =c"7/(147)
—p=0.05,7=0.10,y = =2
—w(t) = 0.5+ /10 — 4(t/50)%, and T = 50.
e The functions ¢(¢) and A(t) must approximately solve the two point BVP

¢(t) = —3¢()(0.05 — 0.10),
A()=01A<) w(t) — c(t),

e Approximation: degree 10 Chebyshev polys for ¢(t) and A(T):

Al)=31aTi (52)
c(t) =30 a1 (52)

(10.6.10)

(11.4.7)

(11.4.6)



e Define the two residual functions

Ry(t)= é(t) — 0.025¢(t)

Ro(t)= A(t) — (TA(t) + (5 + 4 — 4(L)?) — c(¥)) . (11.48)
e Choose a; and ¢; so that R;(t) and Ry(t) are nearly zero and A(0) = A(T) = 0 hold.
— Boundary conditions impose two conditions
— Need 20 more conditions to determine the 22 unknown coefficients.
— Use 10 collocation points on [0, 50]: the 10 zeros of Ti(t — 25/25)
C = {0.31,2.72,7.32, 13.65, 21.09, 28.91, 36.35, 42.68, 47.28, 49.69}
— Choose the a; and ¢; coefficients, which solve
Ry(t;))=0, t; €C,i=1,...,10,
Ry(t;)=0, t; € C,i=1,...,10, (11.4.9)

A(0) =30 ai(=1)' =0,
A(B0) =31 a; = 0.

— 22 linear equations in 22 unknowns.

— The system is nonsingular; therefore there is a unique solution.

e The true solution to the system (11.4.7) can be solved since it is a linear problem.



e Residuals:

ML )

¢ equation residuals A equation residuals

e Note:

— Equioscillation in residuals

— Small size of residuals



e Frrors

2x10°

-6x1 0'6

V\_/\SO

relative consumption errors

e Note:

— Lack of equioscillation in errors

— Small size of errors

— Errors are roughly same size as residuals

2%10°

-6x10°
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relative asset errors
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Continuous-Time Growth Model

e Consider
max /OO e " u(c)dt
koz f(k)—c
e Optimal policy function, C'(k), satisfies the ODE

0=C') (F6) ~ Cb) = St o= F')

N .ot — Y

N(C)

together with the boundary condition that C'(k*) = f(k*), f'(k*) =p



e Example:
— f(k) = pk®/a, u(ec) = /(1 +7)
—p=0.04, a=0.25,v= -2
— k' =1.

e Use Chebyshev polynomials for k € [0.25,1.75],

n

R k—1
O(k,(l) = Z CLZ'T% (W

i=0
e Define residual

0=R(k;a) = N'(C(-a)) (k)

=C'(k) (f(k) = C(k)) = =

)




e Collocation: compute a by solving
R(ki; a)=0, i=1,---,n+1,
where the k; are the n + 1 zeroes of T}, (%)

e Results: E"(k) is error of degree n approximation

Table 11.3: Projection Methods Applied to (5.1)

k F*k) Ek) ES(k) E2(k) C2(k)
6 -9(-3) -2(-3)  4(-6) -9(-9) 0.159638
8 -2(-2) -2(-4) -2(-6) -1(-8) 0.180922
1.0 5(-16) -2(-4) -5(-16) 5(-16) 0.200000
1.2 1(2) 1(-4) 1(-6)  7(-9) 0.217543
1.4 4(-3) -9(-5) -2(-6)  7(-9) 0.233941



Simple Example: One-Sector Growth
e Consider
max Zﬁtu(ct)
R

ki1 = f(kt) — Gt
e Optimality implies that ¢; satisfies
u'(cr) = Bu'(crin) f/(Kig)
e Problem: The number of unknowns ¢;, ¢t =1, 2, ... is infinite.
e Step 0: Express solution in terms of an unknown function
¢t = C'(k;) : consumption function

— Consumption function C(k) must satisfy the functional equation:

0=u'(C(k)) — u(C(f(k) — C(K)))f'(f (k) — C(k))
=(N(C))(k)

— This defines the operator
N:CY—CY
— Equilibrium solves the operator equation

0=N(C)



e Step 1: Create approximation:

— Find .
C = Z a; k'
i=0
which “nearly” solves
N (C)=0

— Convert an infinite-dimensional problem to a finite-dimensional problem in R"

* No discretization of state space

x A form of discretization, but in spectral domain

e Step 2: Compute Euler equation error function:

R (k; @) = u'(C(k)) — B (C(f(k) — C(k))) ' (f(k) — C(k))



e Step 3: Choose d to make R(-;@) “small” in some sense:

— Least-Squares: minimize sum of squared Euler equation errors

min /R(-; a)*dk

a

— Galerkin: zero out weighted averages of Euler equation errors
R@= [ R@i(kdb =0, i= 1 n

for n weighting functions v, (k).

— Collocation: zero out Euler equation errors at k € {ky, ko, -+, k,} :



e Details of [ ...dk computation:

— Exact integration seldom possible in nonlinear problems.
— Use quadrature formulas — they tell us what are good points.
— Monte Carlo — often mistakenly used for high—dimension integrals

— Number Theoretic methods — best for large dimension
e Details of solving a:

— Jacobian, P;(@), should be well-conditioned

— Newton’s method is quadratically convergent since it uses Jacobian

— Functional iteration and time iteration ignore Jacobian and are linearly convergent.
— Homotopy methods are almost surely globally convergent

— Least squares may be ill-conditioned (that is, be flat in some directions).



Bounded Rationality Accuracy Measure

Consider the one-period relative Euler equation error:

()~ (Bu (C (f(k) = C(R))) f'(f (k) — C(k)))
C(k)

Ek)=1-
e Equilibrium requires it to be zero.
e F(k) is measure of optimization error

— 1 is unacceptably large
— Values such as .00001 is a limit for people.

— E(k) is unit-free.
e Define the L, 1 < p < o0, bounded rationality accuracy to be

logyg || E<k) Hp

e The L> error is the maximum value of E(k).

Numerical Results
e Machine: Compaq 386/20 w/ Weitek 1167
e Speed: Deterministic case: < 15 seconds

e Accuracy: Deterministic case: 8™ order polynomial agrees with 250,000—point discretization to
within 1/100,000.



General Projection Method
e Step 0: Express solution in terms of unknown functions
0=N(h)
e The h(x) are decision and price rules expressing the dependence on the state

— consumption as a function of wealth

— aggregate investment as a function of current capital stock and productivity

— an individual’s asset trading as a function of public and his private information
— equilibrium price as a function of.all information

— firm investment as a function of his and rivals’ current capital stock
e The functions h express

— agents on demand curve

— firms on their product supply and factor demand curve
— market clearing

— value functions from dynamic programming problems
— value functions in dynamic games

— laws of motion

— Bayesian updating and\or regression learning rules

e The collection of conditions 0 = N(h) express equilibrium.



e Step 1: Choose space for approximation:

— Basis for approximation for h:
{QOZ 1=1 — =

— Norm:
():CYxCY — R
basis should be complete in space of C functions basis should be orthogonal w.r.t. {-,-) norm

and basis should be easy to compute norm and basis should be “appropriate” for problem
norms are often of form (f, g) = [, f w(x)dzx for some w(x) > 0

— Goal: Find h which “nearly” solves N ( ) =

n

/i\lEZ a; Y;

i=1
— We have converted an infinite-dimensional problem to a problem in R"

x No discretization of state space.

+ Instead, discretize in a functional (spectral) domain.



— Example Bases:
* O = {1,k k? K-}
x & = {sin k, sin 2k,---}: Fourier — (periodic problems)
x ,, = T, (r): Chebyshev polynomials — (for smooth, nonperiodic problems)
* Legendre polynomials
* Step functions
x Tent functions
* B-Splines (smooth generalizations of step and tent functions)

x Step functions are also finite element methods, but seldom used outside of economics.
— Nonlinear generalization

* For some parametric form, ®(z; a)

h(z:a) = O(z;a)
x Examples:
- Neural networks
- Rational functions
x Goal: Find an
h= O(x;a)

which “nearly” solves N (h) = 0

* Promising direction but tools of linear functional analysis and approximation theory are not
available.



e Step 2: Compute residual function:

e Step 3: Choose @ so that R(-;@) is “small” in (-, -).

— Alternative Criteria:

x Least-Squares

* Galerkin

* Method of Moments

* Collocation
B(CT) ER<I€276) :Oa 1= 17 y 10, kz S {klak%'” 7]{771}

* Orthogonal Collocation (a.k.a. Pseudospectral)
P(d)=R(ki;a)=0,i=1,---,n, k; € {k:p,(k) =0}



e Details of (-, ) computation:

— Exact integration seldom possible in nonlinear problems.
— Use quadrature formulas — they tell us what are good points.
— Monte Carlo — often mistakenly used for high—dimension integrals

— Number Theoretic methods — best for large dimension
e Details of solving a:

— Jacobian, P;(@), should be well-conditioned.

— Newton’s method is quadratically convergent since it uses Jacobian; functional iteration (e.g.,

parameterized expectations) and time iteration ignore Jacobian and are linearly convergent.

— If @ is orthogonal w.r.t. (-,-), then Galerkin method uses orthogonal projections, helping with

OR
<Fi7 8a2> =0

projection conditions, which may lead to ill-conditioning.

conditioning.

— Least squares uses




Convergence Properties of Galerkin Methods

e Zeidler (1989): If the nonlinear operator A/ is monotone, coercive, and satisfies a growth condition
then Galerkin method proves existence and works numerically.

e Krasnosel’skii and Zabreiko (1984): If N satisfies certain degree conditions, then a large set of
projection methods (e.g., Galerkin methods with numerical quadrature) converge.

e Convergence is neither sufficient nor necessary
— Usually only locally valid

— Convergence theorems don’t tell you when to stop.

— Non-convergent methods are no worse if they satisfy stopping rules



A Partial Differential Equation Example

e Consider the simple heat equation
0y — 0., =0

—Domain 0 < <1, 0<t<1.

— Initial condition 6(z,0) = sin 7z

— Boundary conditions #(0,t) =0, 6(1,t)=0,0<t<1.

e Unique solution is (z,¢) = e ™ 'sin 7.



e Projection approach.

— Form polynomial approximation

S

0(x,t) = Oy(x) +

=1 7

aij (v — '),
1

m

x Initial condition is absorbed in
Oo(z) = sinmx

+ Boundary condition is automatically true since approximation is weighted sum of x — a2/
terms, which is zero at x = 0, 1.

+ A better choice may be to use orthogonal polynomials ¢ and ¢ in 7" | > % a;; ¢;(x) ; (t)
in z and t - e.g., Legendre polynomials adapted to [0, 1].

— Residual is a function of both space and time
R(x,t) = =00 (x) + Z Z(aij (x —2") jt —ay; (—i)(i — 1)z 2 ). (1)
i=1 j=1
— The nm unknown coeflicients, a;;, are fixed by the nm projection conditions
<R($7t)7 %3(5’3775»207 Z.:]-a”'ana j:]-a”'ama (2)

where ¢,;(z,t) = (x — o)t/ is a collection of nm basis functions.

— Equations (2 form a system of linear algebraic equations in the unknown coefficients a;;. System
is better conditioned if we use orthogonal polynomials.



Computing Conditional Expectations

e Many economics problems need to compute conditional expectation functions.

e The conditional expectation of Y given X, denoted E{Y | X}, is a function of X, ¥)(X), such that
E{(Y — (X)) g(X)} =0 (116.1)
for all continuous functions g.

— Prediction error Y — (X)) is uncorrelated with all functions of X.

— We seek a function ¢(X) which approximates E{Y | X}.
e Use projection method to approximate ;D(X )

— Construct approximation scheme
(X;a) =) aip(X), (11.6.2)
i=0

— We now need to find the a coefficients in LAD
— Assume (WLOG) there is ar. v. Z such that Y = g(Z) and X = h(Z).

— The least squares coefficients a solve

min E {(zp (h(Z);a) — g<Z))2} . (11.6.3)

a



e Monte Carlo approach

— Generate a sample of (Y, X) pairs, {(y;,z;) |i=1,--- ,N}

— Regress the values of Y on X, solving the least squares problem

mainz (¢ (x5a) — ). (11.6.4)

e Projection method
— For all 4, the projection condition F{(g(Z) —¢¥(h(Z)))¢;(h(Z))} = 0.

— Fix coefficients a by imposing n + 1 projection conditions
E{(9(2) = d(h(Z):a)) pi(h(Z)) b =0, i =0,...,m. (11.6.5)

— (11.6.5) is a linear equation in the a coefficients.

— Use deterministic methods to compute each integral



e Example:
—Let Y, W ~U[0,1], X = (Y, W) = (Y + W + 1)
— B{Y|X} = (X2 -1)/2.
— Monte Carlo

* Produce 1,000 (y, w) pairs, and compute z; = ¢(y;, w;).

2 23, and z*, producing

* Regress y on 1, z,x
Uyel(z) = —0.1760 + 0.2114x — 0.00752% — 0.0012z° + 0.0001z*.

+ The L? norm of @Mc — 1 is 0.0431.
— Projection method

* Project prediction error @(g@(y, w); a) — y against moments of x:

1 1
/0 / (Bloly, w);a) — ) oly,w) dw dy =0, k=0,1,2,3,4

« Linear system of equations in the unknown coefficients a.
x Use quadrature for integrals; don’t need 1000 points.

* The solution implies
Up = —0.2471 + 0.2878z — 0.03702> + 0.00352° — 0.0001z".

+ The L? norm of @P — 1) is 0.0039



— Comparison:

* @ p error is ten times less than the L? error of the LAD MO

% 1) p is faster to compute than W MC

0.02
NS
-0.04 R E \

e Conditional expectations are linear operators

— Projection method reduces conditional expectations to linear problems combined with quadra-
ture

— No need to resort to Monte Carlo



