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Functional Problems

• Many problems involve solving for some unknown function

— Dynamic programming

— Consumption and investment policy functions

— Pricing functions in asset pricing models

— Strategies in dynamic games

• The projection method is a robust method for solving such problems
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An Ordinary Di!erential Equation Example

• Consider the di!erential equation
y! " y = 0, y(0) = 1 (11.1.1)

— Solution is y = ex.

— We use projection methods to solve it for 0 # x # 3.

• Key Distinction:

— Finite di!erence methods solve a nite set of equations on a grid - they replace the continuous
domain for x with a discrete set of x values

— Projection methods nd a function that approximately solves the functional equation (11.1.1)
- they approximate the unknown function y (x) with a function from a nite-dimensional space
of functions.

• Dene L
Ly $ y! " y . (11.1.2)

— L is an operator mapping functions to functions; domain is C1 functions and range is C0.

— Dene Y = {y(x)|y % C1, y(0) = 1}

— (11.1.1) wants to nd a y % Y such that Ly = 0.

• Approximate functions: consider family

ŷ(x; a) = 1 +
n!

j=1

ajx
j. (11.1.3)
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— An a"ne subset of the vector space of polynomials.

— Note that ŷ(0; a) = 1 for any choice of a, so ŷ(0; a) % Y for any a.
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• Objective: nd a s.t. ŷ(x; a) “nearly” solves di!erential equation (11.1.1).

• Dene residual function

R (x; a) $ Lŷ = "1 +
n!

j=1

aj(jx
j"1 " xj) (11.1.4)

— R (x; a) is deviation of Lŷ from zero, the target value.

— A projection method adjusts a until it nds a “good” a that makes R(x; a) “nearly” the zero
function.

— Di!erent projection methods use di!erent notions of “good” and “nearly.”
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Example:

• Consider
y! " y = 0, y(0) = 1 (11.1.1)

for x % [0, 3] with

ŷ(x; a) = 1 +
3!

j=1

ajx
j

• Least Squares:

— Find a that minimizes the total squared residual

min
a

" 3

0

R(x; a)2 dx. (11.1.5)

— Objective is quadratic in the a’s with f.o.c.’s
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• Method of moments:

— Idea: If R(x; a) were zero, then
) 3
0 R(x; a) f(x) dx = 0 for all f(x).

— Use low powers of x to identify a via projection conditions

0 =

" 3

0

R(x; a)xj dx , j = 0, 1, 2. (11.1.9)

— Conditions reduce to linear system in a:
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• Galerkin

— Idea: use basis elements, x, x2, and x3 in projection conditions

— Form projections of R against the basis elements

0 =

" 3

0

R(x; a)xj dx , j = 1, 2, 3.

— Another linear equation

• Collocation

— Idea: If R(x; a) = 0 then it is zero at all x.

— Specify a nite set of X and choose a so that R(x; a) is zero x % X. If X = {0, 3/2, 3}, the
uniform grid, this reduces to linear equations

R(0; a) = 0 = "1 + a1
R(1.5; a) = 0= "1" 1

2a1 +
3
4 a2 +

27
8 a3

R(3; a)0 = "1" 2a1 " 3a2
(11.1.11)

• Chebyshev Collocation

— Idea: interpolation at Chebyshev points is best

— Let
X =

*
3

2
(cos

!

6
+ 1),

3

2
,
3

2
(cos

5!

6
+ 1)

+

the zeroes of T3(x) adapted to [0,3]

— Reduces to linear equations R(xi; a) = 0, xi % X.
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Table 11.1: Solutions for Coe"cients in (11.1.3)
Scheme: a1 a2 a3

Least Squares 1.290 -.806 .659
Galerkin 2.286 -1.429 .952

Chebyshev Collocation 1.692 -1.231 .821
Uniform Collocation 1.000 -1.000 .667

Optimal L2 1.754 -.838 .779

Table 11.2: Projection Methods Applied to (11.1.2): L2 errors of solutions
Uniform Chebyshev Least

n Collocation Collocation Squares Galerkin Best poly.
3 5.3(0) 2.2(0) 3.2(0) 5.3(-1) 1.7(-1)
4 1.3(0) 2.9(-1) 1.5(-1) 3.6(-2) 2.4(-2)
5 1.5(-1) 2.5(-2) 4.9(-3) 4.1(-3) 2.9(-3)
6 2.0(-2) 1.9(-3) 4.2(-4) 4.2(-4) 3.0(-4)
7 2.2(-3) 1.4(-4) 3.8(-5) 3.9(-5) 2.8(-5)
8 2.4(-4) 9.9(-6) 3.2(-6) 3.2(-6) 2.3(-6)
9 2.2(-5) 6.6(-7) 2.3(-7) 2.4(-7) 1.7(-7)
10 2.1(-6) 4.0(-8) 1.6(-8) 1.6(-8) 1.2(-8)
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Continuous-Time Life-Cycle Consumption Models

• Consider life-cycle problem
maxc

) T
0 e

""tu(c) dt,
A = rA+ w(t)" c(t)
A(0) = A(T ) = 0

(10.6.10)

• Parameters

— u(c) = c1+#/(1 + #)

— " = 0.05, r = 0.10, # = "2

— w(t) = 0.5 + t/10" 4(t/50)2, and T = 50.

• The functions c(t) and A(t) must approximately solve the two point BVP

c(t) = "1
2c(t)(0.05" 0.10),

A(t) = 0.1A(t) + w(t)" c(t),
A(0)= A(T ) = 0.

(11.4.7)

• Approximation: degree 10 Chebyshev polys for c(t) and A(T ):

A(t)=
,10

i=0 aiTi
-
t"25
25

.
,

c(t) =
,10

i=0 ciTi
-
t"25
25

.
,

(11.4.6)
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• Dene the two residual functions

R1(t)= c(t)" 0.025c(t)
R2(t)= A(t)"

-
.1A(t) +

-
.5 + t

10 " 4(
t
50)

2
.
" c(t)

.
.

(11.4.8)

• Choose ai and ci so that R1(t) and R2(t) are nearly zero and A(0) = A(T ) = 0 hold.

— Boundary conditions impose two conditions

— Need 20 more conditions to determine the 22 unknown coe"cients.

— Use 10 collocation points on [0, 50]: the 10 zeros of T10(t" 25/25)

C $ {0.31, 2.72, 7.32, 13.65, 21.09, 28.91, 36.35, 42.68, 47.28, 49.69}

— Choose the ai and ci coe"cients, which solve

R1(ti)= 0, ti % C, i = 1, ..., 10,
R2(ti)= 0, ti % C, i = 1, ..., 10,
A(0) =

,10
i=1 ai("1)

i = 0,

A(50) =
,10

i=1 ai = 0.

(11.4.9)

— 22 linear equations in 22 unknowns.

— The system is nonsingular; therefore there is a unique solution.

• The true solution to the system (11.4.7) can be solved since it is a linear problem.

11



• Residuals:

·
c equation residuals

·
A equation residuals

• Note:

— Equioscillation in residuals

— Small size of residuals
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• Errors

relative consumption errors relative asset errors

• Note:

— Lack of equioscillation in errors

— Small size of errors

— Errors are roughly same size as residuals
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Continuous-Time Growth Model

• Consider

max
c

" &

0

e""t u(c) dt

k = f(k)" c

• Optimal policy function, C(k), satises the ODE

0=C !(k) (f(k)"C(k))"
u!(C(k))

u!!(C(k))
("" f !(k)) $ N (C)

N : C1 ' C0

together with the boundary condition that C(k() = f(k(), f !(k() = "
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• Example:

— f(k) = "k$/$, u(c) = c1+#/(1 + #)

— " = 0.04, $ = 0.25, # = "2

— k( = 1.

• Use Chebyshev polynomials for k % [0.25, 1.75],

Ĉ(k; a) $
n!

i=0

ai Ti

/
k " 1
0.75

0

• Dene residual

0=R(k; a) = N (Ĉ(·; a))(k)

= Ĉ !(k)
1
f(k)" Ĉ(k)

2
"
u!(Ĉ(k))

u!!(Ĉ(k))
("" f !(k))
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• Collocation: compute a by solving

R (ki ; a) = 0, i = 1, · · · , n+ 1,

where the ki are the n + 1 zeroes of Tn+1
-
k"1
0.75

.
.

• Results: Ên(k) is error of degree n approximation

Table 11.3: Projection Methods Applied to (5.1)
k Ê2(k) Ê5(k) Ê8(k) Ê12(k) Ĉ12(k)

.6 -9(-3) -2(-3) 4(-6) -9(-9) 0.159638

.8 -2(-2) -2(-4) -2(-6) -1(-8) 0.180922
1.0 5(-16) -2(-4) -5(-16) 5(-16) 0.200000
1.2 1(-2) 1(-4) 1(-6) 7(-9) 0.217543
1.4 4(-3) -9(-5) -2(-6) 7(-9) 0.233941
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Simple Example: One-Sector Growth

• Consider

max
ct

&!

t=1

%tu(ct)

kt+1 = f(kt)" ct

• Optimality implies that ct satises

u!(ct) = %u
!(ct+1)f

!(kt+1)

• Problem: The number of unknowns ct, t = 1, 2, ... is innite.

• Step 0: Express solution in terms of an unknown function

ct = C(kt) : consumption function

— Consumption function C(k) must satisfy the functional equation:

0=u!(C(k))" %u!(C(f(k)" C(k)))f !(f(k)" C(k))
$(N (C))(k)

— This denes the operator
N : C0+ ' C0+

— Equilibrium solves the operator equation

0 = N (C)
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• Step 1: Create approximation:

— Find
3C $

n!

i=0

aik
i

which “nearly” solves
N ( 3C) = 0

— Convert an innite-dimensional problem to a nite-dimensional problem in Rn

( No discretization of state space
( A form of discretization, but in spectral domain

• Step 2: Compute Euler equation error function:

R (k; &a) = u!( 3C(k))" %u!( 3C(f(k)" 3C(k)))f !(f(k)" 3C(k))
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• Step 3: Choose &a to make R(·;&a) “small” in some sense:

— Least-Squares: minimize sum of squared Euler equation errors

min
&a

"
R(·;&a)2dk

— Galerkin: zero out weighted averages of Euler equation errors

Pi(&a) $
"
R(k;&a)'i(k)dk = 0, i = 1, · · · , n

for n weighting functions 'i(k).

— Collocation: zero out Euler equation errors at k % {k1, k2, · · · , kn} :

Pi(&a) $ R(ki;&a) = 0 , i = 1, · · · , n
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• Details of
)
...dk computation:

— Exact integration seldom possible in nonlinear problems.

— Use quadrature formulas — they tell us what are good points.

— Monte Carlo — often mistakenly used for high—dimension integrals

— Number Theoretic methods — best for large dimension

• Details of solving &a:

— Jacobian, &P&a(&a), should be well-conditioned

— Newton’s method is quadratically convergent since it uses Jacobian

— Functional iteration and time iteration ignore Jacobian and are linearly convergent.

— Homotopy methods are almost surely globally convergent

— Least squares may be ill-conditioned (that is, be at in some directions).
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Bounded Rationality Accuracy Measure
Consider the one-period relative Euler equation error:

E(k) = 1"
(u!)"1 (%u! (C (f(k)"C(k))) f ! (f(k)"C(k)))

C(k)

• Equilibrium requires it to be zero.

• E(k) is measure of optimization error

— 1 is unacceptably large

— Values such as .00001 is a limit for people.

— E(k) is unit-free.

• Dene the Lp, 1 # p <&, bounded rationality accuracy to be

log10 ) E(k) )p

• The L& error is the maximum value of E(k).

Numerical Results

• Machine: Compaq 386/20 w/ Weitek 1167

• Speed: Deterministic case: < 15 seconds

• Accuracy: Deterministic case: 8th order polynomial agrees with 250,000—point discretization to
within 1/100,000.
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General Projection Method

• Step 0: Express solution in terms of unknown functions

0 = N (h)

• The h(x) are decision and price rules expressing the dependence on the state x

— consumption as a function of wealth

— aggregate investment as a function of current capital stock and productivity

— an individual’s asset trading as a function of public and his private information

— equilibrium price as a function of.all information

— rm investment as a function of his and rivals’ current capital stock

• The functions h express

— agents on demand curve

— rms on their product supply and factor demand curve

— market clearing

— value functions from dynamic programming problems

— value functions in dynamic games

— laws of motion

— Bayesian updating and\or regression learning rules

• The collection of conditions 0 = N (h) express equilibrium.
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• Step 1: Choose space for approximation:

— Basis for approximation for h:
{(i}

&
i=1 $ !

— Norm:
*·, ·+ : C0+ ×C

0
+ ' R

basis should be complete in space of C0+ functions basis should be orthogonal w.r.t. *·, ·+ norm
and basis should be easy to compute norm and basis should be “appropriate” for problem
norms are often of form *f, g+ =

)
D f(x)g(x)w(x)dx for some w(x) > 0

— Goal: Find 3h which “nearly” solves N (3h) = 0

3h $
n!

i=1

ai (i

— We have converted an innite-dimensional problem to a problem in Rn

( No discretization of state space.
( Instead, discretize in a functional (spectral) domain.
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— Example Bases:

( ! = {1, k, k2, k3, · · · }
( ! = {sin k, sin 2k, · · · }: Fourier — (periodic problems)
( (n = Tn (x): Chebyshev polynomials — (for smooth, nonperiodic problems)
( Legendre polynomials
( Step functions
( Tent functions
( B-Splines (smooth generalizations of step and tent functions)
( Step functions are also nite element methods, but seldom used outside of economics.

— Nonlinear generalization

( For some parametric form, !(x; a)

3h(x; a) $ !(x; a)

( Examples:
· Neural networks
· Rational functions

( Goal: Find an
3h $ !(x; a)

which “nearly” solves N (3h) = 0
( Promising direction but tools of linear functional analysis and approximation theory are not
available.
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• Step 2: Compute residual function:

R(·, a) = 3N (3h) .= N (3h) .= N (h)

• Step 3: Choose &a so that R(·;&a) is “small” in *·, ·+.

— Alternative Criteria:

( Least-Squares
min
&a
*R(·;&a), R(·;&a)+

( Galerkin
Pi(&a) $ *R(·;&a), (i+ = 0, i = 1, · · · , n

( Method of Moments

Pi(&a) $
4
R(·;&a), ki"1

5
= 0 , i = 1, · · · , n

( Collocation
Pi(&a) $ R(ki;&a) = 0 , i = 1, · · · , n, ki % {k1, k2, · · · , kn}

( Orthogonal Collocation (a.k.a. Pseudospectral)

Pi(&a) $ R(ki;&a) = 0 , i = 1, · · · , n, ki % {k : (n(k) = 0}
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• Details of *·, ·+ computation:

— Exact integration seldom possible in nonlinear problems.

— Use quadrature formulas — they tell us what are good points.

— Monte Carlo — often mistakenly used for high—dimension integrals

— Number Theoretic methods — best for large dimension

• Details of solving &a:

— Jacobian, &P&a(&a), should be well-conditioned.

— Newton’s method is quadratically convergent since it uses Jacobian; functional iteration (e.g.,
parameterized expectations) and time iteration ignore Jacobian and are linearly convergent.

— If ! is orthogonal w.r.t. *·, ·+, then Galerkin method uses orthogonal projections, helping with
conditioning.

— Least squares uses 6
R,
)R

)ai

7
= 0

projection conditions, which may lead to ill-conditioning.
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Convergence Properties of Galerkin Methods

• Zeidler (1989): If the nonlinear operatorN is monotone, coercive, and satises a growth condition
then Galerkin method proves existence and works numerically.

• Krasnosel’skii and Zabreiko (1984): If N satises certain degree conditions, then a large set of
projection methods (e.g., Galerkin methods with numerical quadrature) converge.

• Convergence is neither su"cient nor necessary

— Usually only locally valid

— Convergence theorems don’t tell you when to stop.

— Non-convergent methods are no worse if they satisfy stopping rules
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A Partial Di!erential Equation Example

• Consider the simple heat equation
*t " *xx = 0

— Domain 0 # x # 1, 0 # t # 1.

— Initial condition *(x, 0) = sin!x

— Boundary conditions *(0, t) = 0 , *(1, t) = 0, 0 # t # 1.

• Unique solution is *(x, t) = e"!2t sin!x.
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• Projection approach.

— Form polynomial approximation

*̂(x, t) = *0(x) +
n!

i=1

m!

j=1

aij (x" xi) tj.

( Initial condition is absorbed in
*0(x) = sin!x

( Boundary condition is automatically true since approximation is weighted sum of x " xj

terms, which is zero at x = 0, 1.

( Abetter choice may be to use orthogonal polynomials + and ' in
,n

i=1

,m
j=1 aij +i(x)'j (t)

in x and t - e.g., Legendre polynomials adapted to [0, 1].

— Residual is a function of both space and time

R(x, t) = "*0xx(x) +
n!

i=1

m!

j=1

(aij (x" xi) jtj"1 " aij ("i)(i" 1)xi"2 tj). (1)

— The nm unknown coe"cients, aij, are xed by the nm projection conditions
4
R(x, t), 'ij(x, t)

5
= 0, i = 1, · · · , n, j = 1, · · · ,m, (2)

where 'ij(x, t) = (x" xi)tj is a collection of nm basis functions.

— Equations (2 forma systemof linear algebraic equations in the unknown coe"cients aij. System
is better conditioned if we use orthogonal polynomials.
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Computing Conditional Expectations

• Many economics problems need to compute conditional expectation functions.

• The conditional expectation of Y given X, denoted E{Y |X}, is a function of X, '(X), such that

E {(Y " ' (X)) g (X)} = 0 (11.6.1)

for all continuous functions g.

— Prediction error Y " '(X) is uncorrelated with all functions of X.

— We seek a function 3'(X) which approximates E{Y |X}.

• Use projection method to approximate 3'(X)

— Construct approximation scheme

3'(X; a) =
n!

i=0

ai(i(X), (11.6.2)

— We now need to nd the a coe"cients in 3'.
— Assume (WLOG) there is a r. v. Z such that Y = g(Z) and X = h(Z).

— The least squares coe"cients a solve

min
a
E
8
(' (h (Z) ; a)" g(Z))2

9
. (11.6.3)
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• Monte Carlo approach

— Generate a sample of (Y,X) pairs, {(yi, xi) | i = 1, · · · , N}

— Regress the values of Y on X, solving the least squares problem

min
a

!

i

(' (xi; a)" yi)2 . (11.6.4)

• Projection method

— For all i, the projection condition E{(g (Z)" '(h (Z)))(i(h (Z))} = 0.

— Fix coe"cients a by imposing n + 1 projection conditions

E
8
(g(Z)" 3'(h(Z); a))(i(h(Z))

9
= 0, i = 0, ..., n. (11.6.5)

— (11.6.5) is a linear equation in the a coe"cients.

— Use deterministic methods to compute each integral

31



• Example:

— Let Y,W , U [0, 1], X = ( (Y,W ) = (Y +W + 1)2

— E{Y |X} = (X1/2 " 1)/2.

— Monte Carlo

( Produce 1,000 (y, w) pairs, and compute xi = ((yi, wi).
( Regress y on 1, x, x2, x3, and x4, producing

3'MC(x) = "0.1760 + 0.2114x" 0.0075x2 " 0.0012x3 + 0.0001x4.

( The L2 norm of 3'MC " ' is 0.0431.

— Projection method

( Project prediction error 3'(((y, w); a)" y against moments of x:
" 1

0

" 1

0

(3'(((y, w); a)" y) ((y, w)k dw dy = 0, k = 0, 1, 2, 3, 4

( Linear system of equations in the unknown coe"cients a.
( Use quadrature for integrals; don’t need 1000 points.
( The solution implies

3'P = "0.2471 + 0.2878x" 0.0370x2 + 0.0035x3 " 0.0001x4.

( The L2 norm of 3'P " ' is 0.0039
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— Comparison:

( 3'P error is ten times less than the L2 error of the 3'MC
( 3'P is faster to compute than 3'MC

• Conditional expectations are linear operators

— Projection method reduces conditional expectations to linear problems combined with quadra-
ture

— No need to resort to Monte Carlo
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