
Numerical Methods in Economics
MIT Press, 1998

Notes for Chapter 6: Approximation Methods

October 20, 2008

1

Approximation Methods

• General Objective: Given data about a function f(x) (which is di!cult to compute) construct a
simpler function g(x) that approximates f(x).

• Questions:

— What data should be produced and used?

— What family of “simpler” functions should be used?

— What notion of approximation do we use?

— How good can the approximation be?

— How simple can a good approximation be?

• Comparisons with statistical regression

— Both approximate an unknown function

— Both use a nite amount of data

— Statistical data is noisy; we assume here that data errors are small

— Nature produces data for statistical analysis; we produce the data in function approximation

— Our approximation methods are like experimental design with very small experimental error

2

Local Approximation Methods

• Use information about f : R ! R only at a point, x0 " R, to construct an approximation valid
near x0

• Taylor Series Approximation

f(x)
.
=f(x0) + (x# x0) f $(x0) +

(x# x0)2

2
f $$(x0) + · · · (6.1.1)

+
(x# x0)n

n!
f (n)(x0) +O(|x# x0|n+1)

=pn (x) +O(|x# x0|n+1)

• Power series:
!%

n=0 anz
n

— The radius of convergence is

r = sup{|z| : |
%"

n=0

anz
n| <%},

—
!%

n=0 anz
n converges for all |z| < r and diverges for all |z| > r.

3

• Complex analysis

— f : ! & C ! C on the complex plane C is analytic on ! i"

'a " ! (r, ck

#
')z # a) < r

#
f(z) =

%"

k=0

ck(z # a)k
$$

— A singularity of f is any a s. t. f is analytic on !# {a} but not on !.
— If f or any derivative of f has a singularity at z " C, then the radius of convergence in C of!%

n=0
(x#x0)n
n! f (n)(x0), is bounded above by) x0 # z).

4

• Example: f(x) = x! where 0 < ! < 1.

— One singularity at x = 0

— Radius of convergence for power series around x = 1 is 1.

— Taylor series coe!cients decline slowly:

ak =
1

k!

dk

dxk
(x!)|x=1 =

!(!# 1) · · · (!# k + 1)
1 · 2 · · · · · k .

Table 6.1 (corrected): Taylor Series Approximation Errors for x1/4

Taylor series error x1/4

x N: 5 10 20 50
3.0 5(#1) 8(1) 3(3) 1(12) 1.3161
2.0 1(#2) 5(#3) 2(#3) 8(#4) 1.1892
1.8 4(#3) 5(#4) 2(#4) 9(#9) 1.1583
1.5 2(#4) 3(#6) 1(#9) 0(#12) 1.1067
1.2 1(#6) 2(#10) 0(#12) 0(#12) 1.0466
.80 2(#6) 3(#10) 0(#12) 0(#12) .9457
.50 6(#4) 9(#6) 4(#9) 0(#12) .8409
.25 1(#2) 1(#3) 4(#5) 3(#9) .7071
.10 6(#2) 2(#2) 4(#3) 6(#5) .5623
.05 1(#1) 5(#2) 2(#2) 2(#3) .4729

5

Rational Approximation

• Denition: A (m,n) Padé approximant of f at x0 is a rational function

r(x) =
p(x)

q(x)
,

where degree of p (q)is at most m (n), and

0 =
dk

dxk
(p# f q) (x0), k = 0, · · · ,m+ n.

• Construction

— Usually choose m = n or m = n+ 1.

— The m+ 1 coe!cients of p and the n + 1 coe!cients of q must satisfy linear conditions

p(k) (x0) = (f q)
(k) (x0), k = 0, · · · ,m+ n, (6.1.2)

— (6.1.2) plus q(x0) = 1 forms m+ n + 2 linear conditions on the m+ n + 2 coe!cients

— Linear system may be singular; if so, reduce n or m by 1

6

• Example: (2,1) Pade approx. of x1/4 at x = 1

— Construct degree m+ n = 2 + 1 = 3 Taylor series

t(x) = 1 +
(x# 1)
4

#
3(x# 1)2

32
+
7(x# 1)3

128
* t(x).

— Find p0, p1, p2, and q1 such that

p0 + p1(x# 1) + p2(x# 1)2 # t(x)(1 + q1(x# 1)) = 0 (6.1.3)

— Combine coe!cients of like powers in (6.1.3) implies

21 + 70x + 5x2

40 + 56x
. (6.1.4)

• Pade approximation is often better; not limited by singularities

7

Log-Linearization, Log-Quadraticization

• Log-linear approximation

— Suppose we have an equation
f (x, ") = 0

that denes x in terms of ".

— Implicit di"erentiation implies

x̂ =
dx

x
= #

"f"
xfx

d"

"
= #

"f"
xfx

",

— Since x̂ = d(lnx), log-linearization implies log-linear approximation

lnx# lnx0
.
= #

"0f"(x0, "0)

x0fx(x0, "0)
(ln "# ln "0). (6.1.5)

which implies

x
.
= x0 exp

%
#
"0f"(x0, "0)

x0fx(x0, "0)
(ln "# ln "0)

&
, (6.1.6)

8

• Generalization to nonlinear change of variables.

— Suppose Y (X) implicitly dened by f(Y (X), X) = 0.

— Dene x = lnX and y = lnY, then y(x) = lnY (ex).

— f(Y (X), X) = 0 is equivalent to f(ey(x), ex) * g(y(x), x) = 0.

— Implicit di"erentiation of g(y(x), x) = 0 implies y$(x) = d lnY
d lnX and (6.1.5)

— lnY (X) = y(x) also suggests the second-order approximation

lnY (X) = y(x)
.
= y(x0) + y

$(x)(x# x0) + y$$(x0)
(x# x0)2

2
, (6.1.7)

— Can construct Padé expansions in terms of the logarithm.

— There is nothing special about log function.

+ Take any monotonic h(·)
+ Dene x = h(X) and y = h(Y)
+ Use the identity

f(Y,X)=f(h#1(h(Y)), h#1(h(X)))

=f(h#1(y), h#1(x))

*g(y, x).

to generate expansions

y(x)
.
=y(x0) + y

$(x)(x# x0) + ...
Y (X)

.
=h#1 (y(h(X0)) + y

$(h(X0))(h(X)# h(X0)) + ...)

+ h(z) = ln z is natural for economists, but others may be better globally

9

Types of Approximation Methods

• Interpolation Approach: nd a function from an n-dimensional family of functions which exactly
ts n data items

• Lagrange polynomial interpolation

— Data: (xi, yi) , i = 1, .., n.

— Objective: Find a polynomial of degree n# 1, pn(x), which agrees with the data, i.e.,

yi = f(xi), i = 1, .., n

— Result: If the xi are distinct, there is a unique interpolating polynomial

10

• Question: Suppose that yi = f (xi). Does pn(x) converge to f (x) as we use more points?

• Convergence Counterexample

— Suppose

f(x) =
1

1 + x2
, xi : uniform on [#5, 5]

— Degree 10 (11 points) result:

Figure 1:

11

• Hermite polynomial interpolation

— Data: (xi, yi, y$i) , i = 1, .., n.

— Objective: Find a polynomial of degree 2n# 1, p(x), which agrees with the data, i.e.,

yi=p(xi), i = 1, .., n

y$i=p
$(xi), i = 1, .., n

— Result: If the xi are distinct, there is a unique interpolating polynomial

• Least squares approximation

— Data: A function, f(x).

— Objective: Find a function g(x) from a class G that best approximates f(x), i.e.,

g = argmax
g"G

)f # g)2

12

Orthogonal polynomials

• General orthogonal polynomials

— Space: polynomials over domain D

— weighting function: w(x) > 0

— Inner product: ,f, g- =
'
D f(x)g(x)w(x)dx

— Denition: {#i} is a family of orthogonal polynomials w.r.t w (x) i"
(
#i,#j

)
= 0, i .= j

— We like to compute orthogonal polynomials using recurrence formulas

#0(x)=1

#1(x)=x

#k+1(x)=(ak+1x + bk)#k(x) + ck+1#k#1(x)

— Approximation (assuming)#i) = 1):

f (x)=
%"

i=0

ai#i

ai=,f,#i- =
*

D

f(x)#i (x)w(x)dx, i .= j

13

• Legendre polynomials

— [a, b] = [#1, 1]

— w(x) = 1

— Pn(x) =
(#1)n
2nn!

dn

dxn

+
(1# x2)n

,

— Recurrence formula:

P0(x)=1

P1(x)=x

Pn+1(x)=
2n + 1

n + 1
xPn(x)#

n

n+ 1
Pn#1(x),

14

• Chebyshev polynomials

— [a, b] = [#1, 1]

— w(x) =
-
1# x2

.#1/2

— Tn(x) = cos(n cos#1 x)

— Recurrence formula:

T0(x)=1

T1(x)=x

Tn+1(x)=2xTn(x)# Tn#1(x),

15

• Laguerre polynomials

— [a, b] = [0,%)

— w(x) = e#x

— Ln(x) = ex

n!
dn

dxn (x
n e#x)

— Recurrence formula:

L0(x)=1

L1(x)=1# x

Ln+1(x)=
1

n+ 1
(2n + 1# x) Ln(x)#

n

n + 1
Ln#1(x),

16

• Hermite polynomials

— [a, b] = (#%,%)

— w(x) = e#x
2

— Hn(x) = (#1)nex
2 dn

dxn (e
#x2)

— Recurrence formula:

H0(x)=1

H1(x)=2x

Hn+1(x)=2xHn(x)# 2n Hn#1(x).

17

• General Orthogonal Polynomials

— Few problems have the specic intervals and weights used in denitions

— One must adapt interval through linear COV

+ If compact interval [a, b] is mapped to [#1, 1] by

y = #1 + 2
x# a
b# a

then #i
-
#1 + 2x#a

b#a

.
are orthogonal over x " [a, b] with respect to w

-
#1 + 2x#a

b#a

.
i" #i (y)

are orthogonal over y " [#1, 1] w.r.t. w (y)
+ If half-innite interval [a,%] is mapped to [0,%] by

y=
x# a
$

w (y)=e#y

then #i
-
x#a
$

.
are orthogonal over x " [a,%] w.r.t. w

-
x#a
$

.
i" #i (y) are orthogonal over

y " [0,%] w.r.t. w (y)
+ If [#%,%] is mapped to [#%,%] by

y=(x# µ)
//

$

w (y)=e#y
2

then #i
0
x#µ/
$

1
are orthogonal over x " [a,%] w.r.t. w

0
x#µ/
$

1
i" #i (y) are orthogonal over

y " [0,%] w.r.t. w (y)

18

• Trigonometric polynomials and Fourier series

— {cos(n%), sin(m%)} are orthogonal on [#&,&].
— If f is continuous on [#&,&] and f(#&) = f(&), then

f(%) =
1

2
a0 +

%"

n=1

an cos(n%) +
%"

n=1

bn sin(n%)

where the Fourier coe!cients are

an=
1

&

* &

&

f(%) cos(n%)d%

bn=
1

&

* &

&

f(%) sin(n%) d%,

— A trigonometric polynomial is any function of the form in (6.4.4).

— Convergence is uniform.

— Excellent for approximating a smooth periodic function, i.e., f : R! R such that for some ',
f(x) = f(x + ').

— Not good for nonperiodic functions

+ Convergence is not uniform
+ Many terms are needed

19

Regression

• Data: (xi, yi) , i = 1, .., n.

• Objective: Find a function f(x;() with (" Rm, m 0 n, with yi .= f(xi), i = 1, .., n.

• Least Squares regression:

min
("Rm

"
(yi # f (xi;())2

Chebyshev Regression

• Chebyshev Regression Data:

• (xi, yi) , i = 1, .., n > m,xi are the n zeroes of Tn(x) adapted to [a, b]

• Chebyshev Interpolation Data:

(xi, yi) , i = 1, .., n = m,xi are the n zeroes of Tn(x)adapted to [a, b]

20

Algorithm 6.4: Chebyshev Approximation Algorithm in R1

• Objective: Given f(x) dened on [a, b], nd a m-point degree n Chebyshev polynomial approxi-
mation p(x)

• Step 1: Compute the m 1 n + 1 Chebyshev interpolation nodes on [#1, 1]:

zk = #cos
%
2k # 1
2m

&

&
, k = 1, · · · ,m.

• Step 2: Adjust nodes to [a, b] interval:

xk = (zk + 1)

%
b# a
2

&
+ a, k = 1, ...,m.

• Step 3: Evaluate f at approximation nodes:

wk = f(xk) , k = 1, · · · ,m.

• Step 4: Compute Chebyshev coe!cients, ai, i = 0, · · · , n :

ai =

!m
k=1wkTi(zk)!m
k=1 Ti(zk)

2

to arrive at approximation of f(x, y) on [a, b]:

p(x) =
n"

i=0

aiTi

%
2
x# a
b# a

1
&

21

Minmax Approximation

• Data: (xi, yi) , i = 1, .., n.

• Objective: L% t
min
("Rm

max
i
)yi # f (xi;())

• Problem: Di!cult to compute

• Chebyshev minmax property

Theorem 1 Suppose f : [#1, 1]! R is Ck for some k 1 1, and let In be the n-point (degree n# 1)
polynomial interpolation of f based at the zeroes of Tn(x). Then

) f # In)%0
%
2

&
log(n + 1) + 1

&

× (n# k)!
n!

0&
2

1k %b# a
2

&k
) f (k))%

• Chebyshev interpolation:

— converges in L%

— essentially achieves minmax approximation

— easy to compute

— does not approximate f $

22

Splines

Denition 2 A function s(x) on [a, b] is a spline of order n i"

1. s is Cn#2 on [a, b], and

2. there is a grid of points (called nodes) a = x0 < x1 < · · · < xm = b such that s(x) is a polynomial
of degree n# 1 on each subinterval [xi, xi+1], i = 0, . . . ,m# 1.

Note: an order 2 spline is the piecewise linear interpolant.

• Cubic Splines

— Lagrange data set: {(xi, yi) | i = 0, · · · , n}.
— Nodes: The xi are the nodes of the spline

— Functional form: s(x) = ai + bi x + ci x2 + di x3 on [xi#1, xi]

— Unknowns: 4n unknown coe!cients, ai, bi, ci, di, i = 1, · · ·n.

23

• Conditions:

— 2n interpolation and continuity conditions:

yi =ai + bixi + cix
2
i + dix

3
i ,

i = 1, ., n

yi =ai+1 + bi+1xi + ci+1x
2
i + di+1x

3
i ,

i = 0, ., n# 1

— 2n# 2 conditions from C2 at the interior: for i = 1, · · ·n# 1,

bi + 2cixi + 3dix
2
i =bi+1 + 2ci+1 xi + 3di+1x

2
i

2ci + 6dixi=2ci+1 + 6di+1xi

— Equations (1—4) are 4n# 2 linear equations in 4n unknown parameters, a, b, c, and d.

— construct 2 side conditions:

+ natural spline: s$(x0) = 0 = s$(xn); it minimizes total curvature,
' xn
x0
s$$(x)2 dx, among

solutions to (1-4).

+ Hermite spline: s$(x0) = y$0 and s$(xn) = y$n (assumes extra data)
+ Secant Hermite spline: s$(x0) = (s(x1)#s(x0))/(x1#x0) and s$(xn) = (s(xn)#s(xn#1))/(xn#
xn#1).

+ not-a-knot: choose j = i1, i2, such that i1 + 1 < i2, and set dj = dj+1.

— Solve system by special (sparse) methods; see spline t packages

24

• Quality of approximation

Theorem 3 If f " C4[x0, xn] and s is the Hermite cubic spline approximation to f on {x0, x1, · · ·xn}
and h 1 maxi{xi # xi#1}, then

) f # s)%0
5

384
) f (4))% h4

and

) f $ # s$)%0

2/
3

216
+
1

24

3
) f (4))% h3.

In general, order k + 2 splines with n nodes yield O(n#(k+1)) convergence for f " Ck+1[a, b].

25

• B-Splines: A basis for splines

— Put knots at {x#k, · · · , x#1, x0, · · · , xn}.
— Order 1 splines: step function interpolation spanned by

B0i (x) =

4
56

57

0, x < xi,

1, xi 0 x < xi+1,
0, xi+1 0 x,

— Order 2 splines: piecewise linear interpolation and are spanned by

B1i (x) =

4
5555556

5555557

0 , x 0 xi or x 1 xi+2,

x#xi
xi+1#xi

, xi 0 x 0 xi+1,

xi+2#x
xi+2#xi+1

, xi+1 0 x 0 xi+2.

The B1i -spline is the tent function with peak at xi+1 and is zero for x 0 xi and x 1 xi+2.

— Both B0 and B1 splines form cardinal bases for interpolation at the xi’s.

— Higher-order B-splines are dened by the recursive relation

Bki (x)=

%
x# xi
xi+k # xi

&
Bk#1i (x)

+

%
xi+k+1 # x
xi+k+1 # xi+1

&
Bk#1i+1 (x)

26

Theorem 4 Let Skn be the space of all order k+1 spline functions on [x0, xn] with knots at {x0, x1, · · · , xn}.
Then

1. The set
{Bki |[x0,xn] : #k 0 i 0 n# 1}

forms a linearly independent basis for Skn, which has dimension n + k.

2. Bki (x) 1 0 and the support of Bki (x) is (xi, xi+k+1).

3. d
dx (B

k
i (x)) =

0
k

xi+k#xi

1
Bk#1i (x)# (k

xi+k+1#xi+1
) Bk#1i+1 (x).

4. If we have Lagrange interpolation data, (yi, zi), i = 1, · · · , n+ k, and

xi#k#1 < zi < xi , 1 0 i 0 n + k,

then there is an interpolant S in Skn such that y = S(zi), i = 1,..., n + k.

27

• Shape-preservation

— Concave (monotone) data may lead to nonconcave (nonmonotone) approximations.

— Example

28

• Schumaker Procedure:

1. Take level (and maybe slope) data at nodes xi

2. Add intermediate nodes z+i " [xi, xi+1]

3. Run quadratic spline with nodes at the x and z nodes which intepolate data and preserves
shape.

4. Schumaker formulas tell one how to choose the z and spline coe!cients (see book and correction
at book’s website)

• Many other procedures exist for one-dimensional problems

• Few procedures exist for two-dimensional problems

• Higher dimensions are di!cult, but many questions are open.

29

• Spline summary:

— Evaluation is cheap

+ Splines are locally low-order polynomial.
+ Can choose intervals so that nding which [xi, xi+1] contains a specic x is easy.
+ Finding enclosing interval for general xi sequence requires at most 2log2 n3 comparisons

— Good ts even for functions with discontinuous or large higher-order derivatives. E.g., quality
of cubic splines depends only on f (4)(x), not f (5)(x).

— Can use splines to preserve shape conditions

30

Multidimensional approximation methods

• Lagrange Interpolation

— Data: D * {(xi, zi)}Ni=1 & Rn+m, where xi " Rn and zi " Rm

— Objective: nd f : Rn ! Rm such that zi = f(xi).

• Counterexample:

— Interpolation nodes:

{P1, P2, P3, P4} * {(1, 0), (#1, 0), (0, 1), (0,#1)}

— Use linear combinations of {1, x, y, xy}.
— Data: zi = f(Pi), i = 1, 2, 3, 4.

— Interpolation form f(x, y) = a+ bx+ cy + dxy

— Dening conditions form the singular system
8

999:

1 1 0 0

1#1 0 0
1 0 1 0

1 0 #10

;

<<<=

8

999:

a

b

c

d

;

<<<= =

8

999:

z1
z2
z3
z4

;

<<<= ,

— Task: Find combinations of interpolation nodes and spanning functions to produce a nonsin-
gular (well-conditioned) interpolation matrix.

31

Tensor products

• General Approach:

— If A and B are sets of functions over x " Rn, y " Rm, their tensor product is

A4B = {)(x)*(y) |) " A, * " B}.

— Given a basis for functions of xi, "i = {)ik(xi)}%k=0, the n-fold tensor product basis for functions
of (x1, x2, . . . , xn) is

" =

>
n?

i=1

)iki(xi) | ki = 0, 1, · · · , i = 1, . . . , n
@

• Orthogonal polynomials and Least-square approximation

— Suppose "i are orthogonal with respect to wi(xi) over [ai, bi]

— Least squares approximation of f(x1, · · · , xn) in " is
"

)"!

,), f-
,),)-

),

where the product weighting function

W (x1, x2, · · · , xn) =
n?

i=1

wi(xi)

denes ,·, ·- over D =
A
i[ai, bi] in

,f(x), g(x)- =
*

D

f(x)g(x)W (x)dx.

32

Algorithm 6.4: Chebyshev Approximation Algorithm in R2

• Objective: Given f(x, y) dened on [a, b]× [c, d], nd them-point degree n Chebyshev polynomial
approximation p(x, y)

• Step 1: Compute the m 1 n + 1 Chebyshev interpolation nodes on [#1, 1]:

zk = #cos
%
2k # 1
2m

&

&
, k = 1, · · · ,m.

• Step 2: Adjust nodes to [a, b] and [c, d] intervals:

xk = (zk + 1)

%
b# a
2

&
+ a, k = 1, ...,m.

yk = (zk + 1)

%
d# c
2

&
+ c, k = 1, ...,m.

• Step 3: Evaluate f at approximation nodes:

wk,+ = f(xk, y+) , k = 1, · · · ,m. , + = 1, · · · ,m.

• Step 4: Compute Chebyshev coe!cients, aij, i, j = 0, · · · , n :

aij =

!m
k=1

!m
+=1wk,+Ti(zk)Tj(z+)

(
!m

k=1 Ti(zk)
2) (
!m

+=1 Tj(z+)
2)

to arrive at approximation of f(x, y) on [a, b]× [c, d]:

p(x, y) =
n"

i=0

n"

j=0

aijTi

%
2
x# a
b# a

1
&
Tj

%
2
y # c
d# c

1
&

33

Multidimensional Splines

• B-splines: Multidimensional versions of splines can be constructed through tensor products; here
B-splines would be useful.

• Summary

— Tensor products directly extend one-dimensional methods to n dimensions

— Curse of dimensionality often makes tensor products impractical

34

Complete polynomials

• Taylor’s theorem for Rn produces the approximation

f(x)
.
=f(x0)

+
!n

i=1
,f
,xi
(x0) (xi # x0i)

+1
2

!n
i1=1

!n
i2=1

,2f
,xi1,xik

(x0)(xi1 # x
0
i1
)(xik # x

0
ik
)

...

— For k = 1, Taylor’s theorem for n dimensions used the linear functions

Pn1 * {1, x1, x2, · · · , xn}

— For k = 2, Taylor’s theorem uses

Pn2 * Pn1 5 {x21, · · · , x2n, x1x2, x1x3, · · · , xn#1xn}.

Pn2 contains some product terms, but not all; for example, x1x2x3 is not in Pn2 .

35

• In general, the kth degree expansion uses the complete set of polynomials of total degree k in n
variables.

Pnk * {x
i1
1 · · ·xinn |

n"

+=1

i+ 0 k, 0 0 i1, · · · , in}

• Complete orthogonal basis includes only terms with total degree k or less.

• Sizes of alternative bases
degree k Pnk Tensor Prod.
2 1 + n + n(n + 1)/2 3n

3 1 + n + n(n+1)
2 + n2 + n(n#1)(n#2)

6 4n

— Complete polynomial bases contains fewer elements than tensor products.

— Asymptotically, complete polynomial bases are as good as tensor products.

— For smooth n-dimensional functions, complete polynomials are more e!cient approximations

• Construction

— Compute tensor product approximation, as in Algorithm 6.4

— Drop terms not in complete polynomial basis (or, just compute coe!cients for polynomials in
complete basis).

— Complete polynomial version is faster to compute since it involves fewer terms

36

Nonlinear approximation methods

• Neural Network Denitions:

— A single-layer neural network is a function of form

F (x;() * h

#
n"

i=1

(ig (xi)

$

where

+ x " Rn is the vector of inputs
+ h and g are scalar functions (e.g., g(x) = x)

— A single hidden-layer feedforward neural network is a function of form

F (x;(, -) * f

8

:
m"

j=1

-jh

#
n"

i=1

(ji g (xi)

$;

= ,

where h is called the hidden-layer activation function.

37

• Neural Network Approximation: We form least-squares approximations by solving either

min
(

"

j

-
yj # F (xj;()

.2

or
min
(,-

"

j

(yj # F (xj;(, -))2.

Theorem 5 : (Universal approximation theorem) Let G be a continuous function, G : R! R, such
that either

1.
'%
#%G(x)dx is nite and nonzero and G is L

p for 1 0 p <%, or

2. G : R! [0, 1], G nondecreasing, limx!% G(x) = 1, and limx!#% G(x) = 0 (i.e., G is a squashing
function)

Let #n(G) be the set of all possible single hidden-layer feedforward neural networks using, G as the
hidden layer activation function; that is, of the form

!m
j=1 (jG(w

jx+bj) for x,wj " Rn and scalar bj.
Let f : Rn ! R be continuous. Then for all " > 0, probability measures µ, and compact sets K & Rn,
there is a g " #n(G) such that

sup
x"K

|f(x)# g(x)| 0 "

and
'
K |f(x)# g(x)| dµ 0 ".

Remark 6 The logistic function is a popular squashing function.

38

• Neural Networks are optimal in some sense:

Theorem 7 (Barron’s theorem) Neural nets are asymptotically the most e!cient approximations for
smooth functions of dimension greater than two.

• Neural network summary:

— exible functional form

— neural networks add squashing function to basic list of operations.

— asymptotically e!cient

— di!cult to solve necessary global optimization problem

— do not know what points to use for approximation purposes

— Just one example of possible nonlinear functional forms, all of which add some function besides
multiplication and addition.

39

Approximation Methods: Summary

• Interpolation versus regression

— Lagrange data uses level information only

— Hermite data also uses slope information

— Regression uses more points than coe!cients

• One-dimensional problems

— Smooth approximations

+ Orthogonal polynomial methods for nonperiodic functions
+ Fourier approximations for periodic functions

— Less smooth approximations

+ Splines
+ Shape-preserving splines

40

• Multidimensional data

— Tensor product methods have curse of dimension

— Complete polynomials are more e!cient

— Neural networks are most e!cient

• Approximation versus Statistics

— Similarities:

+ both approximate unknown functions
+ both use nite amount of data

— Di"erences

+ approximation uses error-free data, not noisy data
+ approximation generates data, not constrained by observations

41

