Numerical Methods in Economics
MIT Press, 1998

Notes for Chapter 6: Approximation Methods

October 20, 2008

Approximation Methods

e General Objective: Given data about a function f(x) (which is difficult to compute) construct a
simpler function g(x) that approximates f(x).

e Questions:

— What data should be produced and used?

— What family of “simpler” functions should be used?
— What notion of approximation do we use?

— How good can the approximation be?

— How simple can a good approximation be?
e Comparisons with statistical regression

— Both approximate an unknown function

— Both use a finite amount of data

— Statistical data is noisy; we assume here that data errors are small

— Nature produces data for statistical analysis; we produce the data in function approximation

— Our approximation methods are like experimental design with very small experimental error

Local Approximation Methods

e Use information about f : R — R only at a point, xy € R, to construct an approximation valid

near

e Taylor Series Approximation

(z — 20)?

f(z)= f(wo) + (v — o) f'(w0) + 5 f (o) + - - - (6.1.1)
(x — xo)"

0L 100 () + O — o)
=pu () + O — 0]

e Power series: >~ a,2"

— The radius of convergence is
0.9)
r=sup{lz] 1| S an"] < oo},
n=0

— >, 42" converges for all |z| < r and diverges for all |z| > 7.

e Complex analysis

— f:Q C C — C on the complex plane C' is analytic on € iff

Va € Q dr, ¢y (‘v’Hz —al <r (f(z) = ch(z—a)k>>

k=0
— A singularity of f is any a s. t. f is analytic on 2 — {a} but not on .
— If f or any derivative of f has a singularity at z € C, then the radius of convergence in C' of

S0 L=l £ (40), is bounded above by || 20 — z ||.

n= n!

e Example: f(z) = 2% where 0 < a < 1.

— One singularity at x = 0
— Radius of convergence for power series around x = 1 is 1.
— Taylor series coefficients decline slowly:

1 d*

_1d ala—1)-(a—k+1)
k! dax* '

1-2

aj (%) |o=1 =

Table 6.1 (corrected): Taylor Series Approximation Errors for /4

Taylor series error /4
r N: 5) 10 20 50
30 5(—1) 8(1) 33 1(12) 1.3161
20 1(=2) 5(—3) 2(—3) 8(—4) 1.1892
1.8 4(=3) 5(—4) 2(—4) 9(~-9) 1.1583
15 2(—4) 3(=6) 1(—9) 0(—12) 1.1067
12 1(—6) 2(—10) 0(=12) 0(—12) 1.0466
80 2(—6) 3(—10) 0(—12) 0(—12) .9457
50 6(—4) 9(—6) 4(—9) 0(—12) .8409
25 1(=2) 1(=3) 4(-5) 3(-9) .7071
10 6(=2) 2(-2) 4(=3) 6(=5) .5623
05 1(=1) 5(=2) 2(—2) 2(-3) .4729

Rational Approximation

e Definition: A (m,n) Padé approximant of f at x, is a rational function

r(z) = p(z)

q(x)’
where degree of p (¢q)is at most m (n), and
dk

0= L
daxk

(p—fq)(xg), k=0,---,m+n.
e Construction

— Usually choose m = n or m =n + 1.

— The m + 1 coefficients of p and the n + 1 coefficients of ¢ must satisfy linear conditions

— (6.1.2) plus q(xp) = 1 forms m + n + 2 linear conditions on the m + n + 2 coefficients

— Linear system may be singular; if so, reduce n or m by 1

1/4

e Example: (2,1) Pade approx. of x'/* at x = 1

— Construct degree m +n = 2 + 1 = 3 Taylor series

tlx) =1+ @ ; b _ 3(353_2 2 + 7($1;81) = t(x).

— Find pg, p1, p2, and ¢, such that
po+pi(x—1)+po(r —1)? —t(x) 1+ q(x —1)) =0 (6.1.3)

— Combine coefficients of like powers in (6.1.3) implies

21 + 70x + Hz2
40 + 56

e Pade approximation is often better; not limited by singularities

(6.1.4)

Log-Linearization, Log-Quadraticization
e Log-linear approximation

— Suppose we have an equation
f(z,e)=0
that defines = in terms of .

— Implicit differentiation implies

. dx ef. de ef-
T = — — — _— = — 57

x xfy € T fy
— Since & = d(In x), log-linearization implies log-linear approximation

. EOf&?(xO)gO)
nz —Inxy = —
xOfJI(x())gO)

(Ine —Inegy). (6.1.5)

which implies

. €o0.f=(0, €0)
T = Toexp (—xofg:@:()7 =) (Ine — In 50)) : (6.1.6)

e Generalization to nonlinear change of variables.

— Suppose Y (X)) implicitly defined by f(Y(X), X) = 0.
— Define x =In X and y = InY, then y(z) = InY(e").
— f(Y(X), X) = 01is equivalent to f(e’*), e*) = g(y(x),x) = 0.

— Implicit differentiation of g(y(x), z) = 0 implies y/(x) = d% nY

(6.1.5)

— InY(X) = y(z) also suggests the second-order approximation

InY'(X) = y(z) = y(zo) +y'(2)(x — x0) + 9" (20)

— Can construct Padé expansions in terms of the logarithm.

)2
M, (6.1.7)
— There is nothing special about log function.

+ Take any monotonic A(-)
* Define © = h(X) and y = h(Y)
x Use the identity

to generate expansions

y(x)=y(zo) +y'(x)(x — 20) + ...
Y (X)=h™ (y(h(Xo) + ' (h(Xo)) (M(X) = h(Xo)) + -.)

* h(z) = In z is natural for economists, but others may be better globally

Types of Approximation Methods

e Interpolation Approach: find a function from an n-dimensional family of functions which exactly
fits n data items

e Lagrange polynomial interpolation

— Data: (z;,v;),i=1,..,n.
— Objective: Find a polynomial of degree n — 1, p,(z), which agrees with the data, i.e.,

vy = flx;), i=1,..,n

— Result: If the x; are distinct, there is a unique interpolating polynomial

e Question: Suppose that y; = f (z;). Does p,(z) converge to f (x) as we use more points?

e Convergence Counterexample

— Suppose .
f(:E) — ma

x; : uniform on [—5, 5]

— Degree 10 (11 points) result:

11-point
interpolation

Figure 1:

e Hermite polynomial interpolation

— Data: (x;,y;,y),i=1,..,n.
— Objective: Find a polynomial of degree 2n — 1, p(x), which agrees with the data, i.e.,

yi=p(x;), i=1,..n
yi=p'(x;), i=1,..,n

— Result: If the x; are distinct, there is a unique interpolating polynomial
e Least squares approximation

— Data: A function, f(x).

— Objective: Find a function g(z) from a class G that best approximates f(z), i.e.,

g =argmax | f — g|°
gelG

Orthogonal polynomials
e General orthogonal polynomials

— Space: polynomials over domain D

— weighting function: w() >0

— Inner product: (= [, f w(x)dx

— Definition: {gbz} is a fanuly of orthogonal polynomials w.r.t w (x) iff

(0 ¢j) =0, i #j

— We like to compute orthogonal polynomials using recurrence formulas

Po(x)=1
¢ (x) =2
D 1(®) = (ar1 + bi) Pp(2) + 101 (@)
— Approximation (assuming ||¢;|| = 1):

fla)_Zaz‘¢

—(f.6) /f w()de, i # j

e Legendre polynomials

o [Cb,b] - [—17 1]
—w(x) =1
— Py(x) = G [(1—a?)"]
— Recurrence formula:
Po(SE) =1
Pi(x)=x
2n+1 n
P, = P,(x) — P,_ ,
() n+1 T Po() n+1 1()
1
j’s /P4
| |
-1 1
X
P
\P 4o

e Chebyshev polynomials

o [(I,b] - [—17 1]
—w(z) = (1 —332)_1/2
— Ty(z) = cos(ncos™! x)
— Recurrence formula:
T0(£E> =1
Ti(z)=x
Thii(z)=2xT,(x) — T, 1(x),
T |
x 2 T
vl « 1y
3
-1

e Laguerre polynomials

o [CL, b] - [07 OO)
—w(r)=e""
L) =G e
— Recurrence formula:
L0($):1
Li(z)=1—=x
1 n
= — — — Ln_ ,
Lypi1() ——] 2n+1—x) Ly(z) 1 ()

10 ¢ L,

e Hermite polynomials

—
S

|_|

/—\

—00, 00)

~ Hy(x) = <—1>”ex2 ()

dz™

— Recurrence formula:

e General Orthogonal Polynomials

— Few problems have the specific intervals and weights used in definitions
— One must adapt interval through linear COV
 If compact interval [a, b] is mapped to [—1, 1] by
r—a
b—a
then ¢, (—1 + 2%) are orthogonal over x € |[a, b] with respect to w (—1 + 2%) iff ¢, (y)
are orthogonal over y € [—1, 1] w.r.t. w(y)

y=—1+2

* If half-infinite interval [a, oo] is mapped to [0, oc] by

r—a

r—a

then ¢, (“";“) are orthogonal over = € |a, 00| w.r.t. w (S) iff ¢; (y) are orthogonal over

y € [0, 00] w.r.t. w(y)

* If [—00, 00] is mapped to [—o0, o] by

y=(z — p) /\/X
w(y)=e?

T

\;XM) iff ¢; () are orthogonal over

e Trigonometric polynomials and Fourier series

— {cos(n#), sin(mP)} are orthogonal on [—m, 7].

— If f is continuous on [—m, 7] and f(—m) = f(m), then

1 oo (0.0} .
f(o) = 50 + nz:; a, cos(nf) + ; by, sin(nf)
where the Fourier coefficients are
an:l / f(0) cos(nd)dd
™ s
b= / £(0) sin(nf) b,
™ s

— A trigonometric polynomial is any function of the form in (6.4.4).
— Convergence is uniform.
— Excellent for approximating a smooth periodic function, i.e., f : R — R such that for some w,
fl@) = flz +w).
— Not good for nonperiodic functions
+ Convergence is not uniform

*x Many terms are needed

Regression

e Data: (z;,v;),1=1,..,n.

e Objective: Find a function f(z;3) with § € R™, m <n, with y; = f(x;),i =1, ..,n.
e Least Squares regression:

min (yi — f (@; 5))2

peRM

Chebyshev Regression

e Chebyshev Regression Data:
o (z;,y;),1=1,..,n>m,x; are the n zeroes of T, (x) adapted to [a,]
e Chebyshev Interpolation Data:

(xi,yi),i=1,..,n =m,x; are the n zeroes of T, (z)adapted to |a, D]

Algorithm 6.4: Chebyshev Approximation Algorithm in R!

e Objective: Given f(x) defined on [a, b, find a m-point degree n Chebyshev polynomial approxi-
mation p(x)

e Step 1: Compute the m > n + 1 Chebyshev interpolation nodes on [—1, 1]:

2k — 1
zk:—cos(7T>,:l€=1,"',m.

2m

e Step 2: Adjust nodes to [a, b] interval:

b—
ajk(zk+1)(2a> +a,k=1,..m.

e Step 3: Evaluate f at approximation nodes:

U}]{;:f(flj]{;), k:]-a”'am'

e Step 4: Compute Chebyshev coefficients, a;,i =0,--- ,n:

_ > hes wiTi(25)
> e Tilzr)?

to arrive at approximation of f(z,y) on [a, b|:

p(z) = En:aT (252:2 _ 1)

1=0

a;

Minmax Approximation

e Data: (z;,v;),1=1,..,n.
e Objective: L™ fit

61161]1%1%1 max lvi — f (x5 08)]

e Problem: Difficult to compute

e Chebyshev minmax property

Theorem 1 Suppose f : [—1,1] — R is C* for some k > 1, and let I,, be the n-point (degree n — 1)
polynomial interpolation of f based at the zeroes of T,,(x). Then

H f o In Hooé (% log(n+ 1) + 1)

n—k) sk (b—a\"
) (5F) 1

e Chebyshev interpolation:

— converges in L
— essentially achieves minmax approximation
— easy to compute

— does not approximate f’

Splines
Definition 2 A function s(x) on |a,b] is a spline of order n iff
1. s is C"% on |a,b], and

2. there is a grid of points (called nodes) a = o < x1 < - -+ < x,, = b such that s(x) is a polynomial
of degree n — 1 on each subinterval [x;, x;1], 1 =0,...,m — 1.

Note: an order 2 spline is the piecewise linear interpolant.

e Cubic Splines

— Lagrange data set: {(z;, v;) |i =0, .-+, n}.
— Nodes: The z; are the nodes of the spline
— Functional form: s(z) = a; + b; x + ¢; 2° + d; 2° on [x;_1, x;]

— Unknowns: 4n unknown coefficients, a;, b;, ¢;,d;,2 =1,-- - n.

e Conditions:
— 2n interpolation and continuity conditions:

2
i =a; + biw; + cixi + dixd,
1=1,.,n
R b 11 2
Yi =Aj41 + i+1T5 + Cir1; + i+1T; ,

1=0,..,n—1
— 2n — 2 conditions from C? at the interior: fori =1,---n — 1,

bl' + 26¢$¢ + 3d1$12 = bi—i—l + 26i+1 T; + SdH_lCE?
20@ + 6dl$l = 20@4_1 + 6d¢+1$¢

— Equations (1-4) are 4n — 2 linear equations in 4n unknown parameters, a, b, ¢, and d.

— construct 2 side conditions:

" s"(x)* dr, among

x natural spline: §'(xrg) = 0 = s'(x,); it minimizes total curvature, f
solutions to (1-4).

x Hermite spline: s'(xg) =y, and §'(z,,) =y, (assumes extra data)

x Secant Hermite spline: s'(x) = (s(x1)—s(xg))/(x1—x0) and s'(x,,) = (s(x,)—s(zn_1))/(Tn—
Tp_1).

* not-a-knot: choose j = i1, 12, such that ¢; + 1 < iy, and set d; = d;.

— Solve system by special (sparse) methods; see spline fit packages

e Quality of approximation

Theorem 3 If f € C4[xg, x,] and s is the Hermite cubic spline approximation to f on {xg, x1,- - x,}
and h > max;{x; — z;_1}, then

5
_ < = | f@4 %
=5l o |7
and
V3 o1
| =5 [[< 216 T 21 | Y Y| B2

In general, order k + 2 splines with n nodes yield O(n~=%"1) convergence for f € C*a, b].

e B-Splines: A basis for splines

— Put knots at {z_x, -+, 21,20, -+, Tpn}.
— Order 1 splines: step function interpolation spanned by
0, <,
BZO(:E) = 17 T, << Li+1,
07 Li+1 é Z,

— Order 2 splines: piecewise linear interpolation and are spanned by

)
0, T < T O T 2> Ty,

Bl(z)={ —2, x; <2< 2,

Li+1—L4

Li42—T
\ Ti+2—Ti41

y Tit1 ST < Ty,

The B}—spline is the tent function with peak at x; 1 and is zero for x < x; and = > x; 9.
— Both B" and B! splines form cardinal bases for interpolation at the z;’s.
— Higher-order B-splines are defined by the recursive relation
k L — T k—1
B0 = (=) B

Liv+k — Tj

Litk+1 — T k—1
+ (B¢+1 <33)
Litk+1 — Ti+1

Theorem 4 Let S* be the space of all order k+1 spline functions on [x, x,] with knots at {xg, x1,- -+ , T, }.
Then

1. The set
{Bﬂ[mo,ﬂfn] . —k <) <n-— 1}

forms a linearly independent basis for S¥, which has dimension n + k.

2. BF(x) > 0 and the support of BF(z) is (x;, Tiyp1).

d (Rk _ k k—1 k k—1
3. 4 (Bi(x)) = (m) B (x) = (55 =) Biva (@)
4. If we have Lagrange interpolation data, (y;, z;),i=1,--- ,n+k, and
Ticp1<zi<wmz, 1<i<n+k,

then there is an interpolant S in S* such that y = S(z;), i = 1,..., n + k.

e Shape-preservation

— Concave (monotone) data may lead to nonconcave (nonmonotone) approximations.

— Example

e Schumaker Procedure:;

1. Take level (and maybe slope) data at nodes x;
2. Add intermediate nodes z;" € [x;, z;.1]

3. Run quadratic spline with nodes at the x and z nodes which intepolate data and preserves
shape.

4. Schumaker formulas tell one how to choose the z and spline coefficients (see book and correction
at book’s website)

e Many other procedures exist for one-dimensional problems
e Few procedures exist for two-dimensional problems

e Higher dimensions are difficult, but many questions are open.

e Spline summary:

— Evaluation is cheap

* Splines are locally low-order polynomial.
+ Can choose intervals so that finding which [x;, x;,1] contains a specific x is easy.
* Finding enclosing interval for general x; sequence requires at most [log, n| comparisons
— Good fits even for functions with discontinuous or large higher-order derivatives. E.g., quality
of cubic splines depends only on f™®(z), not f©)(z).

— Can use splines to preserve shape conditions

Multidimensional approximation methods

e Lagrange Interpolation
— Data: D = {(z;,2)}Y, C R*™™ where z; € R" and z; € R™
— Objective: find f: R" — R™ such that z; = f(x;).

e Counterexample:

— Interpolation nodes:
{Pla PQ; P37 P4} = {(17 0)7 <_17 0)7 <07 1)7 (07 _1)}
— Use linear combinations of {1, z,y, xy}.
— Data: z; = f(P),i=1,2,3,4.
— Interpolation form f(z,y) = a + bx + cy + dxy

— Defining conditions form the singular system

11 00 a 21
1-1 00 bl | 2
10 10]el |z’
10 —10 d 24

— Task: Find combinations of interpolation nodes and spanning functions to produce a nonsin-
gular (well-conditioned) interpolation matrix.

Tensor products

e General Approach:

— If A and B are sets of functions over x € R", y € R™, their tensor product is

A® B={p@)Y(y) | ¢ € A, ¢ € B}.

— Given a basis for functions of x;, " = {¢} (z;)}3°,, the n-fold tensor product basis for functions
of (x1,T9,...,1,) is

@:{ngzi(xi)m:o,l,--- , izl,...,n}
1=1

e Orthogonal polynomials and Least-square approximation

— Suppose P are orthogonal with respect to w;(z;) over [a;, b;]

(
— Least squares approximation of f(zy,---, x,) in @ is

ZM%

= ()

where the product weighting function

n

Wz, xg, -+) = H w;(;)

1=1

defines (-, -) over D = [];|a;, b;] in
() gta)) = [H@goW @i

Algorithm 6.4: Chebyshev Approximation Algorithm in R?
e Objective: Given f(x,y) defined on [a, b] X [c, d], find the m-point degree n Chebyshev polynomial
approximation p(x, y)

e Step 1: Compute the m > n + 1 Chebyshev interpolation nodes on [—1, 1]:

2k — 1
zk:—cos(W),kzl,"',m.

2m

e Step 2: Adjust nodes to [a, b] and [c, d] intervals:

b—
ajk(zk+1)(2a> +a,k=1,..m.

d—
yk:<2k—|—1)(5 C) +c,k=1,...,m.

e Step 3: Evaluate f at approximation nodes:

wre = flap,ye) , k=1,---,m., {=1--- m.
e Step 4: Compute Chebyshev coefficients, a;;,7,7 =0,--- ,n:
0 = D ey Dy Wi Ti(2k) Ti(20)
T 0 Tia)?) (20 Ti(20)?)

to arrive at approximation of f(z,y) on [a, b] X [c, d]:

n

p(z,y) :Zzn:%Ti (2§:2_1)Tj (Qy_c—l)

d—c
i=0 j=0

Multidimensional Splines

e B-splines: Multidimensional versions of splines can be constructed through tensor products; here
B-splines would be useful.

e Summary

— Tensor products directly extend one-dimensional methods to n dimensions

— Curse of dimensionality often makes tensor products impractical

Complete polynomials

e Taylor’s theorem for R” produces the approximation

fla) =f(a?)
+Z@ L (%) (2 —)

82
+ le 1 ZZQ 1 axllafo ($0)(xll T 'I.?l)(xlk _ xgk)

— For k£ = 1, Taylor’s theorem for n dimensions used the linear functions
Py ={l,z1, 22, - , 25}
— For k = 2, Taylor’s theorem uses
Pl =PrU{a], - T2, 120, T1T3, - -+, Tp_1Tn}.

Py contains some product terms, but not all; for example, z1x523 is not in P.

e In general, the kth degree expansion uses the complete set of polynomials of total degree k in n
variables.

n
Py E{xlllzlrfflz B0 <k, 0 <y, yinf
(=1

e Complete orthogonal basis includes only terms with total degree k£ or less.

e Sizes of alternative bases

degree k Py Tensor Prod.
2 l+n+nn+1)/2 3"
n(n+1) n(n—1)(n—2) n
3 l4n+S5~24nt4 = 4

— Complete polynomial bases contains fewer elements than tensor products.
— Asymptotically, complete polynomial bases are as good as tensor products.

— For smooth n-dimensional functions, complete polynomials are more efficient approximations
e Construction

— Compute tensor product approximation, as in Algorithm 6.4

— Drop terms not in complete polynomial basis (or, just compute coefficients for polynomials in
complete basis).

— Complete polynomial version is faster to compute since it involves fewer terms

Nonlinear approximation methods

e Neural Network Definitions:

— A single-layer neural network is a function of form

F(z;8) = h (Z B9 <xi>>

where

x ¢ € R" is the vector of inputs

* h and g are scalar functions (e.g., g(z) = z)

— A single hidden-layer feedforward neural network is a function of form

F(x;8,7) = Z% (Zﬁ?ﬂ%)) ,

where h is called the hidden-layer activation function.

XIH. Xl . \

Xzﬂ X2

(a) (b)

e Neural Network Approximation: We form least-squares approximations by solving either

minz (yj — F(xj; B))2

B =
J
or

qﬁi}w—ﬂﬂﬁmW-
J

Theorem 5 : (Universal approximation theorem) Let G be a continuous function, G : R — R, such
that either

1. ffooo G(z)dz is finite and nonzero and G is LP for 1 <p < oo, or

2. G: R — [0,1], G nondecreasing, lim, .., G(x) =1, andlim,_. ., G(x) =0 (i.e., G is a squashing
function)

Let 3X"(G) be the set of all possible single hidden-layer feedforward neural networks using, G as the
hidden layer activation function; that s, of the form Z;»nzl 5,G (wx+b;) for x,w’ € R" and scalarb;.
Let f : R" — R be continuous. Then for all ¢ > 0, probability measures 1, and compact sets K C R",
there is a g € X"(QG) such that

sup |f(z) —g(z)| <e
reK

and [/() - g(a)] du <e.

Remark 6 The logistic function is a popular squashing function.

e Neural Networks are optimal in some sense:

Theorem 7 (Barron’s theorem) Neural nets are asymptotically the most efficient approximations for
smooth functions of dimension greater than two.

e Neural network summary:

— flexible functional form

— neural networks add squashing function to basic list of operations.
— asymptotically efficient

— difficult to solve necessary global optimization problem

— do not know what points to use for approximation purposes

— Just one example of possible nonlinear functional forms, all of which add some function besides
multiplication and addition.

Approximation Methods: Summary
e Interpolation versus regression

— Lagrange data uses level information only
— Hermite data also uses slope information

— Regression uses more points than coefficients
e One-dimensional problems

— Smooth approximations

* Orthogonal polynomial methods for nonperiodic functions

* Fourier approximations for periodic functions
— Less smooth approximations

* Splines

* Shape-preserving splines

e Multidimensional data

— Tensor product methods have curse of dimension
— Complete polynomials are more efficient

— Neural networks are most efficient
e Approximation versus Statistics
— Similarities:
x both approximate unknown functions
x both use finite amount of data

— Differences

* approximation uses error-free data, not noisy data

* approximation generates data, not constrained by observations

