Numerical Methods in Economics MIT Press, 1998

Notes for Chapter 6: Approximation Methods

October 20, 2008

Approximation Methods

• General Objective: Given data about a function f(x) (which is difficult to compute) construct a simpler function g(x) that approximates f(x).

• Questions:

- What data should be produced and used?
- What family of "simpler" functions should be used?
- What notion of approximation do we use?
- How good can the approximation be?
- How simple can a good approximation be?
- Comparisons with statistical regression
 - Both approximate an unknown function
 - Both use a finite amount of data
 - Statistical data is noisy; we assume here that data errors are small
 - Nature produces data for statistical analysis; we produce the data in function approximation
 - Our approximation methods are like experimental design with very small experimental error

_

Local Approximation Methods

- Use information about $f: R \to R$ only at a point, $x_0 \in R$, to construct an approximation valid near x_0
- Taylor Series Approximation

$$f(x) = f(x_0) + (x - x_0) f'(x_0) + \frac{(x - x_0)^2}{2} f''(x_0) + \cdots$$

$$+ \frac{(x - x_0)^n}{n!} f^{(n)}(x_0) + \mathcal{O}(|x - x_0|^{n+1})$$

$$= p_n(x) + \mathcal{O}(|x - x_0|^{n+1})$$
(6.1.1)

- Power series: $\sum_{n=0}^{\infty} a_n z^n$
 - The radius of convergence is

$$r = \sup\{|z| : |\sum_{n=0}^{\infty} a_n z^n| < \infty\},$$

 $-\sum_{n=0}^{\infty} a_n z^n$ converges for all |z| < r and diverges for all |z| > r.

~

- Complex analysis
 - $-f:\Omega\subset C\to C$ on the complex plane C is analytic on Ω iff

$$\forall a \in \Omega \ \exists r, c_k \left(\forall \|z - a\| < r \left(f(z) = \sum_{k=0}^{\infty} c_k (z - a)^k \right) \right)$$

- A singularity of f is any a s. t. f is analytic on $\Omega \{a\}$ but not on Ω .
- If f or any derivative of f has a singularity at $z \in C$, then the radius of convergence in C of $\sum_{n=0}^{\infty} \frac{(x-x_0)^n}{n!} f^{(n)}(x_0)$, is bounded above by $||x_0-z||$.

- Example: $f(x) = x^{\alpha}$ where $0 < \alpha < 1$.
 - One singularity at x = 0
 - Radius of convergence for power series around x = 1 is 1.
 - Taylor series coefficients decline slowly:

$$a_k = \frac{1}{k!} \frac{d^k}{dx^k} (x^{\alpha})|_{x=1} = \frac{\alpha(\alpha - 1) \cdots (\alpha - k + 1)}{1 \cdot 2 \cdot \cdots \cdot k}.$$

Table 6.1 (corrected): Taylor Series Approximation Errors for $x^{1/4}$ Taylor series error $x^{1/4}$

\boldsymbol{x}	N:	5	10	20	50	
3.0		5(-1)	8(1)	3(3)	1(12)	1.3161
2.0		1(-2)	5(-3)	2(-3)	8(-4)	1.1892
1.8		4(-3)	5(-4)	2(-4)	9(-9)	1.1583
1.5		2(-4)	3(-6)	1(-9)	0(-12)	1.1067
1.2		1(-6)	2(-10)	0(-12)	0(-12)	1.0466
.80		2(-6)	3(-10)	0(-12)	0(-12)	.9457
.50		6(-4)	9(-6)	4(-9)	0(-12)	.8409
.25		1(-2)	1(-3)	4(-5)	3(-9)	.7071
.10		6(-2)	2(-2)	4(-3)	6(-5)	.5623
.05		1(-1)	5(-2)	2(-2)	2(-3)	.4729

Rational Approximation

• Definition: A (m, n) Padé approximant of f at x_0 is a rational function

$$r(x) = \frac{p(x)}{q(x)},$$

where degree of p(q) is at most m(n), and

$$0 = \frac{d^k}{dx^k} (p - f \ q) (x_0), \quad k = 0, \dots, m + n.$$

- Construction
 - Usually choose m = n or m = n + 1.
 - The m+1 coefficients of p and the n+1 coefficients of q must satisfy linear conditions

$$p^{(k)}(x_0) = (f q)^{(k)}(x_0), \quad k = 0, \dots, m + n,$$
(6.1.2)

- -(6.1.2) plus $q(x_0) = 1$ forms m + n + 2 linear conditions on the m + n + 2 coefficients
- Linear system may be singular; if so, reduce n or m by 1

- Example: (2,1) Pade approx. of $x^{1/4}$ at x=1
 - Construct degree m + n = 2 + 1 = 3 Taylor series

$$t(x) = 1 + \frac{(x-1)}{4} - \frac{3(x-1)^2}{32} + \frac{7(x-1)^3}{128} \equiv t(x).$$

- Find p_0, p_1, p_2 , and q_1 such that

$$p_0 + p_1(x-1) + p_2(x-1)^2 - t(x)(1 + q_1(x-1)) = 0 (6.1.3)$$

- Combine coefficients of like powers in (6.1.3) implies

$$\frac{21 + 70x + 5x^2}{40 + 56x}. (6.1.4)$$

• Pade approximation is often better; not limited by singularities

_

Log-Linearization, Log-Quadraticization

- Log-linear approximation
 - Suppose we have an equation

$$f\left(x,\varepsilon\right) = 0$$

that defines x in terms of ε .

- Implicit differentiation implies

$$\hat{x} = \frac{dx}{x} = -\frac{\varepsilon f_{\varepsilon}}{x f_x} \frac{d\varepsilon}{\varepsilon} = -\frac{\varepsilon f_{\varepsilon}}{x f_x} \varepsilon,$$

- Since $\hat{x} = d(\ln x)$, log-linearization implies log-linear approximation

$$\ln x - \ln x_0 \doteq -\frac{\varepsilon_0 f_{\varepsilon}(x_0, \varepsilon_0)}{x_0 f_x(x_0, \varepsilon_0)} (\ln \varepsilon - \ln \varepsilon_0). \tag{6.1.5}$$

which implies

$$x \doteq x_0 \exp\left(-\frac{\varepsilon_0 f_{\varepsilon}(x_0, \varepsilon_0)}{x_0 f_x(x_0, \varepsilon_0)} (\ln \varepsilon - \ln \varepsilon_0)\right), \tag{6.1.6}$$

~

- Generalization to nonlinear change of variables.
 - Suppose Y(X) implicitly defined by f(Y(X), X) = 0.
 - Define $x = \ln X$ and $y = \ln Y$, then $y(x) = \ln Y(e^x)$.
 - -f(Y(X),X)=0 is equivalent to $f(e^{y(x)},e^x)\equiv g(y(x),x)=0.$
 - Implicit differentiation of g(y(x), x) = 0 implies $y'(x) = \frac{d \ln Y}{d \ln X}$ and (6.1.5)
 - $-\ln Y(X) = y(x)$ also suggests the second-order approximation

$$\ln Y(X) = y(x) \doteq y(x_0) + y'(x)(x - x_0) + y''(x_0) \frac{(x - x_0)^2}{2}, \tag{6.1.7}$$

- Can construct Padé expansions in terms of the logarithm.
- There is nothing special about log function.
 - * Take any monotonic $h(\cdot)$
 - * Define x = h(X) and y = h(Y)
 - * Use the identity

$$f(Y,X) = f(h^{-1}(h(Y)), h^{-1}(h(X)))$$

= $f(h^{-1}(y), h^{-1}(x))$
= $g(y, x)$.

to generate expansions

$$y(x) \doteq y(x_0) + y'(x)(x - x_0) + \dots$$
$$Y(X) \doteq h^{-1} (y(h(X_0)) + y'(h(X_0))(h(X) - h(X_0)) + \dots)$$

* $h(z) = \ln z$ is natural for economists, but others may be better globally

_

Types of Approximation Methods

- ullet Interpolation Approach: find a function from an n-dimensional family of functions which exactly fits n data items
- Lagrange polynomial interpolation
 - Data: $(x_i, y_i), i = 1, ..., n$.
 - Objective: Find a polynomial of degree n-1, $p_n(x)$, which agrees with the data, i.e.,

$$y_i = f(x_i), i = 1, ..., n$$

- Result: If the x_i are distinct, there is a unique interpolating polynomial

. .

- Question: Suppose that $y_i = f(x_i)$. Does $p_n(x)$ converge to f(x) as we use more points?
- ullet Convergence Counterexample
 - Suppose

$$f(x) = \frac{1}{1+x^2}, \quad x_i : \text{uniform on } [-5, 5]$$

- Degree 10 (11 points) result:

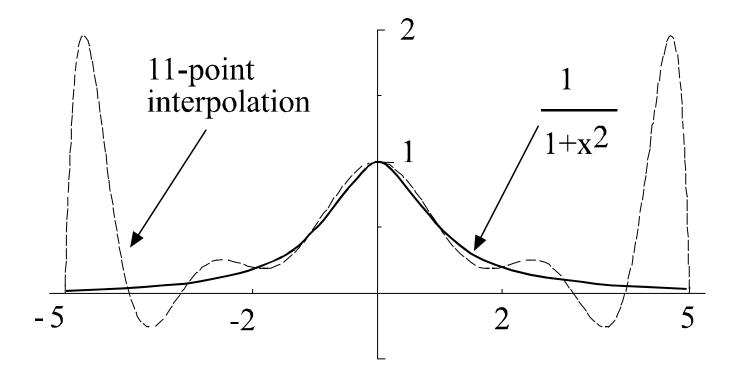


Figure 1:

• Hermite polynomial interpolation

- Data: $(x_i, y_i, y'_i), i = 1, ..., n$.
- Objective: Find a polynomial of degree 2n-1, p(x), which agrees with the data, i.e.,

$$y_i = p(x_i), i = 1, ..., n$$

 $y'_i = p'(x_i), i = 1, ..., n$

- Result: If the x_i are distinct, there is a unique interpolating polynomial
- Least squares approximation
 - Data: A function, f(x).
 - Objective: Find a function g(x) from a class G that best approximates f(x), i.e.,

$$g = \arg\max_{g \in G} \|f - g\|^2$$

Orthogonal polynomials

- General orthogonal polynomials
 - Space: polynomials over domain D
 - weighting function: w(x) > 0
 - Inner product: $\langle f, g \rangle = \int_D f(x)g(x)w(x)dx$
 - Definition: $\{\phi_i\}$ is a family of orthogonal polynomials w.r.t $w\left(x\right)$ iff

$$\langle \phi_i, \phi_j \rangle = 0, \ i \neq j$$

- We like to compute orthogonal polynomials using recurrence formulas

$$\phi_0(x) = 1$$

$$\phi_1(x) = x$$

$$\phi_{k+1}(x) = (a_{k+1}x + b_k) \phi_k(x) + c_{k+1}\phi_{k-1}(x)$$

- Approximation (assuming $\|\phi_i\| = 1$):

$$f(x) = \sum_{i=0}^{\infty} a_i \phi_i$$

$$a_i = \langle f, \phi_i \rangle = \int_D f(x) \phi_i(x) w(x) dx, \ i \neq j$$

• Legendre polynomials

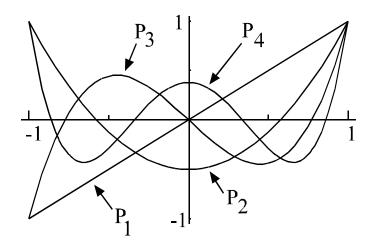
$$- [a, b] = [-1, 1]$$

$$- w(x) = 1$$

$$- P_n(x) = \frac{(-1)^n}{2^n n!} \frac{d^n}{dx^n} \left[(1 - x^2)^n \right]$$

$$P_0(x) = 1$$

 $P_1(x) = x$
 $P_{n+1}(x) = \frac{2n+1}{n+1} x P_n(x) - \frac{n}{n+1} P_{n-1}(x),$



• Chebyshev polynomials

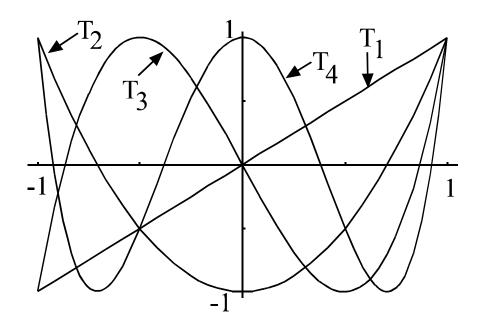
$$-[a, b] = [-1, 1]$$

$$-w(x) = (1 - x^{2})^{-1/2}$$

$$-T_{n}(x) = \cos(n \cos^{-1} x)$$

$$T_0(x) = 1$$

 $T_1(x) = x$
 $T_{n+1}(x) = 2x T_n(x) - T_{n-1}(x),$



• Laguerre polynomials

$$-[a,b] = [0,\infty)$$

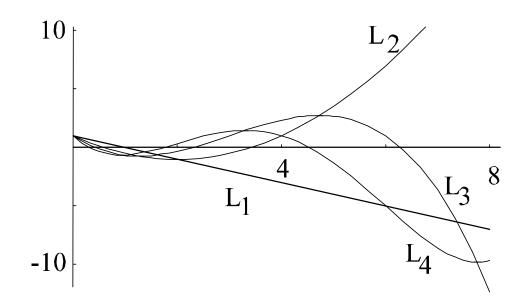
$$-w(x) = e^{-x}$$

$$-L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^n e^{-x})$$

$$L_0(x) = 1$$

$$L_1(x) = 1 - x$$

$$L_{n+1}(x) = \frac{1}{n+1} (2n+1-x) L_n(x) - \frac{n}{n+1} L_{n-1}(x),$$



• Hermite polynomials

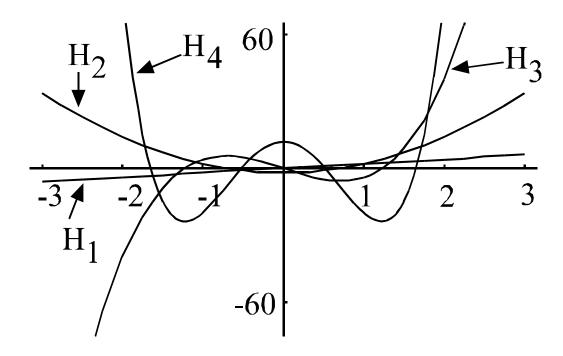
$$-[a, b] = (-\infty, \infty)$$

$$-w(x) = e^{-x^2}$$

$$-H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} (e^{-x^2})$$

$$H_0(x) = 1$$

 $H_1(x) = 2x$
 $H_{n+1}(x) = 2x H_n(x) - 2n H_{n-1}(x)$.



- General Orthogonal Polynomials
 - Few problems have the specific intervals and weights used in definitions
 - One must adapt interval through linear COV
 - * If compact interval [a, b] is mapped to [-1, 1] by

$$y = -1 + 2\frac{x - a}{b - a}$$

then $\phi_i\left(-1+2\frac{x-a}{b-a}\right)$ are orthogonal over $x\in[a,b]$ with respect to $w\left(-1+2\frac{x-a}{b-a}\right)$ iff $\phi_i\left(y\right)$ are orthogonal over $y\in[-1,1]$ w.r.t. $w\left(y\right)$

* If half-infinite interval $[a, \infty]$ is mapped to $[0, \infty]$ by

$$y = \frac{x - a}{\lambda}$$
$$w(y) = e^{-y}$$

then $\phi_i\left(\frac{x-a}{\lambda}\right)$ are orthogonal over $x \in [a, \infty]$ w.r.t. $w\left(\frac{x-a}{\lambda}\right)$ iff $\phi_i(y)$ are orthogonal over $y \in [0, \infty]$ w.r.t. w(y)

* If $[-\infty, \infty]$ is mapped to $[-\infty, \infty]$ by

$$y = (x - \mu) / \sqrt{\lambda}$$
$$w(y) = e^{-y^2}$$

then $\phi_i\left(\frac{x-\mu}{\sqrt{\lambda}}\right)$ are orthogonal over $x \in [a, \infty]$ w.r.t. $w\left(\frac{x-\mu}{\sqrt{\lambda}}\right)$ iff $\phi_i\left(y\right)$ are orthogonal over $y \in [0, \infty]$ w.r.t. $w\left(y\right)$

- Trigonometric polynomials and Fourier series
 - $-\{\cos(n\theta),\sin(m\theta)\}\$ are orthogonal on $[-\pi,\pi]$.
 - If f is continuous on $[-\pi, \pi]$ and $f(-\pi) = f(\pi)$, then

$$f(\theta) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos(n\theta) + \sum_{n=1}^{\infty} b_n \sin(n\theta)$$

where the Fourier coefficients are

$$a_n = \frac{1}{\pi} \int_{\pi}^{\pi} f(\theta) \cos(n\theta) d\theta$$
$$b_n = \frac{1}{\pi} \int_{\pi}^{\pi} f(\theta) \sin(n\theta) d\theta,$$

- A trigonometric polynomial is any function of the form in (6.4.4).
- Convergence is uniform.
- Excellent for approximating a smooth periodic function, i.e., $f: R \to R$ such that for some ω , $f(x) = f(x + \omega)$.
- Not good for nonperiodic functions
 - * Convergence is not uniform
 - * Many terms are needed

Regression

- Data: $(x_i, y_i), i = 1, ..., n$.
- Objective: Find a function $f(x;\beta)$ with $\beta \in \mathbb{R}^m$, $m \leq n$, with $y_i \doteq f(x_i), i = 1,...,n$.
- Least Squares regression:

$$\min_{\beta \in R^m} \sum \left(y_i - f\left(x_i; \beta \right) \right)^2$$

Chebyshev Regression

- Chebyshev Regression Data:
- $(x_i, y_i), i = 1, ..., n > m, x_i$ are the n zeroes of $T_n(x)$ adapted to [a, b]
- Chebyshev Interpolation Data:

$$(x_i, y_i), i = 1, ..., n = m, x_i$$
 are the n zeroes of $T_n(x)$ adapted to $[a, b]$

- -

Algorithm 6.4: Chebyshev Approximation Algorithm in \mathbb{R}^1

- Objective: Given f(x) defined on [a, b], find a m-point degree n Chebyshev polynomial approximation p(x)
- Step 1: Compute the $m \ge n+1$ Chebyshev interpolation nodes on [-1,1]:

$$z_k = -\cos\left(\frac{2k-1}{2m} \ \pi\right), \ k = 1, \cdots, m.$$

• Step 2: Adjust nodes to [a, b] interval:

$$x_k = (z_k + 1)\left(\frac{b-a}{2}\right) + a, k = 1, ..., m.$$

• Step 3: Evaluate f at approximation nodes:

$$w_k = f(x_k), k = 1, \cdots, m.$$

• Step 4: Compute Chebyshev coefficients, $a_i, i = 0, \dots, n$:

$$a_i = \frac{\sum_{k=1}^{m} w_k T_i(z_k)}{\sum_{k=1}^{m} T_i(z_k)^2}$$

to arrive at approximation of f(x, y) on [a, b]:

$$p(x) = \sum_{i=0}^{n} a_i T_i \left(2 \frac{x-a}{b-a} - 1 \right)$$

_ .

Minmax Approximation

- Data: $(x_i, y_i), i = 1, ..., n$.
- Objective: L^{∞} fit

$$\min_{\beta \in R^m} \max_{i} \|y_i - f(x_i; \beta)\|$$

- Problem: Difficult to compute
- Chebyshev minmax property

Theorem 1 Suppose $f: [-1,1] \to R$ is C^k for some $k \ge 1$, and let I_n be the n-point (degree n-1) polynomial interpolation of f based at the zeroes of $T_n(x)$. Then

$$\parallel f - I_n \parallel_{\infty} \le \left(\frac{2}{\pi} \log(n+1) + 1\right)$$

$$\times \frac{(n-k)!}{n!} \left(\frac{\pi}{2}\right)^k \left(\frac{b-a}{2}\right)^k \parallel f^{(k)} \parallel_{\infty}$$

- Chebyshev interpolation:
 - converges in L^{∞}
 - essentially achieves minmax approximation
 - easy to compute
 - does not approximate f'

Splines

Definition 2 A function s(x) on [a,b] is a spline of order n iff

- 1. $s is C^{n-2} on [a, b], and$
- 2. there is a grid of points (called nodes) $a = x_0 < x_1 < \cdots < x_m = b$ such that s(x) is a polynomial of degree n-1 on each subinterval $[x_i, x_{i+1}], i = 0, \dots, m-1$.

Note: an order 2 spline is the piecewise linear interpolant.

• Cubic Splines

- Lagrange data set: $\{(x_i, y_i) \mid i = 0, \dots, n\}$.
- Nodes: The x_i are the nodes of the spline
- Functional form: $s(x) = a_i + b_i x + c_i x^2 + d_i x^3$ on $[x_{i-1}, x_i]$
- Unknowns: 4n unknown coefficients, $a_i, b_i, c_i, d_i, i = 1, \dots, n$.

• Conditions:

-2n interpolation and continuity conditions:

$$y_{i} = a_{i} + b_{i}x_{i} + c_{i}x_{i}^{2} + d_{i}x_{i}^{3},$$

$$i = 1, ., n$$

$$y_{i} = a_{i+1} + b_{i+1}x_{i} + c_{i+1}x_{i}^{2} + d_{i+1}x_{i}^{3},$$

$$i = 0, ., n - 1$$

-2n-2 conditions from C^2 at the interior: for $i=1,\cdots n-1$,

$$b_i + 2c_i x_i + 3d_i x_i^2 = b_{i+1} + 2c_{i+1} x_i + 3d_{i+1} x_i^2$$
$$2c_i + 6d_i x_i = 2c_{i+1} + 6d_{i+1} x_i$$

- Equations (1-4) are 4n-2 linear equations in 4n unknown parameters, a, b, c, and d.
- construct 2 side conditions:
 - * natural spline: $s'(x_0) = 0 = s'(x_n)$; it minimizes total curvature, $\int_{x_0}^{x_n} s''(x)^2 dx$, among solutions to (1-4).
 - * Hermite spline: $s'(x_0) = y'_0$ and $s'(x_n) = y'_n$ (assumes extra data)
 - * Secant Hermite spline: $s'(x_0) = (s(x_1) s(x_0))/(x_1 x_0)$ and $s'(x_n) = (s(x_n) s(x_{n-1}))/(x_n x_{n-1})$.
 - * not-a-knot: choose $j = i_1, i_2$, such that $i_1 + 1 < i_2$, and set $d_j = d_{j+1}$.
- Solve system by special (sparse) methods; see spline fit packages

• Quality of approximation

Theorem 3 If $f \in C^4[x_0, x_n]$ and s is the Hermite cubic spline approximation to f on $\{x_0, x_1, \dots x_n\}$ and $h \ge \max_i \{x_i - x_{i-1}\}$, then

$$\| f - s \|_{\infty} \le \frac{5}{384} \| f^{(4)} \|_{\infty} h^4$$

and

$$\| f' - s' \|_{\infty} \le \left[\frac{\sqrt{3}}{216} + \frac{1}{24} \right] \| f^{(4)} \|_{\infty} h^3.$$

In general, order k+2 splines with n nodes yield $O(n^{-(k+1)})$ convergence for $f \in C^{k+1}[a,b]$.

_ . .

- B-Splines: A basis for splines
 - Put knots at $\{x_{-k}, \dots, x_{-1}, x_0, \dots, x_n\}$.
 - Order 1 splines: step function interpolation spanned by

$$B_i^0(x) = \begin{cases} 0, & x < x_i, \\ 1, & x_i \le x < x_{i+1}, \\ 0, & x_{i+1} \le x, \end{cases}$$

- Order 2 splines: piecewise linear interpolation and are spanned by

$$B_i^1(x) = \begin{cases} 0, & x \le x_i \text{ or } x \ge x_{i+2}, \\ \frac{x - x_i}{x_{i+1} - x_i}, & x_i \le x \le x_{i+1}, \\ \frac{x_{i+2} - x}{x_{i+2} - x_{i+1}}, & x_{i+1} \le x \le x_{i+2}. \end{cases}$$

The B_i^1 -spline is the tent function with peak at x_{i+1} and is zero for $x \leq x_i$ and $x \geq x_{i+2}$.

- Both B^0 and B^1 splines form cardinal bases for interpolation at the x_i 's.
- Higher-order B-splines are defined by the recursive relation

$$B_{i}^{k}(x) = \left(\frac{x - x_{i}}{x_{i+k} - x_{i}}\right) B_{i}^{k-1}(x) + \left(\frac{x_{i+k+1} - x}{x_{i+k+1} - x_{i+1}}\right) B_{i+1}^{k-1}(x)$$

Theorem 4 Let S_n^k be the space of all order k+1 spline functions on $[x_0, x_n]$ with knots at $\{x_0, x_1, \dots, x_n\}$. Then

1. The set

$$\{B_i^k|_{[x_0,x_n]}: -k \le i \le n-1\}$$

forms a linearly independent basis for S_n^k , which has dimension n + k.

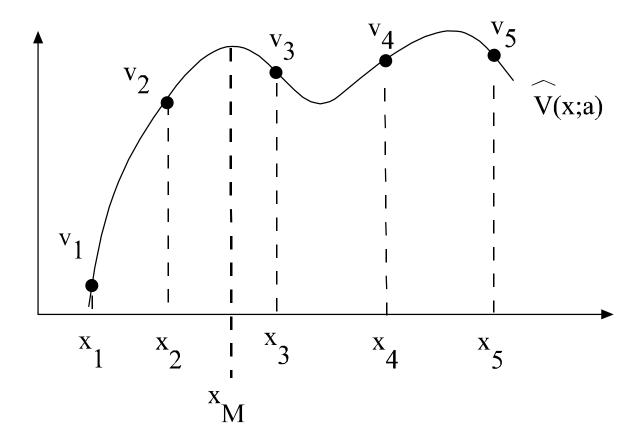
- 2. $B_i^k(x) \ge 0$ and the support of $B_i^k(x)$ is (x_i, x_{i+k+1}) .
- 3. $\frac{d}{dx}(B_i^k(x)) = \left(\frac{k}{x_{i+k}-x_i}\right) B_i^{k-1}(x) \left(\frac{k}{x_{i+k+1}-x_{i+1}}\right) B_{i+1}^{k-1}(x).$
- 4. If we have Lagrange interpolation data, (y_i, z_i) , $i = 1, \dots, n + k$, and

$$x_{i-k-1} < z_i < x_i$$
, $1 \le i \le n+k$,

then there is an interpolant S in S_n^k such that $y = S(z_i)$, i = 1,..., n + k.

_ _

- Shape-preservation
 - Concave (monotone) data may lead to nonconcave (nonmonotone) approximations.
 - Example



- ~

• Schumaker Procedure:

- 1. Take level (and maybe slope) data at nodes x_i
- 2. Add intermediate nodes $z_i^+ \in [x_i, x_{i+1}]$
- 3. Run quadratic spline with nodes at the x and z nodes which intepolate data and preserves shape.
- 4. Schumaker formulas tell one how to choose the z and spline coefficients (see book and correction at book's website)
- Many other procedures exist for one-dimensional problems
- Few procedures exist for two-dimensional problems
- Higher dimensions are difficult, but many questions are open.

• Spline summary:

- Evaluation is cheap
 - * Splines are locally low-order polynomial.
 - * Can choose intervals so that finding which $[x_i, x_{i+1}]$ contains a specific x is easy.
 - * Finding enclosing interval for general x_i sequence requires at most $\lceil \log_2 n \rceil$ comparisons
- Good fits even for functions with discontinuous or large higher-order derivatives. E.g., quality of cubic splines depends only on $f^{(4)}(x)$, not $f^{(5)}(x)$.
- Can use splines to preserve shape conditions

~ ~

Multidimensional approximation methods

- Lagrange Interpolation
 - Data: $D \equiv \{(x_i, z_i)\}_{i=1}^N \subset \mathbb{R}^{n+m}$, where $x_i \in \mathbb{R}^n$ and $z_i \in \mathbb{R}^m$
 - Objective: find $f: \mathbb{R}^n \to \mathbb{R}^m$ such that $z_i = f(x_i)$.
- Counterexample:
 - Interpolation nodes:

$${P_1, P_2, P_3, P_4} \equiv {(1,0), (-1,0), (0,1), (0,-1)}$$

- Use linear combinations of $\{1, x, y, xy\}$.
- Data: $z_i = f(P_i), i = 1, 2, 3, 4.$
- Interpolation form f(x, y) = a + bx + cy + dxy
- Defining conditions form the singular system

$$\begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & -10 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} = \begin{pmatrix} z_1 \\ z_2 \\ z_3 \\ z_4 \end{pmatrix},$$

- Task: Find combinations of interpolation nodes and spanning functions to produce a nonsingular (well-conditioned) interpolation matrix.

Tensor products

- General Approach:
 - If A and B are sets of functions over $x \in \mathbb{R}^n$, $y \in \mathbb{R}^m$, their tensor product is

$$A \otimes B = \{ \varphi(x)\psi(y) \mid \varphi \in A, \ \psi \in B \}.$$

– Given a basis for functions of x_i , $\Phi^i = \{\varphi_k^i(x_i)\}_{k=0}^{\infty}$, the *n-fold tensor product* basis for functions of (x_1, x_2, \dots, x_n) is

$$\Phi = \left\{ \prod_{i=1}^{n} \varphi_{k_i}^i(x_i) \mid k_i = 0, 1, \dots, i = 1, \dots, n \right\}$$

- Orthogonal polynomials and Least-square approximation
 - Suppose Φ^i are orthogonal with respect to $w_i(x_i)$ over $[a_i, b_i]$
 - Least squares approximation of $f(x_1, \dots, x_n)$ in Φ is

$$\sum_{\varphi \in \Phi} \frac{\langle \varphi, f \rangle}{\langle \varphi, \varphi \rangle} \varphi,$$

where the product weighting function

$$W(x_1, x_2, \cdots, x_n) = \prod_{i=1}^{n} w_i(x_i)$$

defines $\langle \cdot, \cdot \rangle$ over $D = \prod_i [a_i, b_i]$ in

$$\langle f(x), g(x) \rangle = \int_D f(x)g(x)W(x)dx.$$

Algorithm 6.4: Chebyshev Approximation Algorithm in \mathbb{R}^2

- Objective: Given f(x, y) defined on $[a, b] \times [c, d]$, find the m-point degree n Chebyshev polynomial approximation p(x, y)
- Step 1: Compute the $m \ge n+1$ Chebyshev interpolation nodes on [-1,1]:

$$z_k = -\cos\left(\frac{2k-1}{2m} \ \pi\right), \ k = 1, \cdots, m.$$

• Step 2: Adjust nodes to [a, b] and [c, d] intervals:

$$x_k = (z_k + 1) \left(\frac{b-a}{2}\right) + a, k = 1, ..., m.$$

 $y_k = (z_k + 1) \left(\frac{d-c}{2}\right) + c, k = 1, ..., m.$

• Step 3: Evaluate f at approximation nodes:

$$w_{k,\ell} = f(x_k, y_\ell) , \ k = 1, \dots, m. , \ \ell = 1, \dots, m.$$

• Step 4: Compute Chebyshev coefficients, $a_{ij}, i, j = 0, \dots, n$:

$$a_{ij} = \frac{\sum_{k=1}^{m} \sum_{\ell=1}^{m} w_{k,\ell} T_i(z_k) T_j(z_\ell)}{\left(\sum_{k=1}^{m} T_i(z_k)^2\right) \left(\sum_{\ell=1}^{m} T_j(z_\ell)^2\right)}$$

to arrive at approximation of f(x, y) on $[a, b] \times [c, d]$:

$$p(x,y) = \sum_{i=0}^{n} \sum_{j=0}^{n} a_{ij} T_i \left(2 \frac{x-a}{b-a} - 1 \right) T_j \left(2 \frac{y-c}{d-c} - 1 \right)$$

Multidimensional Splines

• B-splines: Multidimensional versions of splines can be constructed through tensor products; here B-splines would be useful.

• Summary

- Tensor products directly extend one-dimensional methods to n dimensions
- Curse of dimensionality often makes tensor products impractical

~ .

Complete polynomials

• Taylor's theorem for \mathbb{R}^n produces the approximation

$$f(x) \doteq f(x^{0}) + \sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(x^{0}) (x_{i} - x_{i}^{0}) + \frac{1}{2} \sum_{i_{1}=1}^{n} \sum_{i_{2}=1}^{n} \frac{\partial^{2} f}{\partial x_{i_{1}} \partial x_{i_{k}}} (x_{0}) (x_{i_{1}} - x_{i_{1}}^{0}) (x_{i_{k}} - x_{i_{k}}^{0}) \vdots$$

- For k = 1, Taylor's theorem for n dimensions used the linear functions

$$\mathcal{P}_1^n \equiv \{1, x_1, x_2, \cdots, x_n\}$$

- For k=2, Taylor's theorem uses

$$\mathcal{P}_2^n \equiv \mathcal{P}_1^n \cup \{x_1^2, \cdots, x_n^2, x_1 x_2, x_1 x_3, \cdots, x_{n-1} x_n\}.$$

 \mathcal{P}_2^n contains some product terms, but not all; for example, $x_1x_2x_3$ is not in \mathcal{P}_2^n .

• In general, the kth degree expansion uses the complete set of polynomials of total degree k in n variables.

$$\mathcal{P}_{k}^{n} \equiv \{x_{1}^{i_{1}} \cdots x_{n}^{i_{n}} \mid \sum_{\ell=1}^{n} i_{\ell} \leq k, \ 0 \leq i_{1}, \cdots, i_{n}\}$$

- \bullet Complete orthogonal basis includes only terms with total degree k or less.
- Sizes of alternative bases

degree
$$k$$
 \mathcal{P}_k^n Tensor Prod. $2 \quad 1 + n + n(n+1)/2 \quad 3^n \\ 3 \quad 1 + n + \frac{n(n+1)}{2} + n^2 + \frac{n(n-1)(n-2)}{6} \quad 4^n$

- Complete polynomial bases contains fewer elements than tensor products.
- Asymptotically, complete polynomial bases are as good as tensor products.
- For smooth n-dimensional functions, complete polynomials are more efficient approximations

• Construction

- Compute tensor product approximation, as in Algorithm 6.4
- Drop terms not in complete polynomial basis (or, just compute coefficients for polynomials in complete basis).
- Complete polynomial version is faster to compute since it involves fewer terms

Nonlinear approximation methods

- Neural Network Definitions:
 - A single-layer neural network is a function of form

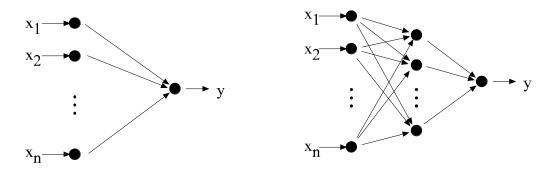
$$F(x;\beta) \equiv h\left(\sum_{i=1}^{n} \beta_{i} g\left(x_{i}\right)\right)$$

where

- * $x \in \mathbb{R}^n$ is the vector of inputs
- * h and g are scalar functions (e.g., g(x) = x)
- A single hidden-layer feedforward neural network is a function of form

$$F(x; \beta, \gamma) \equiv f\left(\sum_{j=1}^{m} \gamma_{j} h\left(\sum_{i=1}^{n} \beta_{i}^{j} g\left(x_{i}\right)\right)\right),$$

where h is called the *hidden-layer activation function*.



(a)

(b)

• Neural Network Approximation: We form least-squares approximations by solving either

$$\min_{\beta} \sum_{j} (y_j - F(x^j; \beta))^2$$

or

$$\min_{\beta,\gamma} \sum_{j} (y_j - F(x^j; \beta, \gamma))^2.$$

Theorem 5: (Universal approximation theorem) Let G be a continuous function, $G: R \to R$, such that either

- 1. $\int_{-\infty}^{\infty} G(x)dx$ is finite and nonzero and G is L^p for $1 \leq p < \infty$, or
- 2. $G: R \to [0, 1], G \text{ nondecreasing, } \lim_{x \to \infty} G(x) = 1, \text{ and } \lim_{x \to -\infty} G(x) = 0 \text{ (i.e., } G \text{ is a squashing function)}$

Let $\Sigma^n(G)$ be the set of all possible single hidden-layer feedforward neural networks using, G as the hidden layer activation function; that is, of the form $\sum_{j=1}^m \beta_j G(w^j x + b_j)$ for $x, w^j \in R^n$ and scalar b_j . Let $f: R^n \to R$ be continuous. Then for all $\varepsilon > 0$, probability measures μ , and compact sets $K \subset R^n$, there is a $g \in \Sigma^n(G)$ such that

$$\sup_{x \in K} |f(x) - g(x)| \le \varepsilon$$

and $\int_K |f(x) - g(x)| d\mu \le \varepsilon$.

Remark 6 The logistic function is a popular squashing function.

• Neural Networks are optimal in some sense:

Theorem 7 (Barron's theorem) Neural nets are asymptotically the most efficient approximations for smooth functions of dimension greater than two.

- Neural network summary:
 - flexible functional form
 - neural networks add squashing function to basic list of operations.
 - asymptotically efficient
 - difficult to solve necessary global optimization problem
 - do not know what points to use for approximation purposes
 - Just one example of possible nonlinear functional forms, all of which add some function besides multiplication and addition.

Approximation Methods: Summary

- ullet Interpolation versus regression
 - Lagrange data uses level information only
 - Hermite data also uses slope information
 - Regression uses more points than coefficients
- One-dimensional problems
 - Smooth approximations
 - * Orthogonal polynomial methods for nonperiodic functions
 - * Fourier approximations for periodic functions
 - Less smooth approximations
 - * Splines
 - * Shape-preserving splines

- Multidimensional data
 - Tensor product methods have curse of dimension
 - Complete polynomials are more efficient
 - Neural networks are most efficient
- Approximation versus Statistics
 - Similarities:
 - * both approximate unknown functions
 - * both use finite amount of data
 - Differences
 - * approximation uses error-free data, not noisy data
 - * approximation generates data, not constrained by observations